Print this page
    
5261 libm should stop using synonyms.h
    
      
        | Split | 
	Close | 
      
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/complex/cpow.c
          +++ new/usr/src/lib/libm/common/complex/cpow.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  
    | 
      ↓ open down ↓ | 
    19 lines elided | 
    
      ↑ open up ↑ | 
  
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
  25   25  /*
  26   26   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   27   * Use is subject to license terms.
  28   28   */
  29   29  
  30      -#pragma weak cpow = __cpow
       30 +#pragma weak __cpow = cpow
  31   31  
  32   32  /* INDENT OFF */
  33   33  /*
  34   34   * dcomplex cpow(dcomplex z);
  35   35   *
  36   36   * z**w analytically equivalent to
  37   37   *
  38   38   * cpow(z,w) = cexp(w clog(z))
  39   39   *
  40   40   * Let z = x+iy, w = u+iv.
  41   41   * Since
  42   42   *                        _________
  43   43   *                       / 2    2            -1   y
  44   44   *     log(x+iy) = log(\/ x  + y    ) + i tan   (---)
  45   45   *                                                x
  46   46   *
  47   47   *                  1       2    2         -1   y
  48   48   *               = --- log(x  + y ) + i tan   (---)
  49   49   *                  2                           x
  50   50   *                       u       2    2         -1  y
  51   51   * (u+iv)* log(x+iy) =  --- log(x  + y ) - v tan  (---)  +          (1)
  52   52   *                       2                          x
  53   53   *
  54   54   *                            v       2    2         -1  y
  55   55   *                     i * [ --- log(x  + y ) + u tan  (---) ]      (2)
  56   56   *                            2                          x
  57   57   *
  58   58   *                   = r + i q
  59   59   *
  60   60   * Therefore,
  61   61   *      w     r+iq    r
  62   62   *     z  =  e     = e  (cos(q)+i*sin(q))
  63   63   *                                   _______
  64   64   *                                  / 2   2
  65   65   *       r                        \/ x + y     -v*atan2(y,x)
  66   66   * Here e  can be expressed as:  u          * e
  67   67   *
  68   68   * Special cases (in the order of appearance):
  69   69   *      1.  (anything) ** 0  is 1
  70   70   *      2.  (anything) ** 1  is itself
  71   71   *      3.  When v = 0, y = 0:
  72   72   *            If x is finite and negative, and u is finite, then
  73   73   *               x ** u = exp(u*pi i) * pow(|x|, u);
  74   74   *            otherwise,
  75   75   *               x ** u = pow(x, u);
  76   76   *      4.  When v = 0, x = 0 or |x| = |y| or x is inf or y is inf:
  77   77   *               (x + y i) ** u = r * exp(q i)
  78   78   *          where
  79   79   *               r = hypot(x,y) ** u
  80   80   *               q = u * atan2pi(y, x)
  81   81   *
  82   82   *      5.  otherwise, z**w is NAN if any x, y, u, v is a Nan or inf
  83   83   *
  84   84   *      Note: many results of special cases are obtained in terms of
  85   85   *      polar coordinate. In the conversion from polar to rectangle:
  86   86   *                  r exp(q i) = r * cos(q) + r * sin(q) i,
  87   87   *      we regard r * 0 is 0 except when r is a NaN.
  88   88   */
  89   89  /* INDENT ON */
  90   90  
  91   91  #include "libm.h"       /* atan2/exp/fabs/hypot/log/pow/scalbn */
  92   92                          /* atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2 */
  93   93  #include "complex_wrapper.h"
  94   94  
  95   95  extern void sincospi(double, double *, double *);
  96   96  
  97   97  static const double
  98   98          huge = 1e300,
  99   99          tiny = 1e-300,
 100  100          invln2 = 1.44269504088896338700e+00,
 101  101          ln2hi = 6.93147180369123816490e-01,   /* 0x3fe62e42, 0xfee00000 */
 102  102          ln2lo = 1.90821492927058770002e-10,   /* 0x3dea39ef, 0x35793c76 */
 103  103          one = 1.0,
 104  104          zero = 0.0;
 105  105  
 106  106  static const int hiinf = 0x7ff00000;
 107  107  extern double atan2pi(double, double);
 108  108  
 109  109  /*
 110  110   * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine
 111  111   * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers.
 112  112   */
 113  113  static double
 114  114  sum4fp(double ta[], double *w) {
 115  115          double t1, t2, t3, t4, w1, w2, t;
 116  116          t1 = ta[0]; t2 = ta[1]; t3 = ta[2]; t4 = ta[3];
 117  117          /*
 118  118           * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4|
 119  119           */
 120  120          if (fabs(t4) > fabs(t1)) {
 121  121                  t = t1; t1 = t3; t3 = t;
 122  122                  t = t2; t2 = t4; t4 = t;
 123  123          } else if (fabs(t3) > fabs(t1)) {
 124  124                  t = t1; t1 = t3;
 125  125                  if (fabs(t4) > fabs(t2)) {
 126  126                          t3 = t4; t4 = t2; t2 = t;
 127  127                  } else {
 128  128                          t3 = t2; t2 = t;
 129  129                  }
 130  130          } else if (fabs(t3) > fabs(t2)) {
 131  131                  t = t2; t2 = t3;
 132  132                  if (fabs(t4) > fabs(t2)) {
 133  133                          t3 = t4; t4 = t;
 134  134                  } else
 135  135                          t3 = t;
 136  136          }
 137  137          /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */
 138  138          w1 = t3 + t4;
 139  139          w2 = t4 - (w1 - t3);
 140  140          t  = t2 + w1;
 141  141          w2 += w1 - (t - t2);
 142  142          w1 = t + w2;
 143  143          w2 += t - w1;
 144  144          t  = t1 + w1;
 145  145          w2 += w1 - (t - t1);
 146  146          w1 = t + w2;
 147  147          *w = w2 - (w1 - t);
 148  148          return (w1);
 149  149  }
 150  150  
 151  151  dcomplex
 152  152  cpow(dcomplex z, dcomplex w) {
 153  153          dcomplex ans;
 154  154          double x, y, u, v, t, c, s, r, x2, y2;
 155  155          double b[4], t1, t2, t3, t4, w1, w2, u1, v1, x1, y1;
 156  156          int ix, iy, hx, lx, hy, ly, hv, hu, iu, iv, lu, lv;
 157  157          int i, j, k;
 158  158  
 159  159          x = D_RE(z);
 160  160          y = D_IM(z);
 161  161          u = D_RE(w);
 162  162          v = D_IM(w);
 163  163          hx = ((int *) &x)[HIWORD];
 164  164          lx = ((int *) &x)[LOWORD];
 165  165          hy = ((int *) &y)[HIWORD];
 166  166          ly = ((int *) &y)[LOWORD];
 167  167          hu = ((int *) &u)[HIWORD];
 168  168          lu = ((int *) &u)[LOWORD];
 169  169          hv = ((int *) &v)[HIWORD];
 170  170          lv = ((int *) &v)[LOWORD];
 171  171          ix = hx & 0x7fffffff;
 172  172          iy = hy & 0x7fffffff;
 173  173          iu = hu & 0x7fffffff;
 174  174          iv = hv & 0x7fffffff;
 175  175  
 176  176          j = 0;
 177  177          if ((iv | lv) == 0) {   /* z**(real) */
 178  178                  if (((hu - 0x3ff00000) | lu) == 0) {    /* z ** 1 = z */
 179  179                          D_RE(ans) = x;
 180  180                          D_IM(ans) = y;
 181  181                  } else if ((iu | lu) == 0) {    /* z ** 0 = 1 */
 182  182                          D_RE(ans) = one;
 183  183                          D_IM(ans) = zero;
 184  184                  } else if ((iy | ly) == 0) {    /* (real)**(real) */
 185  185                          D_IM(ans) = zero;
 186  186                          if (hx < 0 && ix < hiinf && iu < hiinf) {
 187  187                                  /* -x ** u  is exp(i*pi*u)*pow(x,u) */
 188  188                                  r = pow(-x, u);
 189  189                                  sincospi(u, &s, &c);
 190  190                                  D_RE(ans) = (c == zero)? c: c * r;
 191  191                                  D_IM(ans) = (s == zero)? s: s * r;
 192  192                          } else
 193  193                                  D_RE(ans) = pow(x, u);
 194  194                  } else if (((ix | lx) == 0) || ix >= hiinf || iy >= hiinf) {
 195  195                          if (isnan(x) || isnan(y) || isnan(u))
 196  196                                  D_RE(ans) = D_IM(ans) = x + y + u;
 197  197                          else {
 198  198                                  if ((ix | lx) == 0)
 199  199                                          r = fabs(y);
 200  200                                  else
 201  201                                          r = fabs(x) + fabs(y);
 202  202                                  t = atan2pi(y, x);
 203  203                                  sincospi(t * u, &s, &c);
 204  204                                  D_RE(ans) = (c == zero)? c: c * r;
 205  205                                  D_IM(ans) = (s == zero)? s: s * r;
 206  206                          }
 207  207                  } else if (((ix - iy) | (lx - ly)) == 0) {   /* |x| = |y| */
 208  208                          if (hx >= 0) {
 209  209                                  t = (hy >= 0)? 0.25 : -0.25;
 210  210                                  sincospi(t * u, &s, &c);
 211  211                          } else if ((lu & 3) == 0) {
 212  212                                  t = (hy >= 0)? 0.75 : -0.75;
 213  213                                  sincospi(t * u, &s, &c);
 214  214                          } else {
 215  215                                  r = (hy >= 0)? u : -u;
 216  216                                  t = -0.25 * r;
 217  217                                  w1 = r + t;
 218  218                                  w2 = t - (w1 - r);
 219  219                                  sincospi(w1, &t1, &t2);
 220  220                                  sincospi(w2, &t3, &t4);
 221  221                                  s = t1 * t4 + t3 * t2;
 222  222                                  c = t2 * t4 - t1 * t3;
 223  223                          }
 224  224                          if (ix < 0x3fe00000)    /* |x| < 1/2 */
 225  225                                  r = pow(fabs(x + x), u) * exp2(-0.5 * u);
 226  226                          else if (ix >= 0x3ff00000 || iu < 0x408ff800)
 227  227                                  /* |x| >= 1 or |u| < 1023 */
 228  228                                  r = pow(fabs(x), u) * exp2(0.5 * u);
 229  229                          else   /* special treatment */
 230  230                                  j = 2;
 231  231                          if (j == 0) {
 232  232                                  D_RE(ans) = (c == zero)? c: c * r;
 233  233                                  D_IM(ans) = (s == zero)? s: s * r;
 234  234                          }
 235  235                  } else
 236  236                          j = 1;
 237  237                  if (j == 0)
 238  238                          return (ans);
 239  239          }
 240  240          if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) {
 241  241                  /*
 242  242                   * non-zero imag part(s) with inf component(s) yields NaN
 243  243                   */
 244  244                  t = fabs(x) + fabs(y) + fabs(u) + fabs(v);
 245  245                  D_RE(ans) = D_IM(ans) = t - t;
 246  246          } else {
 247  247                  k = 0;  /* no scaling */
 248  248                  if (iu > 0x7f000000 || iv > 0x7f000000) {
 249  249                          u *= .0009765625; /* scale 2**-10 to avoid overflow */
 250  250                          v *= .0009765625;
 251  251                          k = 1;  /* scale by 2**-10 */
 252  252                  }
 253  253                  /*
 254  254                   * Use similated higher precision arithmetic to compute:
 255  255                   * r = u * log(hypot(x, y)) - v * atan2(y, x)
 256  256                   * q = u * atan2(y, x) + v * log(hypot(x, y))
 257  257                   */
 258  258                  t1 = __k_clog_r(x, y, &t2);
 259  259                  t3 = __k_atan2(y, x, &t4);
 260  260                  x1 = t1;
 261  261                  y1 = t3;
 262  262                  u1 = u;
 263  263                  v1 = v;
 264  264                  ((int *) &u1)[LOWORD] &= 0xf8000000;
 265  265                  ((int *) &v1)[LOWORD] &= 0xf8000000;
 266  266                  ((int *) &x1)[LOWORD] &= 0xf8000000;
 267  267                  ((int *) &y1)[LOWORD] &= 0xf8000000;
 268  268                  x2 = t2 - (x1 - t1);    /* log(hypot(x,y)) = x1 + x2 */
 269  269                  y2 = t4 - (y1 - t3);    /* atan2(y,x) = y1 + y2 */
 270  270                  /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */
 271  271                  if (j != 2) {
 272  272                          b[0] = u1 * y1;
 273  273                          b[1] = (u - u1) * y1 + u * y2;
 274  274                          if (j == 1) {   /* v = 0 */
 275  275                                  w1 = b[0] + b[1];
 276  276                                  w2 = b[1] - (w1 - b[0]);
 277  277                          } else {
 278  278                                  b[2] = v1 * x1;
 279  279                                  b[3] = (v - v1) * x1 + v * x2;
 280  280                                  w1 = sum4fp(b, &w2);
 281  281                          }
 282  282                          sincos(w1, &t1, &t2);
 283  283                          sincos(w2, &t3, &t4);
 284  284                          s = t1 * t4 + t3 * t2;
 285  285                          c = t2 * t4 - t1 * t3;
 286  286                          if (k == 1)
 287  287                          /*
 288  288                           * square (cos(q) + i sin(q)) k times to get
 289  289                           * (cos(2^k * q + i sin(2^k * q)
 290  290                           */
 291  291                                  for (i = 0; i < 10; i++) {
 292  292                                          t1 = s * c;
 293  293                                          c = (c + s) * (c - s);
 294  294                                          s = t1 + t1;
 295  295                                  }
 296  296                  }
 297  297                  /* compute r = u * (t1, t2) - v * (t3, t4) */
 298  298                  b[0] = u1 * x1;
 299  299                  b[1] = (u - u1) * x1 + u * x2;
 300  300                  if (j == 1) {   /* v = 0 */
 301  301                          w1 = b[0] + b[1];
 302  302                          w2 = b[1] - (w1 - b[0]);
 303  303                  } else {
 304  304                          b[2] = -v1 * y1;
 305  305                          b[3] = (v1 - v) * y1 - v * y2;
 306  306                          w1 = sum4fp(b, &w2);
 307  307                  }
 308  308                  /* check over/underflow for exp(w1 + w2) */
 309  309                  if (k && fabs(w1) < 1000.0) {
 310  310                          w1 *= 1024; w2 *= 1024; k = 0;
 311  311                  }
 312  312                  hx = ((int *) &w1)[HIWORD];
 313  313                  lx = ((int *) &w1)[LOWORD];
 314  314                  ix = hx & 0x7fffffff;
 315  315                  /* compute exp(w1 + w2) */
 316  316                  if (ix < 0x3c900000) /* exp(tiny < 2**-54) = 1 */
 317  317                          r = one;
 318  318                  else if (ix >= 0x40880000) /* overflow/underflow */
 319  319                          r = (hx < 0)? tiny * tiny : huge * huge;
 320  320                  else {  /* compute exp(w1 + w2) */
 321  321                          k = (int) (invln2 * w1 + ((hx >= 0)? 0.5 : -0.5));
 322  322                          t1 = (double) k;
 323  323                          t2 = w1 - t1 * ln2hi;
 324  324                          t3 = w2 - t1 * ln2lo;
 325  325                          r = exp(t2 + t3);
 326  326                  }
 327  327                  if (c != zero) c *= r;
 328  328                  if (s != zero) s *= r;
 329  329                  if (k != 0) {
 330  330                          c = scalbn(c, k);
 331  331                          s = scalbn(s, k);
 332  332                  }
 333  333                  D_RE(ans) = c;
 334  334                  D_IM(ans) = s;
 335  335          }
 336  336          return (ans);
 337  337  }
  
    | 
      ↓ open down ↓ | 
    297 lines elided | 
    
      ↑ open up ↑ | 
  
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX