1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 24 * 25 * Copyright 2011 Jason King. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <errno.h> 30 #include <fcntl.h> 31 #include <gelf.h> 32 #include <libelf.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <unistd.h> 36 37 #include <sys/fcntl.h> 38 #include <sys/stat.h> 39 #include <sys/sysmacros.h> 40 #include <sys/types.h> 41 42 #include "dis_target.h" 43 #include "dis_util.h" 44 45 /* 46 * Standard ELF disassembler target. 47 * 48 * We only support disassembly of ELF files, though this target interface could 49 * be extended in the future. Each basic type (target, func, section) contains 50 * enough information to uniquely identify the location within the file. The 51 * interfaces use libelf(3LIB) to do the actual processing of the file. 52 */ 53 54 /* 55 * Symbol table entry type. We maintain our own symbol table sorted by address, 56 * with the symbol name already resolved against the ELF symbol table. 57 */ 58 typedef struct sym_entry { 59 GElf_Sym se_sym; /* value of symbol */ 60 char *se_name; /* name of symbol */ 61 int se_shndx; /* section where symbol is located */ 62 } sym_entry_t; 63 64 /* 65 * Create a map of the virtual address ranges of every section. This will 66 * allow us to create dummpy mappings for unassigned addresses. Otherwise 67 * multiple sections with unassigned addresses will appear to overlap and 68 * mess up symbol resolution (which uses the virtual address). 69 */ 70 typedef struct dis_shnmap { 71 const char *dm_name; /* name of section */ 72 uint64_t dm_start; /* virtual address of section */ 73 size_t dm_length; /* address length */ 74 boolean_t dm_mapped; /* did we assign the mapping */ 75 } dis_shnmap_t; 76 77 /* 78 * Target data structure. This structure keeps track of the ELF file 79 * information, a few bits of pre-processed section index information, and 80 * sorted versions of the symbol table. We also keep track of the last symbol 81 * looked up, as the majority of lookups remain within the same symbol. 82 */ 83 struct dis_tgt { 84 Elf *dt_elf; /* libelf handle */ 85 Elf *dt_elf_root; /* main libelf handle (for archives) */ 86 const char *dt_filename; /* name of file */ 87 int dt_fd; /* underlying file descriptor */ 88 size_t dt_shstrndx; /* section index of .shstrtab */ 89 size_t dt_symidx; /* section index of symbol table */ 90 sym_entry_t *dt_symcache; /* last symbol looked up */ 91 sym_entry_t *dt_symtab; /* sorted symbol table */ 92 int dt_symcount; /* # of symbol table entries */ 93 struct dis_tgt *dt_next; /* next target (for archives) */ 94 Elf_Arhdr *dt_arhdr; /* archive header (for archives) */ 95 dis_shnmap_t *dt_shnmap; /* section address map */ 96 size_t dt_shncount; /* # of sections in target */ 97 }; 98 99 /* 100 * Function data structure. We resolve the symbol and lookup the associated ELF 101 * data when building this structure. The offset is calculated based on the 102 * section's starting address. 103 */ 104 struct dis_func { 105 sym_entry_t *df_sym; /* symbol table reference */ 106 Elf_Data *df_data; /* associated ELF data */ 107 size_t df_offset; /* offset within data */ 108 }; 109 110 /* 111 * Section data structure. We store the entire section header so that we can 112 * determine some properties (such as whether or not it contains text) after 113 * building the structure. 114 */ 115 struct dis_scn { 116 GElf_Shdr ds_shdr; 117 const char *ds_name; 118 Elf_Data *ds_data; 119 }; 120 121 /* Lifted from Psymtab.c, omitting STT_TLS */ 122 #define DATA_TYPES \ 123 ((1 << STT_OBJECT) | (1 << STT_FUNC) | (1 << STT_COMMON)) 124 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 125 126 /* 127 * Save the virtual address range for this section and select the 128 * best section to use as the symbol table. We prefer SHT_SYMTAB 129 * over SHT_DYNSYM. 130 */ 131 /* ARGSUSED */ 132 static void 133 tgt_scn_init(dis_tgt_t *tgt, dis_scn_t *scn, void *data) 134 { 135 int *index = data; 136 137 *index += 1; 138 139 tgt->dt_shnmap[*index].dm_name = scn->ds_name; 140 tgt->dt_shnmap[*index].dm_start = scn->ds_shdr.sh_addr; 141 tgt->dt_shnmap[*index].dm_length = scn->ds_shdr.sh_size; 142 tgt->dt_shnmap[*index].dm_mapped = B_FALSE; 143 144 /* 145 * Prefer SHT_SYMTAB over SHT_DYNSYM 146 */ 147 if (scn->ds_shdr.sh_type == SHT_DYNSYM && tgt->dt_symidx == 0) 148 tgt->dt_symidx = *index; 149 else if (scn->ds_shdr.sh_type == SHT_SYMTAB) 150 tgt->dt_symidx = *index; 151 } 152 153 static int 154 sym_compare(const void *a, const void *b) 155 { 156 const sym_entry_t *syma = a; 157 const sym_entry_t *symb = b; 158 const char *aname = syma->se_name; 159 const char *bname = symb->se_name; 160 161 if (syma->se_sym.st_value < symb->se_sym.st_value) 162 return (-1); 163 164 if (syma->se_sym.st_value > symb->se_sym.st_value) 165 return (1); 166 167 /* 168 * Prefer functions over non-functions 169 */ 170 if (GELF_ST_TYPE(syma->se_sym.st_info) != 171 GELF_ST_TYPE(symb->se_sym.st_info)) { 172 if (GELF_ST_TYPE(syma->se_sym.st_info) == STT_FUNC) 173 return (-1); 174 if (GELF_ST_TYPE(symb->se_sym.st_info) == STT_FUNC) 175 return (1); 176 } 177 178 /* 179 * For symbols with the same address and type, we sort them according to 180 * a hierarchy: 181 * 182 * 1. weak symbols (common name) 183 * 2. global symbols (external name) 184 * 3. local symbols 185 */ 186 if (GELF_ST_BIND(syma->se_sym.st_info) != 187 GELF_ST_BIND(symb->se_sym.st_info)) { 188 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_WEAK) 189 return (-1); 190 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_WEAK) 191 return (1); 192 193 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_GLOBAL) 194 return (-1); 195 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_GLOBAL) 196 return (1); 197 } 198 199 /* 200 * As a last resort, if we have multiple symbols of the same type at the 201 * same address, prefer the version with the fewest leading underscores. 202 */ 203 if (aname == NULL) 204 return (-1); 205 if (bname == NULL) 206 return (1); 207 208 while (*aname == '_' && *bname == '_') { 209 aname++; 210 bname++; 211 } 212 213 if (*bname == '_') 214 return (-1); 215 if (*aname == '_') 216 return (1); 217 218 /* 219 * Prefer the symbol with the smaller size. 220 */ 221 if (syma->se_sym.st_size < symb->se_sym.st_size) 222 return (-1); 223 if (syma->se_sym.st_size > symb->se_sym.st_size) 224 return (1); 225 226 /* 227 * We really do have two identical symbols for some reason. Just report 228 * them as equal, and to the lucky one go the spoils. 229 */ 230 return (0); 231 } 232 233 /* 234 * Construct an optimized symbol table sorted by starting address. 235 */ 236 static void 237 construct_symtab(dis_tgt_t *tgt) 238 { 239 Elf_Scn *scn; 240 GElf_Shdr shdr; 241 Elf_Data *symdata; 242 int i; 243 GElf_Word *symshndx = NULL; 244 int symshndx_size; 245 sym_entry_t *sym; 246 sym_entry_t *p_symtab = NULL; 247 int nsym = 0; /* count of symbols we're not interested in */ 248 249 /* 250 * Find the symshndx section, if any 251 */ 252 for (scn = elf_nextscn(tgt->dt_elf, NULL); scn != NULL; 253 scn = elf_nextscn(tgt->dt_elf, scn)) { 254 if (gelf_getshdr(scn, &shdr) == NULL) 255 break; 256 if (shdr.sh_type == SHT_SYMTAB_SHNDX && 257 shdr.sh_link == tgt->dt_symidx) { 258 Elf_Data *data; 259 260 if ((data = elf_getdata(scn, NULL)) != NULL) { 261 symshndx = (GElf_Word *)data->d_buf; 262 symshndx_size = data->d_size / 263 sizeof (GElf_Word); 264 break; 265 } 266 } 267 } 268 269 if ((scn = elf_getscn(tgt->dt_elf, tgt->dt_symidx)) == NULL) 270 die("%s: failed to get section information", tgt->dt_filename); 271 if (gelf_getshdr(scn, &shdr) == NULL) 272 die("%s: failed to get section header", tgt->dt_filename); 273 if (shdr.sh_entsize == 0) 274 die("%s: symbol table has zero size", tgt->dt_filename); 275 276 if ((symdata = elf_getdata(scn, NULL)) == NULL) 277 die("%s: failed to get symbol table", tgt->dt_filename); 278 279 tgt->dt_symcount = symdata->d_size / gelf_fsize(tgt->dt_elf, ELF_T_SYM, 280 1, EV_CURRENT); 281 282 p_symtab = safe_malloc(tgt->dt_symcount * sizeof (sym_entry_t)); 283 284 for (i = 0, sym = p_symtab; i < tgt->dt_symcount; i++) { 285 if (gelf_getsym(symdata, i, &(sym->se_sym)) == NULL) { 286 warn("%s: gelf_getsym returned NULL for %d", 287 tgt->dt_filename, i); 288 nsym++; 289 continue; 290 } 291 292 /* 293 * We're only interested in data symbols. 294 */ 295 if (!IS_DATA_TYPE(GELF_ST_TYPE(sym->se_sym.st_info))) { 296 nsym++; 297 continue; 298 } 299 300 if (sym->se_sym.st_shndx == SHN_XINDEX && symshndx != NULL) { 301 if (i > symshndx_size) { 302 warn("%s: bad SHNX_XINDEX %d", 303 tgt->dt_filename, i); 304 sym->se_shndx = -1; 305 } else { 306 sym->se_shndx = symshndx[i]; 307 } 308 } else { 309 sym->se_shndx = sym->se_sym.st_shndx; 310 } 311 312 /* Deal with symbols with special section indicies */ 313 if (sym->se_shndx == SHN_ABS) { 314 /* 315 * If st_value == 0, references to these 316 * symbols in code are modified in situ 317 * thus we will never attempt to look 318 * them up. 319 */ 320 if (sym->se_sym.st_value == 0) { 321 /* 322 * References to these symbols in code 323 * are modified in situ by the runtime 324 * linker and no code on disk will ever 325 * attempt to look them up. 326 */ 327 nsym++; 328 continue; 329 } else { 330 /* 331 * If st_value != 0, (such as examining 332 * something in /system/object/.../object) 333 * the values should resolve to a value 334 * within an existing section (such as 335 * .data). This also means it never needs 336 * to have st_value mapped. 337 */ 338 sym++; 339 continue; 340 } 341 } 342 343 /* 344 * Ignore the symbol if it has some other special 345 * section index 346 */ 347 if (sym->se_shndx == SHN_UNDEF || 348 sym->se_shndx >= SHN_LORESERVE) { 349 nsym++; 350 continue; 351 } 352 353 if ((sym->se_name = elf_strptr(tgt->dt_elf, shdr.sh_link, 354 (size_t)sym->se_sym.st_name)) == NULL) { 355 warn("%s: failed to lookup symbol %d name", 356 tgt->dt_filename, i); 357 nsym++; 358 continue; 359 } 360 361 /* 362 * If we had to map this section, its symbol value 363 * also needs to be mapped. 364 */ 365 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 366 sym->se_sym.st_value += 367 tgt->dt_shnmap[sym->se_shndx].dm_start; 368 369 sym++; 370 } 371 372 tgt->dt_symcount -= nsym; 373 tgt->dt_symtab = realloc(p_symtab, tgt->dt_symcount * 374 sizeof (sym_entry_t)); 375 376 qsort(tgt->dt_symtab, tgt->dt_symcount, sizeof (sym_entry_t), 377 sym_compare); 378 } 379 380 /* 381 * Assign virtual address ranges for sections that need it 382 */ 383 static void 384 create_addrmap(dis_tgt_t *tgt) 385 { 386 uint64_t addr; 387 int i; 388 389 if (tgt->dt_shnmap == NULL) 390 return; 391 392 /* find the greatest used address */ 393 for (addr = 0, i = 1; i < tgt->dt_shncount; i++) 394 if (tgt->dt_shnmap[i].dm_start > addr) 395 addr = tgt->dt_shnmap[i].dm_start + 396 tgt->dt_shnmap[i].dm_length; 397 398 addr = P2ROUNDUP(addr, 0x1000); 399 400 /* 401 * Assign section a starting address beyond the largest mapped section 402 * if no address was given. 403 */ 404 for (i = 1; i < tgt->dt_shncount; i++) { 405 if (tgt->dt_shnmap[i].dm_start != 0) 406 continue; 407 408 tgt->dt_shnmap[i].dm_start = addr; 409 tgt->dt_shnmap[i].dm_mapped = B_TRUE; 410 addr = P2ROUNDUP(addr + tgt->dt_shnmap[i].dm_length, 0x1000); 411 } 412 } 413 414 /* 415 * Create a target backed by an ELF file. 416 */ 417 dis_tgt_t * 418 dis_tgt_create(const char *file) 419 { 420 dis_tgt_t *tgt, *current; 421 int idx; 422 Elf *elf; 423 GElf_Ehdr ehdr; 424 Elf_Arhdr *arhdr = NULL; 425 int cmd; 426 427 if (elf_version(EV_CURRENT) == EV_NONE) 428 die("libelf(3ELF) out of date"); 429 430 tgt = safe_malloc(sizeof (dis_tgt_t)); 431 432 if ((tgt->dt_fd = open(file, O_RDONLY)) < 0) { 433 warn("%s: failed opening file, reason: %s", file, 434 strerror(errno)); 435 free(tgt); 436 return (NULL); 437 } 438 439 if ((tgt->dt_elf_root = 440 elf_begin(tgt->dt_fd, ELF_C_READ, NULL)) == NULL) { 441 warn("%s: invalid or corrupt ELF file", file); 442 dis_tgt_destroy(tgt); 443 return (NULL); 444 } 445 446 current = tgt; 447 cmd = ELF_C_READ; 448 while ((elf = elf_begin(tgt->dt_fd, cmd, tgt->dt_elf_root)) != NULL) { 449 450 if (elf_kind(tgt->dt_elf_root) == ELF_K_AR && 451 (arhdr = elf_getarhdr(elf)) == NULL) { 452 warn("%s: malformed archive", file); 453 dis_tgt_destroy(tgt); 454 return (NULL); 455 } 456 457 /* 458 * Make sure that this Elf file is sane 459 */ 460 if (gelf_getehdr(elf, &ehdr) == NULL) { 461 if (arhdr != NULL) { 462 /* 463 * For archives, we drive on in the face of bad 464 * members. The "/" and "//" members are 465 * special, and should be silently ignored. 466 */ 467 if (strcmp(arhdr->ar_name, "/") != 0 && 468 strcmp(arhdr->ar_name, "//") != 0) 469 warn("%s[%s]: invalid file type", 470 file, arhdr->ar_name); 471 cmd = elf_next(elf); 472 (void) elf_end(elf); 473 continue; 474 } 475 476 warn("%s: invalid file type", file); 477 dis_tgt_destroy(tgt); 478 return (NULL); 479 } 480 481 /* 482 * If we're seeing a new Elf object, then we have an 483 * archive. In this case, we create a new target, and chain it 484 * off the master target. We can later iterate over these 485 * targets using dis_tgt_next(). 486 */ 487 if (current->dt_elf != NULL) { 488 dis_tgt_t *next = safe_malloc(sizeof (dis_tgt_t)); 489 next->dt_elf_root = tgt->dt_elf_root; 490 next->dt_fd = -1; 491 current->dt_next = next; 492 current = next; 493 } 494 current->dt_elf = elf; 495 current->dt_arhdr = arhdr; 496 497 if (elf_getshdrstrndx(elf, ¤t->dt_shstrndx) == -1) { 498 warn("%s: failed to get section string table for " 499 "file", file); 500 dis_tgt_destroy(tgt); 501 return (NULL); 502 } 503 504 current->dt_shnmap = safe_malloc(sizeof (dis_shnmap_t) * 505 ehdr.e_shnum); 506 current->dt_shncount = ehdr.e_shnum; 507 508 idx = 0; 509 dis_tgt_section_iter(current, tgt_scn_init, &idx); 510 current->dt_filename = file; 511 512 create_addrmap(current); 513 if (current->dt_symidx != 0) 514 construct_symtab(current); 515 516 cmd = elf_next(elf); 517 } 518 519 /* 520 * Final sanity check. If we had an archive with no members, then bail 521 * out with a nice message. 522 */ 523 if (tgt->dt_elf == NULL) { 524 warn("%s: empty archive\n", file); 525 dis_tgt_destroy(tgt); 526 return (NULL); 527 } 528 529 return (tgt); 530 } 531 532 /* 533 * Return the filename associated with the target. 534 */ 535 const char * 536 dis_tgt_name(dis_tgt_t *tgt) 537 { 538 return (tgt->dt_filename); 539 } 540 541 /* 542 * Return the archive member name, if any. 543 */ 544 const char * 545 dis_tgt_member(dis_tgt_t *tgt) 546 { 547 if (tgt->dt_arhdr) 548 return (tgt->dt_arhdr->ar_name); 549 else 550 return (NULL); 551 } 552 553 /* 554 * Return the Elf_Ehdr associated with this target. Needed to determine which 555 * disassembler to use. 556 */ 557 void 558 dis_tgt_ehdr(dis_tgt_t *tgt, GElf_Ehdr *ehdr) 559 { 560 (void) gelf_getehdr(tgt->dt_elf, ehdr); 561 } 562 563 /* 564 * Return the next target in the list, if this is an archive. 565 */ 566 dis_tgt_t * 567 dis_tgt_next(dis_tgt_t *tgt) 568 { 569 return (tgt->dt_next); 570 } 571 572 /* 573 * Destroy a target and free up any associated memory. 574 */ 575 void 576 dis_tgt_destroy(dis_tgt_t *tgt) 577 { 578 dis_tgt_t *current, *next; 579 580 current = tgt->dt_next; 581 while (current != NULL) { 582 next = current->dt_next; 583 if (current->dt_elf) 584 (void) elf_end(current->dt_elf); 585 if (current->dt_symtab) 586 free(current->dt_symtab); 587 free(current); 588 current = next; 589 } 590 591 if (tgt->dt_elf) 592 (void) elf_end(tgt->dt_elf); 593 if (tgt->dt_elf_root) 594 (void) elf_end(tgt->dt_elf_root); 595 596 if (tgt->dt_symtab) 597 free(tgt->dt_symtab); 598 599 free(tgt); 600 } 601 602 /* 603 * Given an address, return the section it is in and set the offset within 604 * the section. 605 */ 606 const char * 607 dis_find_section(dis_tgt_t *tgt, uint64_t addr, off_t *offset) 608 { 609 int i; 610 611 for (i = 1; i < tgt->dt_shncount; i++) { 612 if ((addr >= tgt->dt_shnmap[i].dm_start) && 613 (addr < tgt->dt_shnmap[i].dm_start + 614 tgt->dt_shnmap[i].dm_length)) { 615 *offset = addr - tgt->dt_shnmap[i].dm_start; 616 return (tgt->dt_shnmap[i].dm_name); 617 } 618 } 619 620 *offset = 0; 621 return (NULL); 622 } 623 624 /* 625 * Given an address, returns the name of the corresponding symbol, as well as 626 * the offset within that symbol. If no matching symbol is found, then NULL is 627 * returned. 628 * 629 * If 'cache_result' is specified, then we keep track of the resulting symbol. 630 * This cached result is consulted first on subsequent lookups in order to avoid 631 * unecessary lookups. This flag should be used for resolving the current PC, 632 * as the majority of addresses stay within the current function. 633 */ 634 const char * 635 dis_tgt_lookup(dis_tgt_t *tgt, uint64_t addr, off_t *offset, int cache_result, 636 size_t *size, int *isfunc) 637 { 638 int lo, hi, mid; 639 sym_entry_t *sym, *osym, *match; 640 int found; 641 642 if (tgt->dt_symcache != NULL && 643 addr >= tgt->dt_symcache->se_sym.st_value && 644 addr < tgt->dt_symcache->se_sym.st_value + 645 tgt->dt_symcache->se_sym.st_size) { 646 sym = tgt->dt_symcache; 647 *offset = addr - sym->se_sym.st_value; 648 *size = sym->se_sym.st_size; 649 if (isfunc != NULL) 650 *isfunc = (GELF_ST_TYPE(sym->se_sym.st_info) == 651 STT_FUNC); 652 return (sym->se_name); 653 } 654 655 lo = 0; 656 hi = (tgt->dt_symcount - 1); 657 found = 0; 658 match = osym = NULL; 659 while (lo <= hi) { 660 mid = (lo + hi) / 2; 661 662 sym = &tgt->dt_symtab[mid]; 663 664 if (addr >= sym->se_sym.st_value && 665 addr < sym->se_sym.st_value + sym->se_sym.st_size && 666 (!found || sym->se_sym.st_value > osym->se_sym.st_value)) { 667 osym = sym; 668 found = 1; 669 } else if (addr == sym->se_sym.st_value) { 670 /* 671 * Particularly for .plt objects, it's possible to have 672 * a zero sized object. We want to return this, but we 673 * want it to be a last resort. 674 */ 675 match = sym; 676 } 677 678 if (addr < sym->se_sym.st_value) 679 hi = mid - 1; 680 else 681 lo = mid + 1; 682 } 683 684 if (!found) { 685 if (match) 686 osym = match; 687 else 688 return (NULL); 689 } 690 691 /* 692 * Walk backwards to find the best match. 693 */ 694 do { 695 sym = osym; 696 697 if (osym == tgt->dt_symtab) 698 break; 699 700 osym = osym - 1; 701 } while ((sym->se_sym.st_value == osym->se_sym.st_value) && 702 (addr >= osym->se_sym.st_value) && 703 (addr < osym->se_sym.st_value + osym->se_sym.st_size)); 704 705 if (cache_result) 706 tgt->dt_symcache = sym; 707 708 *offset = addr - sym->se_sym.st_value; 709 *size = sym->se_sym.st_size; 710 if (isfunc) 711 *isfunc = (GELF_ST_TYPE(sym->se_sym.st_info) == STT_FUNC); 712 713 return (sym->se_name); 714 } 715 716 #if !defined(__sparc) 717 /* 718 * Given an address, return the starting offset of the next symbol in the file. 719 * Only needed on variable length instruction architectures. 720 */ 721 off_t 722 dis_tgt_next_symbol(dis_tgt_t *tgt, uint64_t addr) 723 { 724 sym_entry_t *sym; 725 726 sym = (tgt->dt_symcache != NULL) ? tgt->dt_symcache : tgt->dt_symtab; 727 728 while (sym != (tgt->dt_symtab + tgt->dt_symcount)) { 729 if (sym->se_sym.st_value >= addr) 730 return (sym->se_sym.st_value - addr); 731 sym++; 732 } 733 734 return (0); 735 } 736 #endif 737 738 /* 739 * Iterate over all sections in the target, executing the given callback for 740 * each. 741 */ 742 void 743 dis_tgt_section_iter(dis_tgt_t *tgt, section_iter_f func, void *data) 744 { 745 dis_scn_t sdata; 746 Elf_Scn *scn; 747 int idx; 748 749 for (scn = elf_nextscn(tgt->dt_elf, NULL), idx = 1; scn != NULL; 750 scn = elf_nextscn(tgt->dt_elf, scn), idx++) { 751 752 if (gelf_getshdr(scn, &sdata.ds_shdr) == NULL) { 753 warn("%s: failed to get section %d header", 754 tgt->dt_filename, idx); 755 continue; 756 } 757 758 if ((sdata.ds_name = elf_strptr(tgt->dt_elf, tgt->dt_shstrndx, 759 sdata.ds_shdr.sh_name)) == NULL) { 760 warn("%s: failed to get section %d name", 761 tgt->dt_filename, idx); 762 continue; 763 } 764 765 if ((sdata.ds_data = elf_getdata(scn, NULL)) == NULL) { 766 warn("%s: failed to get data for section '%s'", 767 tgt->dt_filename, sdata.ds_name); 768 continue; 769 } 770 771 /* 772 * dis_tgt_section_iter is also used before the section map 773 * is initialized, so only check when we need to. If the 774 * section map is uninitialized, it will return 0 and have 775 * no net effect. 776 */ 777 if (sdata.ds_shdr.sh_addr == 0) 778 sdata.ds_shdr.sh_addr = tgt->dt_shnmap[idx].dm_start; 779 780 func(tgt, &sdata, data); 781 } 782 } 783 784 /* 785 * Return 1 if the given section contains text, 0 otherwise. 786 */ 787 int 788 dis_section_istext(dis_scn_t *scn) 789 { 790 return ((scn->ds_shdr.sh_type == SHT_PROGBITS) && 791 (scn->ds_shdr.sh_flags == (SHF_ALLOC | SHF_EXECINSTR))); 792 } 793 794 /* 795 * Return a pointer to the section data. 796 */ 797 void * 798 dis_section_data(dis_scn_t *scn) 799 { 800 return (scn->ds_data->d_buf); 801 } 802 803 /* 804 * Return the size of the section data. 805 */ 806 size_t 807 dis_section_size(dis_scn_t *scn) 808 { 809 return (scn->ds_data->d_size); 810 } 811 812 /* 813 * Return the address for the given section. 814 */ 815 uint64_t 816 dis_section_addr(dis_scn_t *scn) 817 { 818 return (scn->ds_shdr.sh_addr); 819 } 820 821 /* 822 * Return the name of the current section. 823 */ 824 const char * 825 dis_section_name(dis_scn_t *scn) 826 { 827 return (scn->ds_name); 828 } 829 830 /* 831 * Create an allocated copy of the given section 832 */ 833 dis_scn_t * 834 dis_section_copy(dis_scn_t *scn) 835 { 836 dis_scn_t *new; 837 838 new = safe_malloc(sizeof (dis_scn_t)); 839 (void) memcpy(new, scn, sizeof (dis_scn_t)); 840 841 return (new); 842 } 843 844 /* 845 * Free section memory 846 */ 847 void 848 dis_section_free(dis_scn_t *scn) 849 { 850 free(scn); 851 } 852 853 /* 854 * Iterate over all functions in the target, executing the given callback for 855 * each one. 856 */ 857 void 858 dis_tgt_function_iter(dis_tgt_t *tgt, function_iter_f func, void *data) 859 { 860 int i; 861 sym_entry_t *sym; 862 dis_func_t df; 863 Elf_Scn *scn; 864 GElf_Shdr shdr; 865 866 for (i = 0, sym = tgt->dt_symtab; i < tgt->dt_symcount; i++, sym++) { 867 868 /* ignore non-functions */ 869 if ((GELF_ST_TYPE(sym->se_sym.st_info) != STT_FUNC) || 870 (sym->se_name == NULL) || 871 (sym->se_sym.st_size == 0) || 872 (sym->se_shndx >= SHN_LORESERVE)) 873 continue; 874 875 /* get the ELF data associated with this function */ 876 if ((scn = elf_getscn(tgt->dt_elf, sym->se_shndx)) == NULL || 877 gelf_getshdr(scn, &shdr) == NULL || 878 (df.df_data = elf_getdata(scn, NULL)) == NULL || 879 df.df_data->d_size == 0) { 880 warn("%s: failed to read section %d", 881 tgt->dt_filename, sym->se_shndx); 882 continue; 883 } 884 885 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 886 shdr.sh_addr = tgt->dt_shnmap[sym->se_shndx].dm_start; 887 888 /* 889 * Verify that the address lies within the section that we think 890 * it does. 891 */ 892 if (sym->se_sym.st_value < shdr.sh_addr || 893 (sym->se_sym.st_value + sym->se_sym.st_size) > 894 (shdr.sh_addr + shdr.sh_size)) { 895 warn("%s: bad section %d for address %p", 896 tgt->dt_filename, sym->se_sym.st_shndx, 897 sym->se_sym.st_value); 898 continue; 899 } 900 901 df.df_sym = sym; 902 df.df_offset = sym->se_sym.st_value - shdr.sh_addr; 903 904 func(tgt, &df, data); 905 } 906 } 907 908 /* 909 * Return the data associated with a given function. 910 */ 911 void * 912 dis_function_data(dis_func_t *func) 913 { 914 return ((char *)func->df_data->d_buf + func->df_offset); 915 } 916 917 /* 918 * Return the size of a function. 919 */ 920 size_t 921 dis_function_size(dis_func_t *func) 922 { 923 return (func->df_sym->se_sym.st_size); 924 } 925 926 /* 927 * Return the address of a function. 928 */ 929 uint64_t 930 dis_function_addr(dis_func_t *func) 931 { 932 return (func->df_sym->se_sym.st_value); 933 } 934 935 /* 936 * Return the name of the function 937 */ 938 const char * 939 dis_function_name(dis_func_t *func) 940 { 941 return (func->df_sym->se_name); 942 } 943 944 /* 945 * Return a copy of a function. 946 */ 947 dis_func_t * 948 dis_function_copy(dis_func_t *func) 949 { 950 dis_func_t *new; 951 952 new = safe_malloc(sizeof (dis_func_t)); 953 (void) memcpy(new, func, sizeof (dis_func_t)); 954 955 return (new); 956 } 957 958 /* 959 * Free function memory 960 */ 961 void 962 dis_function_free(dis_func_t *func) 963 { 964 free(func); 965 }