1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 /* 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 */ 29 30 #pragma weak cpow = __cpow 31 32 /* INDENT OFF */ 33 /* 34 * dcomplex cpow(dcomplex z); 35 * 36 * z**w analytically equivalent to 37 * 38 * cpow(z,w) = cexp(w clog(z)) 39 * 40 * Let z = x+iy, w = u+iv. 41 * Since 42 * _________ 43 * / 2 2 -1 y 44 * log(x+iy) = log(\/ x + y ) + i tan (---) 45 * x 46 * 47 * 1 2 2 -1 y 48 * = --- log(x + y ) + i tan (---) 49 * 2 x 50 * u 2 2 -1 y 51 * (u+iv)* log(x+iy) = --- log(x + y ) - v tan (---) + (1) 52 * 2 x 53 * 54 * v 2 2 -1 y 55 * i * [ --- log(x + y ) + u tan (---) ] (2) 56 * 2 x 57 * 58 * = r + i q 59 * 60 * Therefore, 61 * w r+iq r 62 * z = e = e (cos(q)+i*sin(q)) 63 * _______ 64 * / 2 2 65 * r \/ x + y -v*atan2(y,x) 66 * Here e can be expressed as: u * e 67 * 68 * Special cases (in the order of appearance): 69 * 1. (anything) ** 0 is 1 70 * 2. (anything) ** 1 is itself 71 * 3. When v = 0, y = 0: 72 * If x is finite and negative, and u is finite, then 73 * x ** u = exp(u*pi i) * pow(|x|, u); 74 * otherwise, 75 * x ** u = pow(x, u); 76 * 4. When v = 0, x = 0 or |x| = |y| or x is inf or y is inf: 77 * (x + y i) ** u = r * exp(q i) 78 * where 79 * r = hypot(x,y) ** u 80 * q = u * atan2pi(y, x) 81 * 82 * 5. otherwise, z**w is NAN if any x, y, u, v is a Nan or inf 83 * 84 * Note: many results of special cases are obtained in terms of 85 * polar coordinate. In the conversion from polar to rectangle: 86 * r exp(q i) = r * cos(q) + r * sin(q) i, 87 * we regard r * 0 is 0 except when r is a NaN. 88 */ 89 /* INDENT ON */ 90 91 #include "libm.h" /* atan2/exp/fabs/hypot/log/pow/scalbn */ 92 /* atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2 */ 93 #include "complex_wrapper.h" 94 95 extern void sincospi(double, double *, double *); 96 97 static const double 98 huge = 1e300, 99 tiny = 1e-300, 100 invln2 = 1.44269504088896338700e+00, 101 ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ 102 ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ 103 one = 1.0, 104 zero = 0.0; 105 106 static const int hiinf = 0x7ff00000; 107 extern double atan2pi(double, double); 108 109 /* 110 * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine 111 * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers. 112 */ 113 static double 114 sum4fp(double ta[], double *w) { 115 double t1, t2, t3, t4, w1, w2, t; 116 t1 = ta[0]; t2 = ta[1]; t3 = ta[2]; t4 = ta[3]; 117 /* 118 * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4| 119 */ 120 if (fabs(t4) > fabs(t1)) { 121 t = t1; t1 = t3; t3 = t; 122 t = t2; t2 = t4; t4 = t; 123 } else if (fabs(t3) > fabs(t1)) { 124 t = t1; t1 = t3; 125 if (fabs(t4) > fabs(t2)) { 126 t3 = t4; t4 = t2; t2 = t; 127 } else { 128 t3 = t2; t2 = t; 129 } 130 } else if (fabs(t3) > fabs(t2)) { 131 t = t2; t2 = t3; 132 if (fabs(t4) > fabs(t2)) { 133 t3 = t4; t4 = t; 134 } else 135 t3 = t; 136 } 137 /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */ 138 w1 = t3 + t4; 139 w2 = t4 - (w1 - t3); 140 t = t2 + w1; 141 w2 += w1 - (t - t2); 142 w1 = t + w2; 143 w2 += t - w1; 144 t = t1 + w1; 145 w2 += w1 - (t - t1); 146 w1 = t + w2; 147 *w = w2 - (w1 - t); 148 return (w1); 149 } 150 151 dcomplex 152 cpow(dcomplex z, dcomplex w) { 153 dcomplex ans; 154 double x, y, u, v, t, c, s, r, x2, y2; 155 double b[4], t1, t2, t3, t4, w1, w2, u1, v1, x1, y1; 156 int ix, iy, hx, lx, hy, ly, hv, hu, iu, iv, lu, lv; 157 int i, j, k; 158 159 x = D_RE(z); 160 y = D_IM(z); 161 u = D_RE(w); 162 v = D_IM(w); 163 hx = ((int *) &x)[HIWORD]; 164 lx = ((int *) &x)[LOWORD]; 165 hy = ((int *) &y)[HIWORD]; 166 ly = ((int *) &y)[LOWORD]; 167 hu = ((int *) &u)[HIWORD]; 168 lu = ((int *) &u)[LOWORD]; 169 hv = ((int *) &v)[HIWORD]; 170 lv = ((int *) &v)[LOWORD]; 171 ix = hx & 0x7fffffff; 172 iy = hy & 0x7fffffff; 173 iu = hu & 0x7fffffff; 174 iv = hv & 0x7fffffff; 175 176 j = 0; 177 if ((iv | lv) == 0) { /* z**(real) */ 178 if (((hu - 0x3ff00000) | lu) == 0) { /* z ** 1 = z */ 179 D_RE(ans) = x; 180 D_IM(ans) = y; 181 } else if ((iu | lu) == 0) { /* z ** 0 = 1 */ 182 D_RE(ans) = one; 183 D_IM(ans) = zero; 184 } else if ((iy | ly) == 0) { /* (real)**(real) */ 185 D_IM(ans) = zero; 186 if (hx < 0 && ix < hiinf && iu < hiinf) { 187 /* -x ** u is exp(i*pi*u)*pow(x,u) */ 188 r = pow(-x, u); 189 sincospi(u, &s, &c); 190 D_RE(ans) = (c == zero)? c: c * r; 191 D_IM(ans) = (s == zero)? s: s * r; 192 } else 193 D_RE(ans) = pow(x, u); 194 } else if (((ix | lx) == 0) || ix >= hiinf || iy >= hiinf) { 195 if (isnan(x) || isnan(y) || isnan(u)) 196 D_RE(ans) = D_IM(ans) = x + y + u; 197 else { 198 if ((ix | lx) == 0) 199 r = fabs(y); 200 else 201 r = fabs(x) + fabs(y); 202 t = atan2pi(y, x); 203 sincospi(t * u, &s, &c); 204 D_RE(ans) = (c == zero)? c: c * r; 205 D_IM(ans) = (s == zero)? s: s * r; 206 } 207 } else if (((ix - iy) | (lx - ly)) == 0) { /* |x| = |y| */ 208 if (hx >= 0) { 209 t = (hy >= 0)? 0.25 : -0.25; 210 sincospi(t * u, &s, &c); 211 } else if ((lu & 3) == 0) { 212 t = (hy >= 0)? 0.75 : -0.75; 213 sincospi(t * u, &s, &c); 214 } else { 215 r = (hy >= 0)? u : -u; 216 t = -0.25 * r; 217 w1 = r + t; 218 w2 = t - (w1 - r); 219 sincospi(w1, &t1, &t2); 220 sincospi(w2, &t3, &t4); 221 s = t1 * t4 + t3 * t2; 222 c = t2 * t4 - t1 * t3; 223 } 224 if (ix < 0x3fe00000) /* |x| < 1/2 */ 225 r = pow(fabs(x + x), u) * exp2(-0.5 * u); 226 else if (ix >= 0x3ff00000 || iu < 0x408ff800) 227 /* |x| >= 1 or |u| < 1023 */ 228 r = pow(fabs(x), u) * exp2(0.5 * u); 229 else /* special treatment */ 230 j = 2; 231 if (j == 0) { 232 D_RE(ans) = (c == zero)? c: c * r; 233 D_IM(ans) = (s == zero)? s: s * r; 234 } 235 } else 236 j = 1; 237 if (j == 0) 238 return (ans); 239 } 240 if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) { 241 /* 242 * non-zero imag part(s) with inf component(s) yields NaN 243 */ 244 t = fabs(x) + fabs(y) + fabs(u) + fabs(v); 245 D_RE(ans) = D_IM(ans) = t - t; 246 } else { 247 k = 0; /* no scaling */ 248 if (iu > 0x7f000000 || iv > 0x7f000000) { 249 u *= .0009765625; /* scale 2**-10 to avoid overflow */ 250 v *= .0009765625; 251 k = 1; /* scale by 2**-10 */ 252 } 253 /* 254 * Use similated higher precision arithmetic to compute: 255 * r = u * log(hypot(x, y)) - v * atan2(y, x) 256 * q = u * atan2(y, x) + v * log(hypot(x, y)) 257 */ 258 t1 = __k_clog_r(x, y, &t2); 259 t3 = __k_atan2(y, x, &t4); 260 x1 = t1; 261 y1 = t3; 262 u1 = u; 263 v1 = v; 264 ((int *) &u1)[LOWORD] &= 0xf8000000; 265 ((int *) &v1)[LOWORD] &= 0xf8000000; 266 ((int *) &x1)[LOWORD] &= 0xf8000000; 267 ((int *) &y1)[LOWORD] &= 0xf8000000; 268 x2 = t2 - (x1 - t1); /* log(hypot(x,y)) = x1 + x2 */ 269 y2 = t4 - (y1 - t3); /* atan2(y,x) = y1 + y2 */ 270 /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */ 271 if (j != 2) { 272 b[0] = u1 * y1; 273 b[1] = (u - u1) * y1 + u * y2; 274 if (j == 1) { /* v = 0 */ 275 w1 = b[0] + b[1]; 276 w2 = b[1] - (w1 - b[0]); 277 } else { 278 b[2] = v1 * x1; 279 b[3] = (v - v1) * x1 + v * x2; 280 w1 = sum4fp(b, &w2); 281 } 282 sincos(w1, &t1, &t2); 283 sincos(w2, &t3, &t4); 284 s = t1 * t4 + t3 * t2; 285 c = t2 * t4 - t1 * t3; 286 if (k == 1) 287 /* 288 * square (cos(q) + i sin(q)) k times to get 289 * (cos(2^k * q + i sin(2^k * q) 290 */ 291 for (i = 0; i < 10; i++) { 292 t1 = s * c; 293 c = (c + s) * (c - s); 294 s = t1 + t1; 295 } 296 } 297 /* compute r = u * (t1, t2) - v * (t3, t4) */ 298 b[0] = u1 * x1; 299 b[1] = (u - u1) * x1 + u * x2; 300 if (j == 1) { /* v = 0 */ 301 w1 = b[0] + b[1]; 302 w2 = b[1] - (w1 - b[0]); 303 } else { 304 b[2] = -v1 * y1; 305 b[3] = (v1 - v) * y1 - v * y2; 306 w1 = sum4fp(b, &w2); 307 } 308 /* check over/underflow for exp(w1 + w2) */ 309 if (k && fabs(w1) < 1000.0) { 310 w1 *= 1024; w2 *= 1024; k = 0; 311 } 312 hx = ((int *) &w1)[HIWORD]; 313 lx = ((int *) &w1)[LOWORD]; 314 ix = hx & 0x7fffffff; 315 /* compute exp(w1 + w2) */ 316 if (ix < 0x3c900000) /* exp(tiny < 2**-54) = 1 */ 317 r = one; 318 else if (ix >= 0x40880000) /* overflow/underflow */ 319 r = (hx < 0)? tiny * tiny : huge * huge; 320 else { /* compute exp(w1 + w2) */ 321 k = (int) (invln2 * w1 + ((hx >= 0)? 0.5 : -0.5)); 322 t1 = (double) k; 323 t2 = w1 - t1 * ln2hi; 324 t3 = w2 - t1 * ln2lo; 325 r = exp(t2 + t3); 326 } 327 if (c != zero) c *= r; 328 if (s != zero) s *= r; 329 if (k != 0) { 330 c = scalbn(c, k); 331 s = scalbn(s, k); 332 } 333 D_RE(ans) = c; 334 D_IM(ans) = s; 335 } 336 return (ans); 337 }