Print this page
4922 all calloc() implementations should check for overflow
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libmtmalloc/common/mtmalloc.c
+++ new/usr/src/lib/libmtmalloc/common/mtmalloc.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 24 * Use is subject to license terms.
25 25 */
26 26
27 27 #include <mtmalloc.h>
28 28 #include "mtmalloc_impl.h"
29 29 #include <unistd.h>
30 30 #include <synch.h>
31 31 #include <thread.h>
32 32 #include <pthread.h>
33 33 #include <stdio.h>
34 34 #include <limits.h>
35 35 #include <errno.h>
36 36 #include <string.h>
37 37 #include <strings.h>
38 38 #include <sys/param.h>
39 39 #include <sys/sysmacros.h>
40 40
41 41 /*
42 42 * To turn on the asserts just compile -DDEBUG
43 43 */
44 44
45 45 #ifndef DEBUG
46 46 #define NDEBUG
47 47 #endif
48 48
49 49 #include <assert.h>
50 50
51 51 /*
52 52 * The MT hot malloc implementation contained herein is designed to be
53 53 * plug-compatible with the libc version of malloc. It is not intended
54 54 * to replace that implementation until we decide that it is ok to break
55 55 * customer apps (Solaris 3.0).
56 56 *
57 57 * For requests up to 2^^16, the allocator initializes itself into NCPUS
58 58 * worth of chains of caches. When a memory request is made, the calling thread
59 59 * is vectored into one of NCPUS worth of caches. The LWP id gives us a cheap,
60 60 * contention-reducing index to use, eventually, this should be replaced with
61 61 * the actual CPU sequence number, when an interface to get it is available.
62 62 *
63 63 * Once the thread is vectored into one of the list of caches the real
64 64 * allocation of the memory begins. The size is determined to figure out which
65 65 * bucket the allocation should be satisfied from. The management of free
66 66 * buckets is done via a bitmask. A free bucket is represented by a 1. The
67 67 * first free bit represents the first free bucket. The position of the bit,
68 68 * represents the position of the bucket in the arena.
69 69 *
70 70 * When the memory from the arena is handed out, the address of the cache
71 71 * control structure is written in the word preceeding the returned memory.
72 72 * This cache control address is used during free() to mark the buffer free
73 73 * in the cache control structure.
74 74 *
75 75 * When all available memory in a cache has been depleted, a new chunk of memory
76 76 * is allocated via sbrk(). The new cache is allocated from this chunk of memory
77 77 * and initialized in the function create_cache(). New caches are installed at
78 78 * the front of a singly linked list of the same size memory pools. This helps
79 79 * to ensure that there will tend to be available memory in the beginning of the
80 80 * list.
81 81 *
82 82 * Long linked lists hurt performance. To decrease this effect, there is a
83 83 * tunable, requestsize, that bumps up the sbrk allocation size and thus
84 84 * increases the number of available blocks within an arena. We also keep
85 85 * a "hint" for each cache list, which is the last cache in the list allocated
86 86 * from. This lowers the cost of searching if there are a lot of fully
87 87 * allocated blocks at the front of the list.
88 88 *
89 89 * For requests greater than 2^^16 (oversize allocations), there are two pieces
90 90 * of overhead. There is the OVERHEAD used to hold the cache addr
91 91 * (&oversize_list), plus an oversize_t structure to further describe the block.
92 92 *
93 93 * The oversize list is kept as defragmented as possible by coalescing
94 94 * freed oversized allocations with adjacent neighbors.
95 95 *
96 96 * Addresses handed out are stored in a hash table, and are aligned on
97 97 * MTMALLOC_MIN_ALIGN-byte boundaries at both ends. Request sizes are rounded-up
98 98 * where necessary in order to achieve this. This eases the implementation of
99 99 * MTDEBUGPATTERN and MTINITPATTERN, particularly where coalescing occurs.
100 100 *
101 101 * A memalign allocation takes memalign header overhead. There's two
102 102 * types of memalign headers distinguished by MTMALLOC_MEMALIGN_MAGIC
103 103 * and MTMALLOC_MEMALIGN_MIN_MAGIC. When the size of memory taken to
104 104 * get to the aligned address from malloc'ed address is the minimum size
105 105 * OVERHEAD, we create a header taking only one OVERHEAD space with magic
106 106 * number MTMALLOC_MEMALIGN_MIN_MAGIC, and we know by subtracting OVERHEAD
107 107 * from memaligned address, we can get to the malloc'ed address. Otherwise,
108 108 * we create a memalign header taking two OVERHEAD space, one stores
109 109 * MTMALLOC_MEMALIGN_MAGIC magic number, the other one points back to the
110 110 * malloc'ed address.
111 111 */
112 112
113 113 #if defined(__i386) || defined(__amd64)
114 114 #include <arpa/inet.h> /* for htonl() */
115 115 #endif
116 116
117 117 static void * morecore(size_t);
118 118 static void create_cache(cache_t *, size_t bufsize, uint_t hunks);
119 119 static void * malloc_internal(size_t, percpu_t *);
120 120 static void * oversize(size_t);
121 121 static oversize_t *find_oversize(size_t);
122 122 static void add_oversize(oversize_t *);
123 123 static void copy_pattern(uint32_t, void *, size_t);
124 124 static void * verify_pattern(uint32_t, void *, size_t);
125 125 static void reinit_cpu_list(void);
126 126 static void reinit_cache(cache_t *);
127 127 static void free_oversize(oversize_t *);
128 128 static oversize_t *oversize_header_alloc(uintptr_t, size_t);
129 129
130 130 /*
131 131 * oversize hash table stuff
132 132 */
133 133 #define NUM_BUCKETS 67 /* must be prime */
134 134 #define HASH_OVERSIZE(caddr) ((uintptr_t)(caddr) % NUM_BUCKETS)
135 135 oversize_t *ovsz_hashtab[NUM_BUCKETS];
136 136
137 137 #define ALIGN(x, a) ((((uintptr_t)(x) + ((uintptr_t)(a) - 1)) \
138 138 & ~((uintptr_t)(a) - 1)))
139 139
140 140 /* need this to deal with little endianess of x86 */
141 141 #if defined(__i386) || defined(__amd64)
142 142 #define FLIP_EM(x) htonl((x))
143 143 #else
144 144 #define FLIP_EM(x) (x)
145 145 #endif
146 146
147 147 #define INSERT_ONLY 0
148 148 #define COALESCE_LEFT 0x00000001
149 149 #define COALESCE_RIGHT 0x00000002
150 150 #define COALESCE_WITH_BOTH_SIDES (COALESCE_LEFT | COALESCE_RIGHT)
151 151
152 152 #define OVERHEAD 8 /* size needed to write cache addr */
153 153 #define HUNKSIZE 8192 /* just a multiplier */
154 154
155 155 #define MAX_CACHED_SHIFT 16 /* 64K is the max cached size */
156 156 #define MAX_CACHED (1 << MAX_CACHED_SHIFT)
157 157 #define MIN_CACHED_SHIFT 4 /* smaller requests rounded up */
158 158 #define MTMALLOC_MIN_ALIGN 8 /* min guaranteed alignment */
159 159
160 160 /* maximum size before overflow */
161 161 #define MAX_MTMALLOC (SIZE_MAX - (SIZE_MAX % MTMALLOC_MIN_ALIGN) \
162 162 - OVSZ_HEADER_SIZE)
163 163
164 164 #define NUM_CACHES (MAX_CACHED_SHIFT - MIN_CACHED_SHIFT + 1)
165 165 #define CACHELIST_SIZE ALIGN(NUM_CACHES * sizeof (cache_head_t), \
166 166 CACHE_COHERENCY_UNIT)
167 167
168 168 #define MINSIZE 9 /* for requestsize, tunable */
169 169 #define MAXSIZE 256 /* arbitrary, big enough, for requestsize */
170 170
171 171 #define FREEPATTERN 0xdeadbeef /* debug fill pattern for free buf */
172 172 #define INITPATTERN 0xbaddcafe /* debug fill pattern for new buf */
173 173
174 174 #define misaligned(p) ((unsigned)(p) & (sizeof (int) - 1))
175 175 #define IS_OVERSIZE(x, y) (((x) < (y)) && (((x) > MAX_CACHED)? 1 : 0))
176 176
177 177 static long requestsize = MINSIZE; /* 9 pages per cache; tunable; 9 is min */
178 178
179 179 static uint_t cpu_mask;
180 180 static curcpu_func curcpu;
181 181
182 182 static int32_t debugopt;
183 183 static int32_t reinit;
184 184
185 185 static percpu_t *cpu_list;
186 186 static oversize_t oversize_list;
187 187 static mutex_t oversize_lock = DEFAULTMUTEX;
188 188
189 189 static int ncpus = 0;
190 190
191 191 #define MTMALLOC_OVERSIZE_MAGIC ((uintptr_t)&oversize_list)
192 192 #define MTMALLOC_MEMALIGN_MAGIC ((uintptr_t)&oversize_list + 1)
193 193 #define MTMALLOC_MEMALIGN_MIN_MAGIC ((uintptr_t)&oversize_list + 2)
194 194
195 195 /*
196 196 * We require allocations handed out to be aligned on MTMALLOC_MIN_ALIGN-byte
197 197 * boundaries. We round up sizeof (oversize_t) (when necessary) to ensure that
198 198 * this is achieved.
199 199 */
200 200 #define OVSZ_SIZE (ALIGN(sizeof (oversize_t), MTMALLOC_MIN_ALIGN))
201 201 #define OVSZ_HEADER_SIZE (OVSZ_SIZE + OVERHEAD)
202 202
203 203 /*
204 204 * memalign header takes 2 OVERHEAD space. One for memalign magic, and the
205 205 * other one points back to the start address of originally allocated space.
206 206 */
207 207 #define MEMALIGN_HEADER_SIZE 2 * OVERHEAD
208 208 #define MEMALIGN_HEADER_ALLOC(x, shift, malloc_addr)\
209 209 if (shift == OVERHEAD)\
210 210 *((uintptr_t *)((caddr_t)x - OVERHEAD)) = \
211 211 MTMALLOC_MEMALIGN_MIN_MAGIC; \
212 212 else {\
213 213 *((uintptr_t *)((caddr_t)x - OVERHEAD)) = \
214 214 MTMALLOC_MEMALIGN_MAGIC; \
215 215 *((uintptr_t *)((caddr_t)x - 2 * OVERHEAD)) = \
216 216 (uintptr_t)malloc_addr; \
217 217 }
218 218
219 219 /*
220 220 * Add big to the oversize hash table at the head of the relevant bucket.
221 221 */
222 222 static void
223 223 insert_hash(oversize_t *big)
224 224 {
225 225 caddr_t ret = big->addr;
226 226 int bucket = HASH_OVERSIZE(ret);
227 227
228 228 assert(MUTEX_HELD(&oversize_lock));
229 229 big->hash_next = ovsz_hashtab[bucket];
230 230 ovsz_hashtab[bucket] = big;
231 231 }
232 232
233 233 void *
234 234 malloc(size_t bytes)
235 235 {
236 236 percpu_t *list_rotor;
237 237 uint_t list_index;
238 238
239 239 if (bytes > MAX_CACHED)
240 240 return (oversize(bytes));
241 241
242 242 list_index = (curcpu() & cpu_mask);
243 243
244 244 list_rotor = &cpu_list[list_index];
245 245
246 246 return (malloc_internal(bytes, list_rotor));
247 247 }
248 248
249 249 void *
250 250 realloc(void * ptr, size_t bytes)
251 251 {
252 252 void *new, *data_ptr;
253 253 cache_t *cacheptr;
254 254 caddr_t mem;
255 255 size_t shift = 0;
256 256
257 257 if (ptr == NULL)
258 258 return (malloc(bytes));
259 259
260 260 if (bytes == 0) {
261 261 free(ptr);
262 262 return (NULL);
263 263 }
264 264
265 265 data_ptr = ptr;
266 266 mem = (caddr_t)ptr - OVERHEAD;
267 267
268 268 /*
269 269 * Optimization possibility :
270 270 * p = malloc(64);
271 271 * q = realloc(p, 64);
272 272 * q can be same as p.
273 273 * Apply this optimization for the normal
274 274 * sized caches for now.
275 275 */
276 276 if (*(uintptr_t *)mem < MTMALLOC_OVERSIZE_MAGIC ||
277 277 *(uintptr_t *)mem > MTMALLOC_MEMALIGN_MIN_MAGIC) {
278 278 cacheptr = (cache_t *)*(uintptr_t *)mem;
279 279 if (bytes <= (cacheptr->mt_size - OVERHEAD))
280 280 return (ptr);
281 281 }
282 282
283 283 new = malloc(bytes);
284 284
285 285 if (new == NULL)
286 286 return (NULL);
287 287
288 288 /*
289 289 * If new == ptr, ptr has previously been freed. Passing a freed pointer
290 290 * to realloc() is not allowed - unless the caller specifically states
291 291 * otherwise, in which case we must avoid freeing ptr (ie new) before we
292 292 * return new. There is (obviously) no requirement to memcpy() ptr to
293 293 * new before we return.
294 294 */
295 295 if (new == ptr) {
296 296 if (!(debugopt & MTDOUBLEFREE))
297 297 abort();
298 298 return (new);
299 299 }
300 300
301 301 if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) {
302 302 mem -= OVERHEAD;
303 303 ptr = (void *)*(uintptr_t *)mem;
304 304 mem = (caddr_t)ptr - OVERHEAD;
305 305 shift = (size_t)((uintptr_t)data_ptr - (uintptr_t)ptr);
306 306 } else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) {
307 307 ptr = (void *) mem;
308 308 mem -= OVERHEAD;
309 309 shift = OVERHEAD;
310 310 }
311 311
312 312 if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) {
313 313 oversize_t *old;
314 314
315 315 old = (oversize_t *)(mem - OVSZ_SIZE);
316 316 (void) memcpy(new, data_ptr, MIN(bytes, old->size - shift));
317 317 free(ptr);
318 318 return (new);
319 319 }
320 320
321 321 cacheptr = (cache_t *)*(uintptr_t *)mem;
322 322
323 323 (void) memcpy(new, data_ptr,
↓ open down ↓ |
323 lines elided |
↑ open up ↑ |
324 324 MIN(cacheptr->mt_size - OVERHEAD - shift, bytes));
325 325 free(ptr);
326 326
327 327 return (new);
328 328 }
329 329
330 330 void *
331 331 calloc(size_t nelem, size_t bytes)
332 332 {
333 333 void * ptr;
334 - size_t size = nelem * bytes;
334 + size_t size;
335 +
336 + if (nelem == 0 || bytes == 0) {
337 + size = 0;
338 + } else {
339 + size = nelem * bytes;
340 +
341 + /* check for overflow */
342 + if ((size / nelem) != bytes) {
343 + errno = ENOMEM;
344 + return (NULL);
345 + }
346 + }
335 347
336 348 ptr = malloc(size);
337 349 if (ptr == NULL)
338 350 return (NULL);
339 351 (void) memset(ptr, 0, size);
340 352
341 353 return (ptr);
342 354 }
343 355
344 356 void
345 357 free(void * ptr)
346 358 {
347 359 cache_t *cacheptr;
348 360 caddr_t mem;
349 361 int32_t i;
350 362 caddr_t freeblocks;
351 363 uintptr_t offset;
352 364 uchar_t mask;
353 365 int32_t which_bit, num_bytes;
354 366
355 367 if (ptr == NULL)
356 368 return;
357 369
358 370 mem = (caddr_t)ptr - OVERHEAD;
359 371
360 372 if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MAGIC) {
361 373 mem -= OVERHEAD;
362 374 ptr = (void *)*(uintptr_t *)mem;
363 375 mem = (caddr_t)ptr - OVERHEAD;
364 376 } else if (*(uintptr_t *)mem == MTMALLOC_MEMALIGN_MIN_MAGIC) {
365 377 ptr = (void *) mem;
366 378 mem -= OVERHEAD;
367 379 }
368 380
369 381 if (*(uintptr_t *)mem == MTMALLOC_OVERSIZE_MAGIC) {
370 382 oversize_t *big, **opp;
371 383 int bucket;
372 384
373 385 big = (oversize_t *)(mem - OVSZ_SIZE);
374 386 (void) mutex_lock(&oversize_lock);
375 387
376 388 bucket = HASH_OVERSIZE(big->addr);
377 389 for (opp = &ovsz_hashtab[bucket]; *opp != NULL;
378 390 opp = &(*opp)->hash_next)
379 391 if (*opp == big)
380 392 break;
381 393
382 394 if (*opp == NULL) {
383 395 if (!(debugopt & MTDOUBLEFREE))
384 396 abort();
385 397 (void) mutex_unlock(&oversize_lock);
386 398 return;
387 399 }
388 400
389 401 *opp = big->hash_next; /* remove big from the hash table */
390 402 big->hash_next = NULL;
391 403
392 404 if (debugopt & MTDEBUGPATTERN)
393 405 copy_pattern(FREEPATTERN, ptr, big->size);
394 406 add_oversize(big);
395 407 (void) mutex_unlock(&oversize_lock);
396 408 return;
397 409 }
398 410
399 411 cacheptr = (cache_t *)*(uintptr_t *)mem;
400 412 freeblocks = cacheptr->mt_freelist;
401 413
402 414 /*
403 415 * This is the distance measured in bits into the arena.
404 416 * The value of offset is in bytes but there is a 1-1 correlation
405 417 * between distance into the arena and distance into the
406 418 * freelist bitmask.
407 419 */
408 420 offset = mem - cacheptr->mt_arena;
409 421
410 422 /*
411 423 * i is total number of bits to offset into freelist bitmask.
412 424 */
413 425
414 426 i = offset / cacheptr->mt_size;
415 427
416 428 num_bytes = i >> 3;
417 429
418 430 /*
419 431 * which_bit is the bit offset into the byte in the freelist.
420 432 * if our freelist bitmask looks like 0xf3 and we are freeing
421 433 * block 5 (ie: the 6th block) our mask will be 0xf7 after
422 434 * the free. Things go left to right that's why the mask is 0x80
423 435 * and not 0x01.
424 436 */
425 437 which_bit = i - (num_bytes << 3);
426 438
427 439 mask = 0x80 >> which_bit;
428 440
429 441 freeblocks += num_bytes;
430 442
431 443 if (debugopt & MTDEBUGPATTERN)
432 444 copy_pattern(FREEPATTERN, ptr, cacheptr->mt_size - OVERHEAD);
433 445
434 446 (void) mutex_lock(&cacheptr->mt_cache_lock);
435 447
436 448 if (*freeblocks & mask) {
437 449 if (!(debugopt & MTDOUBLEFREE))
438 450 abort();
439 451 } else {
440 452 *freeblocks |= mask;
441 453 cacheptr->mt_nfree++;
442 454 }
443 455
444 456 (void) mutex_unlock(&cacheptr->mt_cache_lock);
445 457 }
446 458
447 459 void *
448 460 memalign(size_t alignment, size_t size)
449 461 {
450 462 size_t alloc_size;
451 463 uintptr_t offset;
452 464 void *alloc_buf;
453 465 void *ret_buf;
454 466
455 467 if (size == 0 || alignment == 0 || misaligned(alignment) ||
456 468 (alignment & (alignment - 1)) != 0) {
457 469 errno = EINVAL;
458 470 return (NULL);
459 471 }
460 472
461 473 /* <= MTMALLOC_MIN_ALIGN, malloc can provide directly */
462 474 if (alignment <= MTMALLOC_MIN_ALIGN)
463 475 return (malloc(size));
464 476
465 477 alloc_size = size + alignment - MTMALLOC_MIN_ALIGN;
466 478
467 479 if (alloc_size < size) { /* overflow */
468 480 errno = ENOMEM;
469 481 return (NULL);
470 482 }
471 483
472 484 alloc_buf = malloc(alloc_size);
473 485
474 486 if (alloc_buf == NULL)
475 487 /* malloc sets errno */
476 488 return (NULL);
477 489
478 490 /*
479 491 * If alloc_size > MAX_CACHED, malloc() will have returned a multiple of
480 492 * MTMALLOC_MIN_ALIGN, having rounded-up alloc_size if necessary. Since
481 493 * we will use alloc_size to return the excess fragments to the free
482 494 * list, we also round-up alloc_size if necessary.
483 495 */
484 496 if ((alloc_size > MAX_CACHED) &&
485 497 (alloc_size & (MTMALLOC_MIN_ALIGN - 1)))
486 498 alloc_size = ALIGN(alloc_size, MTMALLOC_MIN_ALIGN);
487 499
488 500 if ((offset = (uintptr_t)alloc_buf & (alignment - 1)) == 0) {
489 501 /* aligned correctly */
490 502
491 503 size_t frag_size = alloc_size -
492 504 (size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
493 505
494 506 /*
495 507 * If the leftover piece of the memory > MAX_CACHED,
496 508 * split off the piece and return it back to the freelist.
497 509 */
498 510 if (IS_OVERSIZE(frag_size, alloc_size)) {
499 511 oversize_t *orig, *tail;
500 512 uintptr_t taddr;
501 513 size_t data_size;
502 514 taddr = ALIGN((uintptr_t)alloc_buf + size,
503 515 MTMALLOC_MIN_ALIGN);
504 516 data_size = taddr - (uintptr_t)alloc_buf;
505 517 orig = (oversize_t *)((uintptr_t)alloc_buf -
506 518 OVSZ_HEADER_SIZE);
507 519 frag_size = orig->size - data_size -
508 520 OVSZ_HEADER_SIZE;
509 521 orig->size = data_size;
510 522 tail = oversize_header_alloc(taddr, frag_size);
511 523 free_oversize(tail);
512 524 }
513 525 ret_buf = alloc_buf;
514 526 } else {
515 527 uchar_t oversize_bits = 0;
516 528 size_t head_sz, data_sz, tail_sz;
517 529 uintptr_t ret_addr, taddr, shift, tshift;
518 530 oversize_t *orig, *tail, *big;
519 531 size_t tsize;
520 532
521 533 /* needs to be aligned */
522 534 shift = alignment - offset;
523 535
524 536 assert(shift >= MTMALLOC_MIN_ALIGN);
525 537
526 538 ret_addr = ((uintptr_t)alloc_buf + shift);
527 539 ret_buf = (void *)ret_addr;
528 540
529 541 if (alloc_size <= MAX_CACHED) {
530 542 MEMALIGN_HEADER_ALLOC(ret_addr, shift, alloc_buf);
531 543 return (ret_buf);
532 544 }
533 545
534 546 /*
535 547 * Only check for the fragments when the memory is allocted
536 548 * from oversize_list. Split off a fragment and return it
537 549 * to the oversize freelist when it's > MAX_CACHED.
538 550 */
539 551
540 552 head_sz = shift - MAX(MEMALIGN_HEADER_SIZE, OVSZ_HEADER_SIZE);
541 553
542 554 tail_sz = alloc_size -
543 555 (shift + size + MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
544 556
545 557 oversize_bits |= IS_OVERSIZE(head_sz, alloc_size) |
546 558 IS_OVERSIZE(size, alloc_size) << DATA_SHIFT |
547 559 IS_OVERSIZE(tail_sz, alloc_size) << TAIL_SHIFT;
548 560
549 561 switch (oversize_bits) {
550 562 case NONE_OVERSIZE:
551 563 case DATA_OVERSIZE:
552 564 MEMALIGN_HEADER_ALLOC(ret_addr, shift,
553 565 alloc_buf);
554 566 break;
555 567 case HEAD_OVERSIZE:
556 568 /*
557 569 * If we can extend data > MAX_CACHED and have
558 570 * head still > MAX_CACHED, we split head-end
559 571 * as the case of head-end and data oversized,
560 572 * otherwise just create memalign header.
561 573 */
562 574 tsize = (shift + size) - (MAX_CACHED + 8 +
563 575 MTMALLOC_MIN_ALIGN + OVSZ_HEADER_SIZE);
564 576
565 577 if (!IS_OVERSIZE(tsize, alloc_size)) {
566 578 MEMALIGN_HEADER_ALLOC(ret_addr, shift,
567 579 alloc_buf);
568 580 break;
569 581 } else {
570 582 tsize += OVSZ_HEADER_SIZE;
571 583 taddr = ALIGN((uintptr_t)alloc_buf +
572 584 tsize, MTMALLOC_MIN_ALIGN);
573 585 tshift = ret_addr - taddr;
574 586 MEMALIGN_HEADER_ALLOC(ret_addr, tshift,
575 587 taddr);
576 588 ret_addr = taddr;
577 589 shift = ret_addr - (uintptr_t)alloc_buf;
578 590 }
579 591 /* FALLTHROUGH */
580 592 case HEAD_AND_DATA_OVERSIZE:
581 593 /*
582 594 * Split off the head fragment and
583 595 * return it back to oversize freelist.
584 596 * Create oversize header for the piece
585 597 * of (data + tail fragment).
586 598 */
587 599 orig = (oversize_t *)((uintptr_t)alloc_buf -
588 600 OVSZ_HEADER_SIZE);
589 601 big = oversize_header_alloc(ret_addr -
590 602 OVSZ_HEADER_SIZE, (orig->size - shift));
591 603 (void) mutex_lock(&oversize_lock);
592 604 insert_hash(big);
593 605 (void) mutex_unlock(&oversize_lock);
594 606 orig->size = shift - OVSZ_HEADER_SIZE;
595 607
596 608 /* free up the head fragment */
597 609 free_oversize(orig);
598 610 break;
599 611 case TAIL_OVERSIZE:
600 612 /*
601 613 * If we can extend data > MAX_CACHED and have
602 614 * tail-end still > MAX_CACHED, we split tail
603 615 * end, otherwise just create memalign header.
604 616 */
605 617 orig = (oversize_t *)((uintptr_t)alloc_buf -
606 618 OVSZ_HEADER_SIZE);
607 619 tsize = orig->size - (MAX_CACHED + 8 +
608 620 shift + OVSZ_HEADER_SIZE +
609 621 MTMALLOC_MIN_ALIGN);
610 622 if (!IS_OVERSIZE(tsize, alloc_size)) {
611 623 MEMALIGN_HEADER_ALLOC(ret_addr, shift,
612 624 alloc_buf);
613 625 break;
614 626 } else {
615 627 size = MAX_CACHED + 8;
616 628 }
617 629 /* FALLTHROUGH */
618 630 case DATA_AND_TAIL_OVERSIZE:
619 631 /*
620 632 * Split off the tail fragment and
621 633 * return it back to oversize freelist.
622 634 * Create memalign header and adjust
623 635 * the size for the piece of
624 636 * (head fragment + data).
625 637 */
626 638 taddr = ALIGN(ret_addr + size,
627 639 MTMALLOC_MIN_ALIGN);
628 640 data_sz = (size_t)(taddr -
629 641 (uintptr_t)alloc_buf);
630 642 orig = (oversize_t *)((uintptr_t)alloc_buf -
631 643 OVSZ_HEADER_SIZE);
632 644 tsize = orig->size - data_sz;
633 645 orig->size = data_sz;
634 646 MEMALIGN_HEADER_ALLOC(ret_buf, shift,
635 647 alloc_buf);
636 648 tsize -= OVSZ_HEADER_SIZE;
637 649 tail = oversize_header_alloc(taddr, tsize);
638 650 free_oversize(tail);
639 651 break;
640 652 case HEAD_AND_TAIL_OVERSIZE:
641 653 /*
642 654 * Split off the head fragment.
643 655 * We try to free up tail-end when we can
644 656 * extend data size to (MAX_CACHED + 8)
645 657 * and remain tail-end oversized.
646 658 * The bottom line is all split pieces
647 659 * should be oversize in size.
648 660 */
649 661 orig = (oversize_t *)((uintptr_t)alloc_buf -
650 662 OVSZ_HEADER_SIZE);
651 663 tsize = orig->size - (MAX_CACHED + 8 +
652 664 OVSZ_HEADER_SIZE + shift +
653 665 MTMALLOC_MIN_ALIGN);
654 666
655 667 if (!IS_OVERSIZE(tsize, alloc_size)) {
656 668 /*
657 669 * If the chunk is not big enough
658 670 * to make both data and tail oversize
659 671 * we just keep them as one piece.
660 672 */
661 673 big = oversize_header_alloc(ret_addr -
662 674 OVSZ_HEADER_SIZE,
663 675 orig->size - shift);
664 676 (void) mutex_lock(&oversize_lock);
665 677 insert_hash(big);
666 678 (void) mutex_unlock(&oversize_lock);
667 679 orig->size = shift - OVSZ_HEADER_SIZE;
668 680 free_oversize(orig);
669 681 break;
670 682 } else {
671 683 /*
672 684 * extend data size > MAX_CACHED
673 685 * and handle it as head, data, tail
674 686 * are all oversized.
675 687 */
676 688 size = MAX_CACHED + 8;
677 689 }
678 690 /* FALLTHROUGH */
679 691 case ALL_OVERSIZE:
680 692 /*
681 693 * split off the head and tail fragments,
682 694 * return them back to the oversize freelist.
683 695 * Alloc oversize header for data seg.
684 696 */
685 697 orig = (oversize_t *)((uintptr_t)alloc_buf -
686 698 OVSZ_HEADER_SIZE);
687 699 tsize = orig->size;
688 700 orig->size = shift - OVSZ_HEADER_SIZE;
689 701 free_oversize(orig);
690 702
691 703 taddr = ALIGN(ret_addr + size,
692 704 MTMALLOC_MIN_ALIGN);
693 705 data_sz = taddr - ret_addr;
694 706 assert(tsize > (shift + data_sz +
695 707 OVSZ_HEADER_SIZE));
696 708 tail_sz = tsize -
697 709 (shift + data_sz + OVSZ_HEADER_SIZE);
698 710
699 711 /* create oversize header for data seg */
700 712 big = oversize_header_alloc(ret_addr -
701 713 OVSZ_HEADER_SIZE, data_sz);
702 714 (void) mutex_lock(&oversize_lock);
703 715 insert_hash(big);
704 716 (void) mutex_unlock(&oversize_lock);
705 717
706 718 /* create oversize header for tail fragment */
707 719 tail = oversize_header_alloc(taddr, tail_sz);
708 720 free_oversize(tail);
709 721 break;
710 722 default:
711 723 /* should not reach here */
712 724 assert(0);
713 725 }
714 726 }
715 727 return (ret_buf);
716 728 }
717 729
718 730
719 731 void *
720 732 valloc(size_t size)
721 733 {
722 734 static unsigned pagesize;
723 735
724 736 if (size == 0)
725 737 return (NULL);
726 738
727 739 if (!pagesize)
728 740 pagesize = sysconf(_SC_PAGESIZE);
729 741
730 742 return (memalign(pagesize, size));
731 743 }
732 744
733 745 void
734 746 mallocctl(int cmd, long value)
735 747 {
736 748 switch (cmd) {
737 749
738 750 case MTDEBUGPATTERN:
739 751 /*
740 752 * Reinitialize free blocks in case malloc() is called prior
741 753 * to mallocctl().
742 754 */
743 755 if (value && !(debugopt & cmd)) {
744 756 reinit++;
745 757 debugopt |= cmd;
746 758 reinit_cpu_list();
747 759 }
748 760 /*FALLTHRU*/
749 761 case MTDOUBLEFREE:
750 762 case MTINITBUFFER:
751 763 if (value)
752 764 debugopt |= cmd;
753 765 else
754 766 debugopt &= ~cmd;
755 767 break;
756 768 case MTCHUNKSIZE:
757 769 if (value >= MINSIZE && value <= MAXSIZE)
758 770 requestsize = value;
759 771 break;
760 772 default:
761 773 break;
762 774 }
763 775 }
764 776
765 777 /*
766 778 * Initialization function, called from the init section of the library.
767 779 * No locking is required here because we are single-threaded during
768 780 * library initialization.
769 781 */
770 782 static void
771 783 setup_caches(void)
772 784 {
773 785 uintptr_t oldbrk;
774 786 uintptr_t newbrk;
775 787
776 788 size_t cache_space_needed;
777 789 size_t padding;
778 790
779 791 curcpu_func new_curcpu;
780 792 uint_t new_cpu_mask;
781 793 percpu_t *new_cpu_list;
782 794
783 795 uint_t i, j;
784 796 uintptr_t list_addr;
785 797
786 798 /*
787 799 * Get a decent "current cpu identifier", to be used to reduce
788 800 * contention. Eventually, this should be replaced by an interface
789 801 * to get the actual CPU sequence number in libthread/liblwp.
790 802 */
791 803 new_curcpu = (curcpu_func)thr_self;
792 804 if ((ncpus = 2 * sysconf(_SC_NPROCESSORS_CONF)) <= 0)
793 805 ncpus = 4; /* decent default value */
794 806
795 807 /* round ncpus up to a power of 2 */
796 808 while (ncpus & (ncpus - 1))
797 809 ncpus++;
798 810
799 811 new_cpu_mask = ncpus - 1; /* create the cpu mask */
800 812
801 813 /*
802 814 * We now do some magic with the brk. What we want to get in the
803 815 * end is a bunch of well-aligned stuff in a big initial allocation.
804 816 * Along the way, we do sanity checks to make sure no one else has
805 817 * touched the brk (which shouldn't happen, but it's always good to
806 818 * check)
807 819 *
808 820 * First, make sure sbrk is sane, and store the current brk in oldbrk.
809 821 */
810 822 oldbrk = (uintptr_t)sbrk(0);
811 823 if ((void *)oldbrk == (void *)-1)
812 824 abort(); /* sbrk is broken -- we're doomed. */
813 825
814 826 /*
815 827 * Now, align the brk to a multiple of CACHE_COHERENCY_UNIT, so that
816 828 * the percpu structures and cache lists will be properly aligned.
817 829 *
818 830 * 2. All hunks will be page-aligned, assuming HUNKSIZE >= PAGESIZE,
819 831 * so they can be paged out individually.
820 832 */
821 833 newbrk = ALIGN(oldbrk, CACHE_COHERENCY_UNIT);
822 834 if (newbrk != oldbrk && (uintptr_t)sbrk(newbrk - oldbrk) != oldbrk)
823 835 abort(); /* sbrk is broken -- we're doomed. */
824 836
825 837 /*
826 838 * For each cpu, there is one percpu_t and a list of caches
827 839 */
828 840 cache_space_needed = ncpus * (sizeof (percpu_t) + CACHELIST_SIZE);
829 841
830 842 new_cpu_list = (percpu_t *)sbrk(cache_space_needed);
831 843
832 844 if (new_cpu_list == (percpu_t *)-1 ||
833 845 (uintptr_t)new_cpu_list != newbrk)
834 846 abort(); /* sbrk is broken -- we're doomed. */
835 847
836 848 /*
837 849 * Finally, align the brk to HUNKSIZE so that all hunks are
838 850 * page-aligned, to avoid edge-effects.
839 851 */
840 852
841 853 newbrk = (uintptr_t)new_cpu_list + cache_space_needed;
842 854
843 855 padding = ALIGN(newbrk, HUNKSIZE) - newbrk;
844 856
845 857 if (padding > 0 && (uintptr_t)sbrk(padding) != newbrk)
846 858 abort(); /* sbrk is broken -- we're doomed. */
847 859
848 860 list_addr = ((uintptr_t)new_cpu_list + (sizeof (percpu_t) * ncpus));
849 861
850 862 /* initialize the percpu list */
851 863 for (i = 0; i < ncpus; i++) {
852 864 new_cpu_list[i].mt_caches = (cache_head_t *)list_addr;
853 865 for (j = 0; j < NUM_CACHES; j++) {
854 866 new_cpu_list[i].mt_caches[j].mt_cache = NULL;
855 867 new_cpu_list[i].mt_caches[j].mt_hint = NULL;
856 868 }
857 869
858 870 (void) mutex_init(&new_cpu_list[i].mt_parent_lock,
859 871 USYNC_THREAD, NULL);
860 872
861 873 /* get the correct cache list alignment */
862 874 list_addr += CACHELIST_SIZE;
863 875 }
864 876
865 877 /*
866 878 * Initialize oversize listhead
867 879 */
868 880 oversize_list.next_bysize = &oversize_list;
869 881 oversize_list.prev_bysize = &oversize_list;
870 882 oversize_list.next_byaddr = &oversize_list;
871 883 oversize_list.prev_byaddr = &oversize_list;
872 884 oversize_list.addr = NULL;
873 885 oversize_list.size = 0; /* sentinal */
874 886
875 887 /*
876 888 * Now install the global variables.
877 889 */
878 890 curcpu = new_curcpu;
879 891 cpu_mask = new_cpu_mask;
880 892 cpu_list = new_cpu_list;
881 893 }
882 894
883 895 static void
884 896 create_cache(cache_t *cp, size_t size, uint_t chunksize)
885 897 {
886 898 long nblocks;
887 899
888 900 (void) mutex_init(&cp->mt_cache_lock, USYNC_THREAD, NULL);
889 901 cp->mt_size = size;
890 902 cp->mt_freelist = ((caddr_t)cp + sizeof (cache_t));
891 903 cp->mt_span = chunksize * HUNKSIZE - sizeof (cache_t);
892 904 cp->mt_hunks = chunksize;
893 905 /*
894 906 * rough calculation. We will need to adjust later.
895 907 */
896 908 nblocks = cp->mt_span / cp->mt_size;
897 909 nblocks >>= 3;
898 910 if (nblocks == 0) { /* less than 8 free blocks in this pool */
899 911 int32_t numblocks = 0;
900 912 long i = cp->mt_span;
901 913 size_t sub = cp->mt_size;
902 914 uchar_t mask = 0;
903 915
904 916 while (i > sub) {
905 917 numblocks++;
906 918 i -= sub;
907 919 }
908 920 nblocks = numblocks;
909 921 cp->mt_arena = (caddr_t)ALIGN(cp->mt_freelist + 8, 8);
910 922 cp->mt_nfree = numblocks;
911 923 while (numblocks--) {
912 924 mask |= 0x80 >> numblocks;
913 925 }
914 926 *(cp->mt_freelist) = mask;
915 927 } else {
916 928 cp->mt_arena = (caddr_t)ALIGN((caddr_t)cp->mt_freelist +
917 929 nblocks, 32);
918 930 /* recompute nblocks */
919 931 nblocks = (uintptr_t)((caddr_t)cp->mt_freelist +
920 932 cp->mt_span - cp->mt_arena) / cp->mt_size;
921 933 cp->mt_nfree = ((nblocks >> 3) << 3);
922 934 /* Set everything to free */
923 935 (void) memset(cp->mt_freelist, 0xff, nblocks >> 3);
924 936 }
925 937
926 938 if (debugopt & MTDEBUGPATTERN)
927 939 copy_pattern(FREEPATTERN, cp->mt_arena, cp->mt_size * nblocks);
928 940
929 941 cp->mt_next = NULL;
930 942 }
931 943
932 944 static void
933 945 reinit_cpu_list(void)
934 946 {
935 947 oversize_t *wp = oversize_list.next_bysize;
936 948 percpu_t *cpuptr;
937 949 cache_t *thiscache;
938 950 cache_head_t *cachehead;
939 951
940 952 /* Reinitialize free oversize blocks. */
941 953 (void) mutex_lock(&oversize_lock);
942 954 if (debugopt & MTDEBUGPATTERN)
943 955 for (; wp != &oversize_list; wp = wp->next_bysize)
944 956 copy_pattern(FREEPATTERN, wp->addr, wp->size);
945 957 (void) mutex_unlock(&oversize_lock);
946 958
947 959 /* Reinitialize free blocks. */
948 960 for (cpuptr = &cpu_list[0]; cpuptr < &cpu_list[ncpus]; cpuptr++) {
949 961 (void) mutex_lock(&cpuptr->mt_parent_lock);
950 962 for (cachehead = &cpuptr->mt_caches[0]; cachehead <
951 963 &cpuptr->mt_caches[NUM_CACHES]; cachehead++) {
952 964 for (thiscache = cachehead->mt_cache; thiscache != NULL;
953 965 thiscache = thiscache->mt_next) {
954 966 (void) mutex_lock(&thiscache->mt_cache_lock);
955 967 if (thiscache->mt_nfree == 0) {
956 968 (void) mutex_unlock(
957 969 &thiscache->mt_cache_lock);
958 970 continue;
959 971 }
960 972 if (thiscache != NULL)
961 973 reinit_cache(thiscache);
962 974 (void) mutex_unlock(&thiscache->mt_cache_lock);
963 975 }
964 976 }
965 977 (void) mutex_unlock(&cpuptr->mt_parent_lock);
966 978 }
967 979 reinit = 0;
968 980 }
969 981
970 982 static void
971 983 reinit_cache(cache_t *thiscache)
972 984 {
973 985 uint32_t *freeblocks; /* not a uintptr_t on purpose */
974 986 int32_t i, n;
975 987 caddr_t ret;
976 988
977 989 freeblocks = (uint32_t *)thiscache->mt_freelist;
978 990 while (freeblocks < (uint32_t *)thiscache->mt_arena) {
979 991 if (*freeblocks & 0xffffffff) {
980 992 for (i = 0; i < 32; i++) {
981 993 if (FLIP_EM(*freeblocks) & (0x80000000 >> i)) {
982 994 n = (uintptr_t)(((freeblocks -
983 995 (uint32_t *)thiscache->mt_freelist)
984 996 << 5) + i) * thiscache->mt_size;
985 997 ret = thiscache->mt_arena + n;
986 998 ret += OVERHEAD;
987 999 copy_pattern(FREEPATTERN, ret,
988 1000 thiscache->mt_size);
989 1001 }
990 1002 }
991 1003 }
992 1004 freeblocks++;
993 1005 }
994 1006 }
995 1007
996 1008 static void *
997 1009 malloc_internal(size_t size, percpu_t *cpuptr)
998 1010 {
999 1011 cache_head_t *cachehead;
1000 1012 cache_t *thiscache, *hintcache;
1001 1013 int32_t i, n, logsz, bucket;
1002 1014 uint32_t index;
1003 1015 uint32_t *freeblocks; /* not a uintptr_t on purpose */
1004 1016 caddr_t ret;
1005 1017
1006 1018 logsz = MIN_CACHED_SHIFT;
1007 1019
1008 1020 while (size > (1 << logsz))
1009 1021 logsz++;
1010 1022
1011 1023 bucket = logsz - MIN_CACHED_SHIFT;
1012 1024
1013 1025 (void) mutex_lock(&cpuptr->mt_parent_lock);
1014 1026
1015 1027 /*
1016 1028 * Find a cache of the appropriate size with free buffers.
1017 1029 *
1018 1030 * We don't need to lock each cache as we check their mt_nfree count,
1019 1031 * since:
1020 1032 * 1. We are only looking for caches with mt_nfree > 0. If a
1021 1033 * free happens during our search, it will increment mt_nfree,
1022 1034 * which will not effect the test.
1023 1035 * 2. Allocations can decrement mt_nfree, but they can't happen
1024 1036 * as long as we hold mt_parent_lock.
1025 1037 */
1026 1038
1027 1039 cachehead = &cpuptr->mt_caches[bucket];
1028 1040
1029 1041 /* Search through the list, starting at the mt_hint */
1030 1042 thiscache = cachehead->mt_hint;
1031 1043
1032 1044 while (thiscache != NULL && thiscache->mt_nfree == 0)
1033 1045 thiscache = thiscache->mt_next;
1034 1046
1035 1047 if (thiscache == NULL) {
1036 1048 /* wrap around -- search up to the hint */
1037 1049 thiscache = cachehead->mt_cache;
1038 1050 hintcache = cachehead->mt_hint;
1039 1051
1040 1052 while (thiscache != NULL && thiscache != hintcache &&
1041 1053 thiscache->mt_nfree == 0)
1042 1054 thiscache = thiscache->mt_next;
1043 1055
1044 1056 if (thiscache == hintcache)
1045 1057 thiscache = NULL;
1046 1058 }
1047 1059
1048 1060
1049 1061 if (thiscache == NULL) { /* there are no free caches */
1050 1062 int32_t thisrequest = requestsize;
1051 1063 int32_t buffer_size = (1 << logsz) + OVERHEAD;
1052 1064
1053 1065 thiscache = (cache_t *)morecore(thisrequest * HUNKSIZE);
1054 1066
1055 1067 if (thiscache == (cache_t *)-1) {
1056 1068 (void) mutex_unlock(&cpuptr->mt_parent_lock);
1057 1069 errno = EAGAIN;
1058 1070 return (NULL);
1059 1071 }
1060 1072 create_cache(thiscache, buffer_size, thisrequest);
1061 1073
1062 1074 /* link in the new block at the beginning of the list */
1063 1075 thiscache->mt_next = cachehead->mt_cache;
1064 1076 cachehead->mt_cache = thiscache;
1065 1077 }
1066 1078
1067 1079 /* update the hint to the cache we found or created */
1068 1080 cachehead->mt_hint = thiscache;
1069 1081
1070 1082 /* thiscache now points to a cache with available space */
1071 1083 (void) mutex_lock(&thiscache->mt_cache_lock);
1072 1084
1073 1085 freeblocks = (uint32_t *)thiscache->mt_freelist;
1074 1086 while (freeblocks < (uint32_t *)thiscache->mt_arena) {
1075 1087 if (*freeblocks & 0xffffffff)
1076 1088 break;
1077 1089 freeblocks++;
1078 1090 if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1079 1091 *freeblocks & 0xffffffff)
1080 1092 break;
1081 1093 freeblocks++;
1082 1094 if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1083 1095 *freeblocks & 0xffffffff)
1084 1096 break;
1085 1097 freeblocks++;
1086 1098 if (freeblocks < (uint32_t *)thiscache->mt_arena &&
1087 1099 *freeblocks & 0xffffffff)
1088 1100 break;
1089 1101 freeblocks++;
1090 1102 }
1091 1103
1092 1104 /*
1093 1105 * the offset from mt_freelist to freeblocks is the offset into
1094 1106 * the arena. Be sure to include the offset into freeblocks
1095 1107 * of the bitmask. n is the offset.
1096 1108 */
1097 1109 for (i = 0; i < 32; ) {
1098 1110 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1099 1111 break;
1100 1112 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1101 1113 break;
1102 1114 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1103 1115 break;
1104 1116 if (FLIP_EM(*freeblocks) & (0x80000000 >> i++))
1105 1117 break;
1106 1118 }
1107 1119 index = 0x80000000 >> --i;
1108 1120
1109 1121
1110 1122 *freeblocks &= FLIP_EM(~index);
1111 1123
1112 1124 thiscache->mt_nfree--;
1113 1125
1114 1126 (void) mutex_unlock(&thiscache->mt_cache_lock);
1115 1127 (void) mutex_unlock(&cpuptr->mt_parent_lock);
1116 1128
1117 1129 n = (uintptr_t)(((freeblocks - (uint32_t *)thiscache->mt_freelist) << 5)
1118 1130 + i) * thiscache->mt_size;
1119 1131 /*
1120 1132 * Now you have the offset in n, you've changed the free mask
1121 1133 * in the freelist. Nothing left to do but find the block
1122 1134 * in the arena and put the value of thiscache in the word
1123 1135 * ahead of the handed out address and return the memory
1124 1136 * back to the user.
1125 1137 */
1126 1138 ret = thiscache->mt_arena + n;
1127 1139
1128 1140 /* Store the cache addr for this buf. Makes free go fast. */
1129 1141 *(uintptr_t *)ret = (uintptr_t)thiscache;
1130 1142
1131 1143 /*
1132 1144 * This assert makes sure we don't hand out memory that is not
1133 1145 * owned by this cache.
1134 1146 */
1135 1147 assert(ret + thiscache->mt_size <= thiscache->mt_freelist +
1136 1148 thiscache->mt_span);
1137 1149
1138 1150 ret += OVERHEAD;
1139 1151
1140 1152 assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */
1141 1153
1142 1154 if (reinit == 0 && (debugopt & MTDEBUGPATTERN))
1143 1155 if (verify_pattern(FREEPATTERN, ret, size))
1144 1156 abort(); /* reference after free */
1145 1157
1146 1158 if (debugopt & MTINITBUFFER)
1147 1159 copy_pattern(INITPATTERN, ret, size);
1148 1160 return ((void *)ret);
1149 1161 }
1150 1162
1151 1163 static void *
1152 1164 morecore(size_t bytes)
1153 1165 {
1154 1166 void * ret;
1155 1167
1156 1168 if (bytes > LONG_MAX) {
1157 1169 intptr_t wad;
1158 1170 /*
1159 1171 * The request size is too big. We need to do this in
1160 1172 * chunks. Sbrk only takes an int for an arg.
1161 1173 */
1162 1174 if (bytes == ULONG_MAX)
1163 1175 return ((void *)-1);
1164 1176
1165 1177 ret = sbrk(0);
1166 1178 wad = LONG_MAX;
1167 1179 while (wad > 0) {
1168 1180 if (sbrk(wad) == (void *)-1) {
1169 1181 if (ret != sbrk(0))
1170 1182 (void) sbrk(-LONG_MAX);
1171 1183 return ((void *)-1);
1172 1184 }
1173 1185 bytes -= LONG_MAX;
1174 1186 wad = bytes;
1175 1187 }
1176 1188 } else
1177 1189 ret = sbrk(bytes);
1178 1190
1179 1191 return (ret);
1180 1192 }
1181 1193
1182 1194
1183 1195 static void *
1184 1196 oversize(size_t size)
1185 1197 {
1186 1198 caddr_t ret;
1187 1199 oversize_t *big;
1188 1200
1189 1201 /* make sure we will not overflow */
1190 1202 if (size > MAX_MTMALLOC) {
1191 1203 errno = ENOMEM;
1192 1204 return (NULL);
1193 1205 }
1194 1206
1195 1207 /*
1196 1208 * Since we ensure every address we hand back is
1197 1209 * MTMALLOC_MIN_ALIGN-byte aligned, ALIGNing size ensures that the
1198 1210 * memory handed out is MTMALLOC_MIN_ALIGN-byte aligned at both ends.
1199 1211 * This eases the implementation of MTDEBUGPATTERN and MTINITPATTERN,
1200 1212 * particularly where coalescing occurs.
1201 1213 */
1202 1214 size = ALIGN(size, MTMALLOC_MIN_ALIGN);
1203 1215
1204 1216 /*
1205 1217 * The idea with the global lock is that we are sure to
1206 1218 * block in the kernel anyway since given an oversize alloc
1207 1219 * we are sure to have to call morecore();
1208 1220 */
1209 1221 (void) mutex_lock(&oversize_lock);
1210 1222
1211 1223 if ((big = find_oversize(size)) != NULL) {
1212 1224 if (reinit == 0 && (debugopt & MTDEBUGPATTERN))
1213 1225 if (verify_pattern(FREEPATTERN, big->addr, size))
1214 1226 abort(); /* reference after free */
1215 1227 } else {
1216 1228 /* Get more 8-byte aligned memory from heap */
1217 1229 ret = morecore(size + OVSZ_HEADER_SIZE);
1218 1230 if (ret == (caddr_t)-1) {
1219 1231 (void) mutex_unlock(&oversize_lock);
1220 1232 errno = ENOMEM;
1221 1233 return (NULL);
1222 1234 }
1223 1235 big = oversize_header_alloc((uintptr_t)ret, size);
1224 1236 }
1225 1237 ret = big->addr;
1226 1238
1227 1239 insert_hash(big);
1228 1240
1229 1241 if (debugopt & MTINITBUFFER)
1230 1242 copy_pattern(INITPATTERN, ret, size);
1231 1243
1232 1244 (void) mutex_unlock(&oversize_lock);
1233 1245 assert(((uintptr_t)ret & 7) == 0); /* are we 8 byte aligned */
1234 1246 return ((void *)ret);
1235 1247 }
1236 1248
1237 1249 static void
1238 1250 insert_oversize(oversize_t *op, oversize_t *nx)
1239 1251 {
1240 1252 oversize_t *sp;
1241 1253
1242 1254 /* locate correct insertion point in size-ordered list */
1243 1255 for (sp = oversize_list.next_bysize;
1244 1256 sp != &oversize_list && (op->size > sp->size);
1245 1257 sp = sp->next_bysize)
1246 1258 ;
1247 1259
1248 1260 /* link into size-ordered list */
1249 1261 op->next_bysize = sp;
1250 1262 op->prev_bysize = sp->prev_bysize;
1251 1263 op->prev_bysize->next_bysize = op;
1252 1264 op->next_bysize->prev_bysize = op;
1253 1265
1254 1266 /*
1255 1267 * link item into address-ordered list
1256 1268 * (caller provides insertion point as an optimization)
1257 1269 */
1258 1270 op->next_byaddr = nx;
1259 1271 op->prev_byaddr = nx->prev_byaddr;
1260 1272 op->prev_byaddr->next_byaddr = op;
1261 1273 op->next_byaddr->prev_byaddr = op;
1262 1274
1263 1275 }
1264 1276
1265 1277 static void
1266 1278 unlink_oversize(oversize_t *lp)
1267 1279 {
1268 1280 /* unlink from address list */
1269 1281 lp->prev_byaddr->next_byaddr = lp->next_byaddr;
1270 1282 lp->next_byaddr->prev_byaddr = lp->prev_byaddr;
1271 1283
1272 1284 /* unlink from size list */
1273 1285 lp->prev_bysize->next_bysize = lp->next_bysize;
1274 1286 lp->next_bysize->prev_bysize = lp->prev_bysize;
1275 1287 }
1276 1288
1277 1289 static void
1278 1290 position_oversize_by_size(oversize_t *op)
1279 1291 {
1280 1292 oversize_t *sp;
1281 1293
1282 1294 if (op->size > op->next_bysize->size ||
1283 1295 op->size < op->prev_bysize->size) {
1284 1296
1285 1297 /* unlink from size list */
1286 1298 op->prev_bysize->next_bysize = op->next_bysize;
1287 1299 op->next_bysize->prev_bysize = op->prev_bysize;
1288 1300
1289 1301 /* locate correct insertion point in size-ordered list */
1290 1302 for (sp = oversize_list.next_bysize;
1291 1303 sp != &oversize_list && (op->size > sp->size);
1292 1304 sp = sp->next_bysize)
1293 1305 ;
1294 1306
1295 1307 /* link into size-ordered list */
1296 1308 op->next_bysize = sp;
1297 1309 op->prev_bysize = sp->prev_bysize;
1298 1310 op->prev_bysize->next_bysize = op;
1299 1311 op->next_bysize->prev_bysize = op;
1300 1312 }
1301 1313 }
1302 1314
1303 1315 static void
1304 1316 add_oversize(oversize_t *lp)
1305 1317 {
1306 1318 int merge_flags = INSERT_ONLY;
1307 1319 oversize_t *nx; /* ptr to item right of insertion point */
1308 1320 oversize_t *pv; /* ptr to item left of insertion point */
1309 1321 uint_t size_lp, size_pv, size_nx;
1310 1322 uintptr_t endp_lp, endp_pv, endp_nx;
1311 1323
1312 1324 /*
1313 1325 * Locate insertion point in address-ordered list
1314 1326 */
1315 1327
1316 1328 for (nx = oversize_list.next_byaddr;
1317 1329 nx != &oversize_list && (lp->addr > nx->addr);
1318 1330 nx = nx->next_byaddr)
1319 1331 ;
1320 1332
1321 1333 /*
1322 1334 * Determine how to add chunk to oversize freelist
1323 1335 */
1324 1336
1325 1337 size_lp = OVSZ_HEADER_SIZE + lp->size;
1326 1338 endp_lp = ALIGN((uintptr_t)lp + size_lp, MTMALLOC_MIN_ALIGN);
1327 1339 size_lp = endp_lp - (uintptr_t)lp;
1328 1340
1329 1341 pv = nx->prev_byaddr;
1330 1342
1331 1343 if (pv->size) {
1332 1344
1333 1345 size_pv = OVSZ_HEADER_SIZE + pv->size;
1334 1346 endp_pv = ALIGN((uintptr_t)pv + size_pv,
1335 1347 MTMALLOC_MIN_ALIGN);
1336 1348 size_pv = endp_pv - (uintptr_t)pv;
1337 1349
1338 1350 /* Check for adjacency with left chunk */
1339 1351 if ((uintptr_t)lp == endp_pv)
1340 1352 merge_flags |= COALESCE_LEFT;
1341 1353 }
1342 1354
1343 1355 if (nx->size) {
1344 1356
1345 1357 /* Check for adjacency with right chunk */
1346 1358 if ((uintptr_t)nx == endp_lp) {
1347 1359 size_nx = OVSZ_HEADER_SIZE + nx->size;
1348 1360 endp_nx = ALIGN((uintptr_t)nx + size_nx,
1349 1361 MTMALLOC_MIN_ALIGN);
1350 1362 size_nx = endp_nx - (uintptr_t)nx;
1351 1363 merge_flags |= COALESCE_RIGHT;
1352 1364 }
1353 1365 }
1354 1366
1355 1367 /*
1356 1368 * If MTDEBUGPATTERN==1, lp->addr will have been overwritten with
1357 1369 * FREEPATTERN for lp->size bytes. If we can merge, the oversize
1358 1370 * header(s) that will also become part of the memory available for
1359 1371 * reallocation (ie lp and/or nx) must also be overwritten with
1360 1372 * FREEPATTERN or we will SIGABRT when this memory is next reallocated.
1361 1373 */
1362 1374 switch (merge_flags) {
1363 1375
1364 1376 case INSERT_ONLY: /* Coalescing not possible */
1365 1377 insert_oversize(lp, nx);
1366 1378 break;
1367 1379 case COALESCE_LEFT:
1368 1380 pv->size += size_lp;
1369 1381 position_oversize_by_size(pv);
1370 1382 if (debugopt & MTDEBUGPATTERN)
1371 1383 copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE);
1372 1384 break;
1373 1385 case COALESCE_RIGHT:
1374 1386 unlink_oversize(nx);
1375 1387 lp->size += size_nx;
1376 1388 insert_oversize(lp, pv->next_byaddr);
1377 1389 if (debugopt & MTDEBUGPATTERN)
1378 1390 copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE);
1379 1391 break;
1380 1392 case COALESCE_WITH_BOTH_SIDES: /* Merge (with right) to the left */
1381 1393 pv->size += size_lp + size_nx;
1382 1394 unlink_oversize(nx);
1383 1395 position_oversize_by_size(pv);
1384 1396 if (debugopt & MTDEBUGPATTERN) {
1385 1397 copy_pattern(FREEPATTERN, lp, OVSZ_HEADER_SIZE);
1386 1398 copy_pattern(FREEPATTERN, nx, OVSZ_HEADER_SIZE);
1387 1399 }
1388 1400 break;
1389 1401 }
1390 1402 }
1391 1403
1392 1404 /*
1393 1405 * Find memory on our list that is at least size big. If we find a block that is
1394 1406 * big enough, we break it up and return the associated oversize_t struct back
1395 1407 * to the calling client. Any leftover piece of that block is returned to the
1396 1408 * freelist.
1397 1409 */
1398 1410 static oversize_t *
1399 1411 find_oversize(size_t size)
1400 1412 {
1401 1413 oversize_t *wp = oversize_list.next_bysize;
1402 1414 while (wp != &oversize_list && size > wp->size)
1403 1415 wp = wp->next_bysize;
1404 1416
1405 1417 if (wp == &oversize_list) /* empty list or nothing big enough */
1406 1418 return (NULL);
1407 1419 /* breaking up a chunk of memory */
1408 1420 if ((long)((wp->size - (size + OVSZ_HEADER_SIZE + MTMALLOC_MIN_ALIGN)))
1409 1421 > MAX_CACHED) {
1410 1422 caddr_t off;
1411 1423 oversize_t *np;
1412 1424 size_t osize;
1413 1425 off = (caddr_t)ALIGN(wp->addr + size,
1414 1426 MTMALLOC_MIN_ALIGN);
1415 1427 osize = wp->size;
1416 1428 wp->size = (size_t)(off - wp->addr);
1417 1429 np = oversize_header_alloc((uintptr_t)off,
1418 1430 osize - (wp->size + OVSZ_HEADER_SIZE));
1419 1431 if ((long)np->size < 0)
1420 1432 abort();
1421 1433 unlink_oversize(wp);
1422 1434 add_oversize(np);
1423 1435 } else {
1424 1436 unlink_oversize(wp);
1425 1437 }
1426 1438 return (wp);
1427 1439 }
1428 1440
1429 1441 static void
1430 1442 copy_pattern(uint32_t pattern, void *buf_arg, size_t size)
1431 1443 {
1432 1444 uint32_t *bufend = (uint32_t *)((char *)buf_arg + size);
1433 1445 uint32_t *buf = buf_arg;
1434 1446
1435 1447 while (buf < bufend - 3) {
1436 1448 buf[3] = buf[2] = buf[1] = buf[0] = pattern;
1437 1449 buf += 4;
1438 1450 }
1439 1451 while (buf < bufend)
1440 1452 *buf++ = pattern;
1441 1453 }
1442 1454
1443 1455 static void *
1444 1456 verify_pattern(uint32_t pattern, void *buf_arg, size_t size)
1445 1457 {
1446 1458 uint32_t *bufend = (uint32_t *)((char *)buf_arg + size);
1447 1459 uint32_t *buf;
1448 1460
1449 1461 for (buf = buf_arg; buf < bufend; buf++)
1450 1462 if (*buf != pattern)
1451 1463 return (buf);
1452 1464 return (NULL);
1453 1465 }
1454 1466
1455 1467 static void
1456 1468 free_oversize(oversize_t *ovp)
1457 1469 {
1458 1470 assert(((uintptr_t)ovp->addr & 7) == 0); /* are we 8 byte aligned */
1459 1471 assert(ovp->size > MAX_CACHED);
1460 1472
1461 1473 ovp->next_bysize = ovp->prev_bysize = NULL;
1462 1474 ovp->next_byaddr = ovp->prev_byaddr = NULL;
1463 1475 (void) mutex_lock(&oversize_lock);
1464 1476 add_oversize(ovp);
1465 1477 (void) mutex_unlock(&oversize_lock);
1466 1478 }
1467 1479
1468 1480 static oversize_t *
1469 1481 oversize_header_alloc(uintptr_t mem, size_t size)
1470 1482 {
1471 1483 oversize_t *ovsz_hdr;
1472 1484
1473 1485 assert(size > MAX_CACHED);
1474 1486
1475 1487 ovsz_hdr = (oversize_t *)mem;
1476 1488 ovsz_hdr->prev_bysize = NULL;
1477 1489 ovsz_hdr->next_bysize = NULL;
1478 1490 ovsz_hdr->prev_byaddr = NULL;
1479 1491 ovsz_hdr->next_byaddr = NULL;
1480 1492 ovsz_hdr->hash_next = NULL;
1481 1493 ovsz_hdr->size = size;
1482 1494 mem += OVSZ_SIZE;
1483 1495 *(uintptr_t *)mem = MTMALLOC_OVERSIZE_MAGIC;
1484 1496 mem += OVERHEAD;
1485 1497 assert(((uintptr_t)mem & 7) == 0); /* are we 8 byte aligned */
1486 1498 ovsz_hdr->addr = (caddr_t)mem;
1487 1499 return (ovsz_hdr);
1488 1500 }
1489 1501
1490 1502 static void
1491 1503 malloc_prepare()
1492 1504 {
1493 1505 percpu_t *cpuptr;
1494 1506 cache_head_t *cachehead;
1495 1507 cache_t *thiscache;
1496 1508
1497 1509 (void) mutex_lock(&oversize_lock);
1498 1510 for (cpuptr = &cpu_list[0]; cpuptr < &cpu_list[ncpus]; cpuptr++) {
1499 1511 (void) mutex_lock(&cpuptr->mt_parent_lock);
1500 1512 for (cachehead = &cpuptr->mt_caches[0];
1501 1513 cachehead < &cpuptr->mt_caches[NUM_CACHES];
1502 1514 cachehead++) {
1503 1515 for (thiscache = cachehead->mt_cache;
1504 1516 thiscache != NULL;
1505 1517 thiscache = thiscache->mt_next) {
1506 1518 (void) mutex_lock(
1507 1519 &thiscache->mt_cache_lock);
1508 1520 }
1509 1521 }
1510 1522 }
1511 1523 }
1512 1524
1513 1525 static void
1514 1526 malloc_release()
1515 1527 {
1516 1528 percpu_t *cpuptr;
1517 1529 cache_head_t *cachehead;
1518 1530 cache_t *thiscache;
1519 1531
1520 1532 for (cpuptr = &cpu_list[ncpus - 1]; cpuptr >= &cpu_list[0]; cpuptr--) {
1521 1533 for (cachehead = &cpuptr->mt_caches[NUM_CACHES - 1];
1522 1534 cachehead >= &cpuptr->mt_caches[0];
1523 1535 cachehead--) {
1524 1536 for (thiscache = cachehead->mt_cache;
1525 1537 thiscache != NULL;
1526 1538 thiscache = thiscache->mt_next) {
1527 1539 (void) mutex_unlock(
1528 1540 &thiscache->mt_cache_lock);
1529 1541 }
1530 1542 }
1531 1543 (void) mutex_unlock(&cpuptr->mt_parent_lock);
1532 1544 }
1533 1545 (void) mutex_unlock(&oversize_lock);
1534 1546 }
1535 1547
1536 1548 #pragma init(malloc_init)
1537 1549 static void
1538 1550 malloc_init(void)
1539 1551 {
1540 1552 /*
1541 1553 * This works in the init section for this library
1542 1554 * because setup_caches() doesn't call anything in libc
1543 1555 * that calls malloc(). If it did, disaster would ensue.
1544 1556 *
1545 1557 * For this to work properly, this library must be the first
1546 1558 * one to have its init section called (after libc) by the
1547 1559 * dynamic linker. If some other library's init section
1548 1560 * ran first and called malloc(), disaster would ensue.
1549 1561 * Because this is an interposer library for malloc(), the
1550 1562 * dynamic linker arranges for its init section to run first.
1551 1563 */
1552 1564 (void) setup_caches();
1553 1565
1554 1566 (void) pthread_atfork(malloc_prepare, malloc_release, malloc_release);
1555 1567 }
↓ open down ↓ |
1211 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX