1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  23  */
  24 /*
  25  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
  26  * Use is subject to license terms.
  27  */
  28 
  29 #pragma weak sincos = __sincos
  30 
  31 /* INDENT OFF */
  32 /*
  33  * sincos(x,s,c)
  34  * Accurate Table look-up algorithm by K.C. Ng, 2000.
  35  *
  36  * 1. Reduce x to x>0 by cos(-x)=cos(x), sin(-x)=-sin(x).
  37  * 2. For 0<= x < 8, let i = (64*x chopped)-10. Let d = x - a[i], where
  38  *    a[i] is a double that is close to (i+10.5)/64 (and hence |d|< 10.5/64)
  39  *    and such that sin(a[i]) and cos(a[i]) is close to a double (with error
  40  *    less than 2**-8 ulp). Then
  41  *
  42  *      cos(x) = cos(a[i]+d) = cos(a[i])cos(d) - sin(a[i])*sin(d)
  43  *             = TBL_cos_a[i]*(1+QQ1*d^2+QQ2*d^4) -
  44  *                      TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5)
  45  *             = TBL_cos_a[i] + (TBL_cos_a[i]*d^2*(QQ1+QQ2*d^2) -
  46  *                      TBL_sin_a[i]*(d+PP1*d^3+PP2*d^5))
  47  *
  48  *      sin(x) = sin(a[i]+d) = sin(a[i])cos(d) + cos(a[i])*sin(d)
  49  *             = TBL_sin_a[i]*(1+QQ1*d^2+QQ2*d^4) +
  50  *                      TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5)
  51  *             = TBL_sin_a[i] + (TBL_sin_a[i]*d^2*(QQ1+QQ2*d^2) +
  52  *                      TBL_cos_a[i]*(d+PP1*d^3+PP2*d^5))
  53  *
  54  *    Note: for x close to n*pi/2, special treatment is need for either
  55  *    sin or cos:
  56  *    i in [81, 100] (  pi/2 +-10.5/64 => tiny cos(x) = sin(pi/2-x)
  57  *    i in [181,200] (  pi   +-10.5/64 => tiny sin(x) = sin(pi-x)
  58  *    i in [282,301] (  3pi/2+-10.5/64 => tiny cos(x) = sin(x-3pi/2)
  59  *    i in [382,401] (  2pi  +-10.5/64 => tiny sin(x) = sin(x-2pi)
  60  *    i in [483,502] (  5pi/2+-10.5/64 => tiny cos(x) = sin(5pi/2-x)
  61  *
  62  * 3. For x >= 8.0, use kernel function __rem_pio2 to perform argument
  63  *    reduction and call __k_sincos_ to compute sin and cos.
  64  *
  65  * kernel function:
  66  *      __rem_pio2      ... argument reduction routine
  67  *      __k_sincos_     ... sine and cosine function on [-pi/4,pi/4]
  68  *
  69  * Method.
  70  *      Let S and C denote the sin and cos respectively on [-PI/4, +PI/4].
  71  *      1. Assume the argument x is reduced to y1+y2 = x-k*pi/2 in
  72  *         [-pi/2 , +pi/2], and let n = k mod 4.
  73  *      2. Let S=S(y1+y2), C=C(y1+y2). Depending on n, we have
  74  *
  75  *          n        sin(x)      cos(x)        tan(x)
  76  *     ----------------------------------------------------------
  77  *          0          S           C             S/C
  78  *          1          C          -S            -C/S
  79  *          2         -S          -C             S/C
  80  *          3         -C           S            -C/S
  81  *     ----------------------------------------------------------
  82  *
  83  * Special cases:
  84  *      Let trig be any of sin, cos, or tan.
  85  *      trig(+-INF)  is NaN, with signals;
  86  *      trig(NaN)    is that NaN;
  87  *
  88  * Accuracy:
  89  *      TRIG(x) returns trig(x) nearly rounded (less than 1 ulp)
  90  */
  91 
  92 #include "libm.h"
  93 
  94 static const double sc[] = {
  95 /* ONE  = */  1.0,
  96 /* NONE = */ -1.0,
  97 /*
  98  * |sin(x) - (x+pp1*x^3+pp2*x^5)| <= 2^-58.79 for |x| < 0.008
  99  */
 100 /* PP1  = */ -0.166666666666316558867252052378889521480627858683055567,
 101 /* PP2  = */   .008333315652997472323564894248466758248475374977974017927,
 102 /*
 103  * |(sin(x) - (x+p1*x^3+...+p4*x^9)|
 104  * |------------------------------ | <= 2^-57.63 for |x| < 0.1953125
 105  * |                 x             |
 106  */
 107 /* P1   = */ -1.666666666666629669805215138920301589656e-0001,
 108 /* P2   = */  8.333333332390951295683993455280336376663e-0003,
 109 /* P3   = */ -1.984126237997976692791551778230098403960e-0004,
 110 /* P4   = */  2.753403624854277237649987622848330351110e-0006,
 111 /*
 112  * |cos(x) - (1+qq1*x^2+qq2*x^4)| <= 2^-55.99 for |x| <= 0.008 (0x3f80624d)
 113  */
 114 /* QQ1  = */ -0.4999999999975492381842911981948418542742729,
 115 /* QQ2  = */  0.041666542904352059294545209158357640398771740,
 116 /* Q1   = */ -0.5,
 117 /* Q2   = */  4.166666666500350703680945520860748617445e-0002,
 118 /* Q3   = */ -1.388888596436972210694266290577848696006e-0003,
 119 /* Q4   = */  2.478563078858589473679519517892953492192e-0005,
 120 /* PIO2_H    = */  1.570796326794896557999,
 121 /* PIO2_L    = */  6.123233995736765886130e-17,
 122 /* PIO2_L0   = */  6.123233995727922165564e-17,
 123 /* PIO2_L1   = */  8.843720566135701120255e-29,
 124 /* PI_H      = */  3.1415926535897931159979634685,
 125 /* PI_L      = */  1.22464679914735317722606593227425e-16,
 126 /* PI_L0     = */  1.22464679914558443311283879205095e-16,
 127 /* PI_L1     = */  1.768744113227140223300005233735517376e-28,
 128 /* PI3O2_H   = */  4.712388980384689673997,
 129 /* PI3O2_L   = */  1.836970198721029765839e-16,
 130 /* PI3O2_L0  = */  1.836970198720396133587e-16,
 131 /* PI3O2_L1  = */  6.336322524749201142226e-29,
 132 /* PI2_H     = */  6.2831853071795862319959269370,
 133 /* PI2_L     = */  2.44929359829470635445213186454850e-16,
 134 /* PI2_L0    = */  2.44929359829116886622567758410190e-16,
 135 /* PI2_L1    = */  3.537488226454280446600010467471034752e-28,
 136 /* PI5O2_H   = */  7.853981633974482789995,
 137 /* PI5O2_L   = */  3.061616997868382943065e-16,
 138 /* PI5O2_L0  = */  3.061616997861941598865e-16,
 139 /* PI5O2_L1  = */  6.441344200433640781982e-28,
 140 };
 141 /* INDENT ON */
 142 
 143 #define ONE             sc[0]
 144 #define PP1             sc[2]
 145 #define PP2             sc[3]
 146 #define P1              sc[4]
 147 #define P2              sc[5]
 148 #define P3              sc[6]
 149 #define P4              sc[7]
 150 #define QQ1             sc[8]
 151 #define QQ2             sc[9]
 152 #define Q1              sc[10]
 153 #define Q2              sc[11]
 154 #define Q3              sc[12]
 155 #define Q4              sc[13]
 156 #define PIO2_H          sc[14]
 157 #define PIO2_L          sc[15]
 158 #define PIO2_L0         sc[16]
 159 #define PIO2_L1         sc[17]
 160 #define PI_H            sc[18]
 161 #define PI_L            sc[19]
 162 #define PI_L0           sc[20]
 163 #define PI_L1           sc[21]
 164 #define PI3O2_H         sc[22]
 165 #define PI3O2_L         sc[23]
 166 #define PI3O2_L0        sc[24]
 167 #define PI3O2_L1        sc[25]
 168 #define PI2_H           sc[26]
 169 #define PI2_L           sc[27]
 170 #define PI2_L0          sc[28]
 171 #define PI2_L1          sc[29]
 172 #define PI5O2_H         sc[30]
 173 #define PI5O2_L         sc[31]
 174 #define PI5O2_L0        sc[32]
 175 #define PI5O2_L1        sc[33]
 176 #define PoS(x, z)       ((x * z) * (PP1 + z * PP2))
 177 #define PoL(x, z)       ((x * z) * ((P1 + z * P2) + (z * z) * (P3 + z * P4)))
 178 
 179 extern const double _TBL_sincos[], _TBL_sincosx[];
 180 
 181 void
 182 sincos(double x, double *s, double *c) {
 183         double  z, y[2], w, t, v, p, q;
 184         int     i, j, n, hx, ix, lx;
 185 
 186         hx = ((int *)&x)[HIWORD];
 187         lx = ((int *)&x)[LOWORD];
 188         ix = hx & ~0x80000000;
 189 
 190         if (ix <= 0x3fc50000) {      /* |x| < 10.5/64 = 0.164062500 */
 191                 if (ix < 0x3e400000) {       /* |x| < 2**-27 */
 192                         if ((int)x == 0)
 193                                 *c = ONE;
 194                         *s = x;
 195                 } else {
 196                         z = x * x;
 197                         if (ix < 0x3f800000) {       /* |x| < 0.008 */
 198                                 q = z * (QQ1 + z * QQ2);
 199                                 p = PoS(x, z);
 200                         } else {
 201                                 q = z * ((Q1 + z * Q2) + (z * z) *
 202                                     (Q3 + z * Q4));
 203                                 p = PoL(x, z);
 204                         }
 205                         *c = ONE + q;
 206                         *s = x + p;
 207                 }
 208                 return;
 209         }
 210 
 211         n = ix >> 20;
 212         i = (((ix >> 12) & 0xff) | 0x100) >> (0x401 - n);
 213         j = i - 10;
 214         if (n < 0x402) {     /* |x| < 8 */
 215                 x = fabs(x);
 216                 v = x - _TBL_sincosx[j];
 217                 t = v * v;
 218                 w = _TBL_sincos[(j<<1)];
 219                 z = _TBL_sincos[(j<<1)+1];
 220                 p = v + PoS(v, t);
 221                 q = t * (QQ1 + t * QQ2);
 222                 if ((((j - 81) ^ (j - 101)) |
 223                     ((j - 282) ^ (j - 302)) |
 224                     ((j - 483) ^ (j - 503)) |
 225                     ((j - 181) ^ (j - 201)) |
 226                     ((j - 382) ^ (j - 402))) < 0) {
 227                         if (j <= 101) {
 228                                 /* near pi/2, cos(x) = sin(pi/2-x) */
 229                                 t = w * q + z * p;
 230                                 *s = (hx >= 0)? w + t : -w - t;
 231                                 p = PIO2_H - x;
 232                                 i = ix - 0x3ff921fb;
 233                                 x = p + PIO2_L;
 234                                 if ((i | ((lx - 0x54442D00) &
 235                                     0xffffff00)) == 0) {
 236                                         /* very close to pi/2 */
 237                                         x = p + PIO2_L0;
 238                                         *c = x + PIO2_L1;
 239                                 } else {
 240                                         z = x * x;
 241                                         if (((ix - 0x3ff92000) >> 12) == 0) {
 242                                                 /* |pi/2-x|<2**-8 */
 243                                                 w = PIO2_L + PoS(x, z);
 244                                         } else {
 245                                                 w = PIO2_L + PoL(x, z);
 246                                         }
 247                                         *c = p + w;
 248                                 }
 249                         } else if (j <= 201) {
 250                                 /* near pi, sin(x) = sin(pi-x) */
 251                                 *c = z - (w * p - z * q);
 252                                 p = PI_H - x;
 253                                 i = ix - 0x400921fb;
 254                                 x = p + PI_L;
 255                                 if ((i | ((lx - 0x54442D00) &
 256                                     0xffffff00)) == 0) {
 257                                         /* very close to pi */
 258                                         x = p + PI_L0;
 259                                         *s = (hx >= 0)? x + PI_L1 :
 260                                             -(x + PI_L1);
 261                                 } else {
 262                                         z = x * x;
 263                                         if (((ix - 0x40092000) >> 11) == 0) {
 264                                                 /* |pi-x|<2**-8 */
 265                                                 w = PI_L + PoS(x, z);
 266                                         } else {
 267                                                 w = PI_L + PoL(x, z);
 268                                         }
 269                                         *s = (hx >= 0)? p + w : -p - w;
 270                                 }
 271                         } else if (j <= 302) {
 272                                 /* near 3/2pi, cos(x)=sin(x-3/2pi) */
 273                                 t = w * q + z * p;
 274                                 *s = (hx >= 0)? w + t : -w - t;
 275                                 p = x - PI3O2_H;
 276                                 i = ix - 0x4012D97C;
 277                                 x = p - PI3O2_L;
 278                                 if ((i | ((lx - 0x7f332100) &
 279                                     0xffffff00)) == 0) {
 280                                         /* very close to 3/2pi */
 281                                         x = p - PI3O2_L0;
 282                                         *c = x - PI3O2_L1;
 283                                 } else {
 284                                         z = x * x;
 285                                         if (((ix - 0x4012D800) >> 9) == 0) {
 286                                                 /* |3/2pi-x|<2**-8 */
 287                                                 w = PoS(x, z) - PI3O2_L;
 288                                         } else {
 289                                                 w = PoL(x, z) - PI3O2_L;
 290                                         }
 291                                         *c = p + w;
 292                                 }
 293                         } else if (j <= 402) {
 294                                 /* near 2pi, sin(x)=sin(x-2pi) */
 295                                 *c = z - (w * p - z * q);
 296                                 p = x - PI2_H;
 297                                 i = ix - 0x401921fb;
 298                                 x = p - PI2_L;
 299                                 if ((i | ((lx - 0x54442D00) &
 300                                     0xffffff00)) == 0) {
 301                                         /* very close to 2pi */
 302                                         x = p - PI2_L0;
 303                                         *s = (hx >= 0)? x - PI2_L1 :
 304                                             -(x - PI2_L1);
 305                                 } else {
 306                                         z = x * x;
 307                                         if (((ix - 0x40192000) >> 10) == 0) {
 308                                                 /* |x-2pi|<2**-8 */
 309                                                 w = PoS(x, z) - PI2_L;
 310                                         } else {
 311                                                 w = PoL(x, z) - PI2_L;
 312                                         }
 313                                         *s = (hx >= 0)? p + w : -p - w;
 314                                 }
 315                         } else {
 316                                 /* near 5pi/2, cos(x) = sin(5pi/2-x) */
 317                                 t = w * q + z * p;
 318                                 *s = (hx >= 0)? w + t : -w - t;
 319                                 p = PI5O2_H - x;
 320                                 i = ix - 0x401F6A7A;
 321                                 x = p + PI5O2_L;
 322                                 if ((i | ((lx - 0x29553800) &
 323                                     0xffffff00)) == 0) {
 324                                         /* very close to pi/2 */
 325                                         x = p + PI5O2_L0;
 326                                         *c = x + PI5O2_L1;
 327                                 } else {
 328                                         z = x * x;
 329                                         if (((ix - 0x401F6A7A) >> 7) == 0) {
 330                                                 /* |5pi/2-x|<2**-8 */
 331                                                 w = PI5O2_L + PoS(x, z);
 332                                         } else {
 333                                                 w = PI5O2_L + PoL(x, z);
 334                                         }
 335                                         *c = p + w;
 336                                 }
 337                         }
 338                 } else {
 339                         *c = z - (w * p - z * q);
 340                         t = w * q + z * p;
 341                         *s = (hx >= 0)? w + t : -w - t;
 342                 }
 343                 return;
 344         }
 345 
 346         if (ix >= 0x7ff00000) {
 347                 *s = *c = x / x;
 348                 return;
 349         }
 350 
 351         /* argument reduction needed */
 352         n = __rem_pio2(x, y);
 353         switch (n & 3) {
 354         case 0:
 355                 *s = __k_sincos(y[0], y[1], c);
 356                 break;
 357         case 1:
 358                 *c = -__k_sincos(y[0], y[1], s);
 359                 break;
 360         case 2:
 361                 *s = -__k_sincos(y[0], y[1], c);
 362                 *c = -*c;
 363                 break;
 364         default:
 365                 *c = __k_sincos(y[0], y[1], s);
 366                 *s = -*s;
 367         }
 368 }