Print this page
    
5261 libm should stop using synonyms.h
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/complex/ctanhl.c
          +++ new/usr/src/lib/libm/common/complex/ctanhl.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  
    | 
      ↓ open down ↓ | 
    19 lines elided | 
    
      ↑ open up ↑ | 
  
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
  25   25  /*
  26   26   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   27   * Use is subject to license terms.
  28   28   */
  29   29  
  30      -#pragma weak ctanhl = __ctanhl
       30 +#pragma weak __ctanhl = ctanhl
  31   31  
  32   32  #include "libm.h"       /* expl/expm1l/fabsl/isinfl/isnanl/sincosl/sinl/tanhl */
  33   33  #include "complex_wrapper.h"
  34   34  #include "longdouble.h"
  35   35  
  36   36  /* INDENT OFF */
  37   37  static const long double four = 4.0L, two = 2.0L, one = 1.0L, zero = 0.0L;
  38   38  /* INDENT ON */
  39   39  
  40   40  ldcomplex
  41   41  ctanhl(ldcomplex z) {
  42   42          long double r, u, v, t, x, y, S, C;
  43   43          int hx, ix, hy, iy;
  44   44          ldcomplex ans;
  45   45  
  46   46          x = LD_RE(z);
  47   47          y = LD_IM(z);
  48   48          hx = HI_XWORD(x);
  49   49          ix = hx & 0x7fffffff;
  50   50          hy = HI_XWORD(y);
  51   51          iy = hy & 0x7fffffff;
  52   52          x = fabsl(x);
  53   53          y = fabsl(y);
  54   54  
  55   55          if (y == zero) {        /* ctanh(x,0) = (x,0) for x = 0 or NaN */
  56   56                  LD_RE(ans) = tanhl(x);
  57   57                  LD_IM(ans) = zero;
  58   58          } else if (iy >= 0x7fff0000) {  /* y is inf or NaN */
  59   59                  if (ix < 0x7fff0000)    /* catanh(finite x,inf/nan) is nan */
  60   60                          LD_RE(ans) = LD_IM(ans) = y - y;
  61   61                  else if (isinfl(x)) {   /* x is inf */
  62   62                          LD_RE(ans) = one;
  63   63                          LD_IM(ans) = zero;
  64   64                  } else {
  65   65                          LD_RE(ans) = x + y;
  66   66                          LD_IM(ans) = y - y;
  67   67                  }
  68   68          } else if (ix >= 0x4004e000) {
  69   69                  /* INDENT OFF */
  70   70                  /*
  71   71                   * |x| > 60 = prec/2 (14,28,34,60)
  72   72                   * ctanh z ~ 1 + i (sin2y)/(exp(2x))
  73   73                   */
  74   74                  /* INDENT ON */
  75   75                  LD_RE(ans) = one;
  76   76                  if (iy < 0x7ffe0000)    /* t = sin(2y) */
  77   77                          S = sinl(y + y);
  78   78                  else {
  79   79                          (void) sincosl(y, &S, &C);
  80   80                          S = (S + S) * C;
  81   81                  }
  82   82                  if (ix >= 0x7ffe0000) { /* |x| > max/2 */
  83   83                          if (ix >= 0x7fff0000) { /* |x| is inf or NaN */
  84   84                                  if (isnanl(x))  /* x is NaN */
  85   85                                          LD_RE(ans) = LD_IM(ans) = x + y;
  86   86                                  else
  87   87                                          LD_IM(ans) = zero * S;  /* x is inf */
  88   88                          } else
  89   89                                  LD_IM(ans) = S * expl(-x);      /* underflow */
  90   90                  } else
  91   91                          LD_IM(ans) = (S + S) * expl(-(x + x));
  92   92                                                          /* 2 sin 2y / exp(2x) */
  93   93          } else {
  94   94                  /* INDENT OFF */
  95   95                  /*
  96   96                   *                        t*t+2t
  97   97                   *    ctanh z = ---------------------------
  98   98                   *               t*t+[4(t+1)(cos y)](cos y)
  99   99                   *
 100  100                   *                  [4(t+1)(cos y)]*(sin y)
 101  101                   *              i --------------------------
 102  102                   *                t*t+[4(t+1)(cos y)](cos y)
 103  103                   */
 104  104                  /* INDENT ON */
 105  105                  sincosl(y, &S, &C);
 106  106                  t = expm1l(x + x);
 107  107                  r = (four * C) * (t + one);
 108  108                  u = t * t;
 109  109                  v = one / (u + r * C);
 110  110                  LD_RE(ans) = (u + two * t) * v;
 111  111                  LD_IM(ans) = (r * S) * v;
 112  112          }
 113  113          if (hx < 0)
 114  114                  LD_RE(ans) = -LD_RE(ans);
 115  115          if (hy < 0)
 116  116                  LD_IM(ans) = -LD_IM(ans);
 117  117          return (ans);
 118  118  }
  
    | 
      ↓ open down ↓ | 
    78 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX