Print this page
5261 libm should stop using synonyms.h
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/R/logf.c
+++ new/usr/src/lib/libm/common/R/logf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
↓ open down ↓ |
18 lines elided |
↑ open up ↑ |
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 23 */
24 24 /*
25 25 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 26 * Use is subject to license terms.
27 27 */
28 28
29 -#pragma weak logf = __logf
29 +#pragma weak __logf = logf
30 30
31 31 /*
32 32 * Algorithm:
33 33 *
34 34 * Let y = x rounded to six significant bits. Then for any choice
35 35 * of e and z such that y = 2^e z, we have
36 36 *
37 37 * log(x) = e log(2) + log(z) + log(1+(x-y)/y)
38 38 *
39 39 * Note that (x-y)/y = (x'-y')/y' for any scaled x' = sx, y' = sy;
40 40 * in particular, we can take s to be the power of two that makes
41 41 * ulp(x') = 1.
42 42 *
43 43 * From a table, obtain l = log(z) and r = 1/y'. For |s| <= 2^-6,
44 44 * approximate log(1+s) by a polynomial p(s) where p(s) := s+s*s*
45 45 * (K1+s*(K2+s*K3)). Then we compute the expression above as
46 46 * e*ln2 + l + p(r*(x'-y')) all evaluated in double precision.
47 47 *
48 48 * When x is subnormal, we first scale it to the normal range,
49 49 * adjusting e accordingly.
50 50 *
51 51 * Accuracy:
52 52 *
53 53 * The largest error is less than 0.6 ulps.
54 54 */
55 55
56 56 #include "libm.h"
57 57
58 58 /*
59 59 * For i = 0, ..., 12,
60 60 * TBL[2i] = log(1 + i/32) and TBL[2i+1] = 2^-23 / (1 + i/32)
61 61 *
62 62 * For i = 13, ..., 32,
63 63 * TBL[2i] = log(1/2 + i/64) and TBL[2i+1] = 2^-23 / (1 + i/32)
64 64 */
65 65 static const double TBL[] = {
66 66 0.000000000000000000e+00, 1.192092895507812500e-07,
67 67 3.077165866675368733e-02, 1.155968868371212153e-07,
68 68 6.062462181643483994e-02, 1.121969784007352926e-07,
69 69 8.961215868968713805e-02, 1.089913504464285680e-07,
70 70 1.177830356563834557e-01, 1.059638129340277719e-07,
71 71 1.451820098444978890e-01, 1.030999260979729787e-07,
72 72 1.718502569266592284e-01, 1.003867701480263102e-07,
73 73 1.978257433299198675e-01, 9.781275040064102225e-08,
74 74 2.231435513142097649e-01, 9.536743164062500529e-08,
75 75 2.478361639045812692e-01, 9.304139672256097884e-08,
76 76 2.719337154836417580e-01, 9.082612537202380448e-08,
77 77 2.954642128938358980e-01, 8.871388989825581272e-08,
78 78 3.184537311185345887e-01, 8.669766512784091150e-08,
79 79 -3.522205935893520934e-01, 8.477105034722222546e-08,
80 80 -3.302416868705768671e-01, 8.292820142663043248e-08,
81 81 -3.087354816496132859e-01, 8.116377160904255122e-08,
82 82 -2.876820724517809014e-01, 7.947285970052082892e-08,
83 83 -2.670627852490452536e-01, 7.785096460459183052e-08,
84 84 -2.468600779315257843e-01, 7.629394531250000159e-08,
85 85 -2.270574506353460753e-01, 7.479798560049019504e-08,
86 86 -2.076393647782444896e-01, 7.335956280048077330e-08,
87 87 -1.885911698075500298e-01, 7.197542010613207272e-08,
88 88 -1.698990367953974734e-01, 7.064254195601851460e-08,
89 89 -1.515498981272009327e-01, 6.935813210227272390e-08,
90 90 -1.335313926245226268e-01, 6.811959402901785336e-08,
91 91 -1.158318155251217008e-01, 6.692451343201754014e-08,
92 92 -9.844007281325252434e-02, 6.577064251077586116e-08,
93 93 -8.134563945395240081e-02, 6.465588585805084723e-08,
94 94 -6.453852113757117814e-02, 6.357828776041666578e-08,
95 95 -4.800921918636060631e-02, 6.253602074795082293e-08,
96 96 -3.174869831458029812e-02, 6.152737525201612732e-08,
97 97 -1.574835696813916761e-02, 6.055075024801586965e-08,
98 98 0.000000000000000000e+00, 5.960464477539062500e-08,
99 99 };
100 100
101 101 static const double C[] = {
102 102 6.931471805599452862e-01,
103 103 -2.49887584306188944706e-01,
104 104 3.33368809981254554946e-01,
105 105 -5.00000008402474976565e-01
106 106 };
107 107
108 108 #define ln2 C[0]
109 109 #define K3 C[1]
110 110 #define K2 C[2]
111 111 #define K1 C[3]
112 112
113 113 float
114 114 logf(float x)
115 115 {
116 116 double v, t;
117 117 float f;
118 118 int hx, ix, i, exp, iy;
119 119
120 120 hx = *(int *)&x;
121 121 ix = hx & ~0x80000000;
122 122
123 123 if (ix >= 0x7f800000) /* nan or inf */
124 124 return ((hx < 0)? x * 0.0f : x * x);
125 125
126 126 exp = 0;
127 127 if (hx < 0x00800000) { /* negative, zero, or subnormal */
128 128 if (hx <= 0) {
129 129 f = 0.0f;
130 130 return ((ix == 0)? -1.0f / f : f / f);
131 131 }
132 132
133 133 /* subnormal; scale by 2^149 */
134 134 f = (float)ix;
135 135 ix = *(int *)&f;
136 136 exp = -149;
137 137 }
138 138
139 139 exp += (ix - 0x3f320000) >> 23;
140 140 ix &= 0x007fffff;
141 141 iy = (ix + 0x20000) & 0xfffc0000;
142 142 i = iy >> 17;
143 143 t = ln2 * (double)exp + TBL[i];
144 144 v = (double)(ix - iy) * TBL[i + 1];
145 145 v += (v * v) * (K1 + v * (K2 + v * K3));
146 146 f = (float)(t + v);
147 147 return (f);
148 148 }
↓ open down ↓ |
109 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX