Print this page
    
5261 libm should stop using synonyms.h
    
      
        | Split | Close | 
      | Expand all | 
      | Collapse all | 
    
    
          --- old/usr/src/lib/libm/common/Q/remainderl.c
          +++ new/usr/src/lib/libm/common/Q/remainderl.c
   1    1  /*
   2    2   * CDDL HEADER START
   3    3   *
   4    4   * The contents of this file are subject to the terms of the
   5    5   * Common Development and Distribution License (the "License").
   6    6   * You may not use this file except in compliance with the License.
   7    7   *
   8    8   * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9    9   * or http://www.opensolaris.org/os/licensing.
  10   10   * See the License for the specific language governing permissions
  11   11   * and limitations under the License.
  12   12   *
  13   13   * When distributing Covered Code, include this CDDL HEADER in each
  14   14   * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  
    | ↓ open down ↓ | 19 lines elided | ↑ open up ↑ | 
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
  25   25  /*
  26   26   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   27   * Use is subject to license terms.
  28   28   */
  29   29  
  30      -#pragma weak remainderl = __remainderl
       30 +#pragma weak __remainderl = remainderl
  31   31  
  32   32  #include "libm.h"
  33   33  #include "longdouble.h"
  34   34  
  35   35  /*
  36   36   * remainderl(x,p)
  37   37   *      returns  x REM p  =  x - [x/p]*p as if in infinite
  38   38   *      precise arithmetic, where [x/p] is the (inifinite bit)
  39   39   *      integer nearest x/p (in half way case choose the even one).
  40   40   * Method :
  41   41   *      Based on fmodl() return x-[x/p]chopped*p exactly.
  42   42   */
  43   43  
  44   44  #define HFMAX   5.948657476786158825428796633140035080982e+4931L
  45   45  #define DBMIN   6.724206286224187012525355634643505205196e-4932L
  46   46  
  47   47  static const long double
  48   48          zero = 0.0L,
  49   49          half = 0.5L,
  50   50          hfmax = HFMAX,  /* half of the maximum number */
  51   51          dbmin = DBMIN;  /* double of the minimum (normal) number */
  52   52  
  53   53  long double
  54   54  remainderl(long double x, long double p) {
  55   55          long double hp;
  56   56          int sx;
  57   57  
  58   58          if (isnanl(p))
  59   59                  return (x + p);
  60   60          if (!finitel(x))
  61   61                  return (x - x);
  62   62          p = fabsl(p);
  63   63          if (p <= hfmax)
  64   64                  x = fmodl(x, p + p);
  65   65          sx = signbitl(x);
  66   66          x = fabsl(x);
  67   67          if (p < dbmin) {
  68   68                  if (x + x > p) {
  69   69                          if (x == p)
  70   70                                  x = zero;
  71   71                          else
  72   72                                  x -= p; /* avoid x-x=-0 in RM mode */
  73   73                          if (x + x >= p)
  74   74                                  x -= p;
  75   75                  }
  76   76          } else {
  77   77                  hp = half * p;
  78   78                  if (x > hp) {
  79   79                          if (x == p)
  80   80                                  x = zero;
  81   81                          else
  82   82                                  x -= p; /* avoid x-x=-0 in RM mode */
  83   83                          if (x >= hp)
  84   84                                  x -= p;
  85   85                  }
  86   86          }
  87   87          return (sx == 0 ? x : -x);
  88   88  }
  
    | ↓ open down ↓ | 48 lines elided | ↑ open up ↑ | 
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX