10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak catanl = __catanl
31
32 /* INDENT OFF */
33 /*
34 * ldcomplex catanl(ldcomplex z);
35 *
36 * Atan(z) return A + Bi where,
37 * 1
38 * A = --- * atan2(2x, 1-x*x-y*y)
39 * 2
40 *
41 * 1 [ x*x + (y+1)*(y+1) ] 1 4y
42 * B = --- log [ ----------------- ] = - log (1+ -----------------)
43 * 4 [ x*x + (y-1)*(y-1) ] 4 x*x + (y-1)*(y-1)
44 *
45 * 2 16 3 y
46 * = t - 2t + -- t - ..., where t = -----------------
47 * 3 x*x + (y-1)*(y-1)
48 * Proof:
49 * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z.
50 * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2),
|
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 */
25 /*
26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 * Use is subject to license terms.
28 */
29
30 #pragma weak __catanl = catanl
31
32 /* INDENT OFF */
33 /*
34 * ldcomplex catanl(ldcomplex z);
35 *
36 * Atan(z) return A + Bi where,
37 * 1
38 * A = --- * atan2(2x, 1-x*x-y*y)
39 * 2
40 *
41 * 1 [ x*x + (y+1)*(y+1) ] 1 4y
42 * B = --- log [ ----------------- ] = - log (1+ -----------------)
43 * 4 [ x*x + (y-1)*(y-1) ] 4 x*x + (y-1)*(y-1)
44 *
45 * 2 16 3 y
46 * = t - 2t + -- t - ..., where t = -----------------
47 * 3 x*x + (y-1)*(y-1)
48 * Proof:
49 * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z.
50 * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2),
|