Print this page
5261 libm should stop using synonyms.h
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/Q/sincosl.c
+++ new/usr/src/lib/libm/common/Q/sincosl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 30 /*
31 31 * sincosl(x)
32 32 * Table look-up algorithm by K.C. Ng, November, 1989.
33 33 *
34 34 * kernel function:
35 35 * __k_sincosl ... sin and cos function on [-pi/4,pi/4]
36 36 * __rem_pio2l ... argument reduction routine
37 37 *
38 38 * Method.
39 39 * Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
40 40 * 1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
41 41 * [-pi/2 , +pi/2], and let n = k mod 4.
42 42 * 2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
43 43 *
44 44 * n sin(x) cos(x) tan(x)
45 45 * ----------------------------------------------------------
46 46 * 0 S C S/C
47 47 * 1 C -S -C/S
48 48 * 2 -S -C S/C
49 49 * 3 -C S -C/S
50 50 * ----------------------------------------------------------
↓ open down ↓ |
50 lines elided |
↑ open up ↑ |
51 51 *
52 52 * Special cases:
53 53 * Let trig be any of sin, cos, or tan.
54 54 * trig(+-INF) is NaN, with signals;
55 55 * trig(NaN) is that NaN;
56 56 *
57 57 * Accuracy:
58 58 * computer TRIG(x) returns trig(x) nearly rounded.
59 59 */
60 60
61 -#pragma weak sincosl = __sincosl
61 +#pragma weak __sincosl = sincosl
62 62
63 63 #include "libm.h"
64 64 #include "longdouble.h"
65 65
66 66 void
67 67 sincosl(long double x, long double *s, long double *c) {
68 68 long double y[2], z = 0.0L;
69 69 int n, ix;
70 70
71 71 ix = *(int *) &x; /* High word of x */
72 72
73 73 /* |x| ~< pi/4 */
74 74 ix &= 0x7fffffff;
75 75 if (ix <= 0x3ffe9220)
76 76 *s = __k_sincosl(x, z, c);
77 77 else if (ix >= 0x7fff0000)
78 78 *s = *c = x - x; /* trig(Inf or NaN) is NaN */
79 79 else { /* argument reduction needed */
80 80 n = __rem_pio2l(x, y);
81 81 switch (n & 3) {
82 82 case 0:
83 83 *s = __k_sincosl(y[0], y[1], c);
84 84 break;
85 85 case 1:
86 86 *c = -__k_sincosl(y[0], y[1], s);
87 87 break;
88 88 case 2:
89 89 *s = -__k_sincosl(y[0], y[1], c);
90 90 *c = -*c;
91 91 break;
92 92 case 3:
93 93 *c = __k_sincosl(y[0], y[1], s);
94 94 *s = -*s;
95 95 break;
96 96 }
97 97 }
98 98 }
↓ open down ↓ |
27 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX