Print this page
5261 libm should stop using synonyms.h
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/LD/hypotl.c
+++ new/usr/src/lib/libm/common/LD/hypotl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
↓ open down ↓ |
19 lines elided |
↑ open up ↑ |
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 25 /*
26 26 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 27 * Use is subject to license terms.
28 28 */
29 29
30 -#pragma weak hypotl = __hypotl
30 +#pragma weak __hypotl = hypotl
31 31
32 32 /*
33 33 * hypotl(x,y)
34 34 * Method :
35 35 * If z=x*x+y*y has error less than sqrt(2)/2 ulp than sqrt(z) has
36 36 * error less than 1 ulp.
37 37 * So, compute sqrt(x*x+y*y) with some care as follows:
38 38 * Assume x>y>0;
39 39 * 1. save and set rounding to round-to-nearest
40 40 * 2. if x > 2y use
41 41 * x1*x1+(y*y+(x2*(x+x2))) for x*x+y*y
42 42 * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
43 43 * 3. if x <= 2y use
44 44 * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
45 45 * where t1 = 2x with lower 64 bits cleared, t2 = 2x-t1, y1= y with
46 46 * lower 32 bits cleared, y2 = y-y1.
47 47 *
48 48 * NOTE: DO NOT remove parenthsis!
49 49 *
50 50 * Special cases:
51 51 * hypot(x,y) is INF if x or y is +INF or -INF; else
52 52 * hypot(x,y) is NAN if x or y is NAN.
53 53 *
54 54 * Accuracy:
55 55 * hypot(x,y) returns sqrt(x^2+y^2) with error less than 1 ulps (units
56 56 * in the last place)
57 57 */
58 58
59 59 #include "libm.h"
60 60
61 61 #if defined(__x86)
62 62 extern enum fp_direction_type __swap87RD(enum fp_direction_type);
63 63
64 64 #define k 0x7fff
65 65
66 66 long double
67 67 hypotl(long double x, long double y) {
68 68 long double t1, t2, y1, y2, w;
69 69 int *px = (int *) &x, *py = (int *) &y;
70 70 int *pt1 = (int *) &t1, *py1 = (int *) &y1;
71 71 enum fp_direction_type rd;
72 72 int j, nx, ny, nz;
73 73
74 74 px[2] &= 0x7fff; /* clear sign bit and padding bits of x and y */
75 75 py[2] &= 0x7fff;
76 76 nx = px[2]; /* biased exponent of x and y */
77 77 ny = py[2];
78 78 if (ny > nx) {
79 79 w = x;
80 80 x = y;
81 81 y = w;
82 82 nz = ny;
83 83 ny = nx;
84 84 nx = nz;
85 85 } /* force nx >= ny */
86 86 if (nx - ny >= 66)
87 87 return (x + y); /* x / y >= 2**65 */
88 88 if (nx < 0x5ff3 && ny > 0x205b) { /* medium x,y */
89 89 /* save and set RD to Rounding to nearest */
90 90 rd = __swap87RD(fp_nearest);
91 91 w = x - y;
92 92 if (w > y) {
93 93 pt1[2] = px[2];
94 94 pt1[1] = px[1];
95 95 pt1[0] = 0;
96 96 t2 = x - t1;
97 97 x = sqrtl(t1 * t1 - (y * (-y) - t2 * (x + t1)));
98 98 } else {
99 99 x += x;
100 100 py1[2] = py[2];
101 101 py1[1] = py[1];
102 102 py1[0] = 0;
103 103 y2 = y - y1;
104 104 pt1[2] = px[2];
105 105 pt1[1] = px[1];
106 106 pt1[0] = 0;
107 107 t2 = x - t1;
108 108 x = sqrtl(t1 * y1 - (w * (-w) - (t2 * y1 + y2 * x)));
109 109 }
110 110 if (rd != fp_nearest)
111 111 __swap87RD(rd); /* restore rounding mode */
112 112 return (x);
113 113 } else {
114 114 if (nx == k || ny == k) { /* x or y is INF or NaN */
115 115 /* since nx >= ny; nx is always k within this block */
116 116 if (px[1] == 0x80000000 && px[0] == 0)
117 117 return (x);
118 118 else if (ny == k && py[1] == 0x80000000 && py[0] == 0)
119 119 return (y);
120 120 else
121 121 return (x + y);
122 122 }
123 123 if (ny == 0) {
124 124 if (y == 0.L || x == 0.L)
125 125 return (x + y);
126 126 pt1[2] = 0x3fff + 16381;
127 127 pt1[1] = 0x80000000;
128 128 pt1[0] = 0;
129 129 py1[2] = 0x3fff - 16381;
130 130 py1[1] = 0x80000000;
131 131 py1[0] = 0;
132 132 x *= t1;
133 133 y *= t1;
134 134 return (y1 * hypotl(x, y));
135 135 }
136 136 j = nx - 0x3fff;
137 137 px[2] -= j;
138 138 py[2] -= j;
139 139 pt1[2] = nx;
140 140 pt1[1] = 0x80000000;
141 141 pt1[0] = 0;
142 142 return (t1 * hypotl(x, y));
143 143 }
144 144 }
145 145 #endif
↓ open down ↓ |
105 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX