1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 /*
  23  * Copyright 2003 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 #include <sys/types.h>
  28 #include <sys/stat.h>
  29 #include <sys/mman.h>
  30 #include <ctf_impl.h>
  31 #include <unistd.h>
  32 #include <fcntl.h>
  33 #include <errno.h>
  34 #include <dlfcn.h>
  35 #include <gelf.h>
  36 
  37 #ifdef _LP64
  38 static const char *_libctf_zlib = "/usr/lib/64/libz.so.1";
  39 #else
  40 static const char *_libctf_zlib = "/usr/lib/libz.so.1";
  41 #endif
  42 
  43 static struct {
  44         int (*z_uncompress)(uchar_t *, ulong_t *, const uchar_t *, ulong_t);
  45         const char *(*z_error)(int);
  46         void *z_dlp;
  47 } zlib;
  48 
  49 static size_t _PAGESIZE;
  50 static size_t _PAGEMASK;
  51 
  52 #pragma init(_libctf_init)
  53 void
  54 _libctf_init(void)
  55 {
  56         const char *p = getenv("LIBCTF_DECOMPRESSOR");
  57 
  58         if (p != NULL)
  59                 _libctf_zlib = p; /* use alternate decompression library */
  60 
  61         _libctf_debug = getenv("LIBCTF_DEBUG") != NULL;
  62 
  63         _PAGESIZE = getpagesize();
  64         _PAGEMASK = ~(_PAGESIZE - 1);
  65 }
  66 
  67 /*
  68  * Attempt to dlopen the decompression library and locate the symbols of
  69  * interest that we will need to call.  This information in cached so
  70  * that multiple calls to ctf_bufopen() do not need to reopen the library.
  71  */
  72 void *
  73 ctf_zopen(int *errp)
  74 {
  75         ctf_dprintf("decompressing CTF data using %s\n", _libctf_zlib);
  76 
  77         if (zlib.z_dlp != NULL)
  78                 return (zlib.z_dlp); /* library is already loaded */
  79 
  80         if (access(_libctf_zlib, R_OK) == -1)
  81                 return (ctf_set_open_errno(errp, ECTF_ZMISSING));
  82 
  83         if ((zlib.z_dlp = dlopen(_libctf_zlib, RTLD_LAZY | RTLD_LOCAL)) == NULL)
  84                 return (ctf_set_open_errno(errp, ECTF_ZINIT));
  85 
  86         zlib.z_uncompress = (int (*)()) dlsym(zlib.z_dlp, "uncompress");
  87         zlib.z_error = (const char *(*)()) dlsym(zlib.z_dlp, "zError");
  88 
  89         if (zlib.z_uncompress == NULL || zlib.z_error == NULL) {
  90                 (void) dlclose(zlib.z_dlp);
  91                 bzero(&zlib, sizeof (zlib));
  92                 return (ctf_set_open_errno(errp, ECTF_ZINIT));
  93         }
  94 
  95         return (zlib.z_dlp);
  96 }
  97 
  98 /*
  99  * The ctf_bufopen() routine calls these subroutines, defined by <sys/zmod.h>,
 100  * which we then patch through to the functions in the decompression library.
 101  */
 102 int
 103 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
 104 {
 105         return (zlib.z_uncompress(dst, (ulong_t *)dstlen, src, srclen));
 106 }
 107 
 108 const char *
 109 z_strerror(int err)
 110 {
 111         return (zlib.z_error(err));
 112 }
 113 
 114 /*
 115  * Convert a 32-bit ELF file header into GElf.
 116  */
 117 static void
 118 ehdr_to_gelf(const Elf32_Ehdr *src, GElf_Ehdr *dst)
 119 {
 120         bcopy(src->e_ident, dst->e_ident, EI_NIDENT);
 121         dst->e_type = src->e_type;
 122         dst->e_machine = src->e_machine;
 123         dst->e_version = src->e_version;
 124         dst->e_entry = (Elf64_Addr)src->e_entry;
 125         dst->e_phoff = (Elf64_Off)src->e_phoff;
 126         dst->e_shoff = (Elf64_Off)src->e_shoff;
 127         dst->e_flags = src->e_flags;
 128         dst->e_ehsize = src->e_ehsize;
 129         dst->e_phentsize = src->e_phentsize;
 130         dst->e_phnum = src->e_phnum;
 131         dst->e_shentsize = src->e_shentsize;
 132         dst->e_shnum = src->e_shnum;
 133         dst->e_shstrndx = src->e_shstrndx;
 134 }
 135 
 136 /*
 137  * Convert a 32-bit ELF section header into GElf.
 138  */
 139 static void
 140 shdr_to_gelf(const Elf32_Shdr *src, GElf_Shdr *dst)
 141 {
 142         dst->sh_name = src->sh_name;
 143         dst->sh_type = src->sh_type;
 144         dst->sh_flags = src->sh_flags;
 145         dst->sh_addr = src->sh_addr;
 146         dst->sh_offset = src->sh_offset;
 147         dst->sh_size = src->sh_size;
 148         dst->sh_link = src->sh_link;
 149         dst->sh_info = src->sh_info;
 150         dst->sh_addralign = src->sh_addralign;
 151         dst->sh_entsize = src->sh_entsize;
 152 }
 153 
 154 /*
 155  * In order to mmap a section from the ELF file, we must round down sh_offset
 156  * to the previous page boundary, and mmap the surrounding page.  We store
 157  * the pointer to the start of the actual section data back into sp->cts_data.
 158  */
 159 const void *
 160 ctf_sect_mmap(ctf_sect_t *sp, int fd)
 161 {
 162         size_t pageoff = sp->cts_offset & ~_PAGEMASK;
 163 
 164         caddr_t base = mmap64(NULL, sp->cts_size + pageoff, PROT_READ,
 165             MAP_PRIVATE, fd, sp->cts_offset & _PAGEMASK);
 166 
 167         if (base != MAP_FAILED)
 168                 sp->cts_data = base + pageoff;
 169 
 170         return (base);
 171 }
 172 
 173 /*
 174  * Since sp->cts_data has the adjusted offset, we have to again round down
 175  * to get the actual mmap address and round up to get the size.
 176  */
 177 void
 178 ctf_sect_munmap(const ctf_sect_t *sp)
 179 {
 180         uintptr_t addr = (uintptr_t)sp->cts_data;
 181         uintptr_t pageoff = addr & ~_PAGEMASK;
 182 
 183         (void) munmap((void *)(addr - pageoff), sp->cts_size + pageoff);
 184 }
 185 
 186 /*
 187  * Open the specified file descriptor and return a pointer to a CTF container.
 188  * The file can be either an ELF file or raw CTF file.  The caller is
 189  * responsible for closing the file descriptor when it is no longer needed.
 190  */
 191 ctf_file_t *
 192 ctf_fdopen(int fd, int *errp)
 193 {
 194         ctf_sect_t ctfsect, symsect, strsect;
 195         ctf_file_t *fp = NULL;
 196         size_t shstrndx, shnum;
 197 
 198         struct stat64 st;
 199         ssize_t nbytes;
 200 
 201         union {
 202                 ctf_preamble_t ctf;
 203                 Elf32_Ehdr e32;
 204                 GElf_Ehdr e64;
 205         } hdr;
 206 
 207         bzero(&ctfsect, sizeof (ctf_sect_t));
 208         bzero(&symsect, sizeof (ctf_sect_t));
 209         bzero(&strsect, sizeof (ctf_sect_t));
 210         bzero(&hdr.ctf, sizeof (hdr));
 211 
 212         if (fstat64(fd, &st) == -1)
 213                 return (ctf_set_open_errno(errp, errno));
 214 
 215         if ((nbytes = pread64(fd, &hdr.ctf, sizeof (hdr), 0)) <= 0)
 216                 return (ctf_set_open_errno(errp, nbytes < 0? errno : ECTF_FMT));
 217 
 218         /*
 219          * If we have read enough bytes to form a CTF header and the magic
 220          * string matches, attempt to interpret the file as raw CTF.
 221          */
 222         if (nbytes >= sizeof (ctf_preamble_t) &&
 223             hdr.ctf.ctp_magic == CTF_MAGIC) {
 224                 if (hdr.ctf.ctp_version > CTF_VERSION)
 225                         return (ctf_set_open_errno(errp, ECTF_CTFVERS));
 226 
 227                 ctfsect.cts_data = mmap64(NULL, st.st_size, PROT_READ,
 228                     MAP_PRIVATE, fd, 0);
 229 
 230                 if (ctfsect.cts_data == MAP_FAILED)
 231                         return (ctf_set_open_errno(errp, errno));
 232 
 233                 ctfsect.cts_name = _CTF_SECTION;
 234                 ctfsect.cts_type = SHT_PROGBITS;
 235                 ctfsect.cts_flags = SHF_ALLOC;
 236                 ctfsect.cts_size = (size_t)st.st_size;
 237                 ctfsect.cts_entsize = 1;
 238                 ctfsect.cts_offset = 0;
 239 
 240                 if ((fp = ctf_bufopen(&ctfsect, NULL, NULL, errp)) == NULL)
 241                         ctf_sect_munmap(&ctfsect);
 242 
 243                 return (fp);
 244         }
 245 
 246         /*
 247          * If we have read enough bytes to form an ELF header and the magic
 248          * string matches, attempt to interpret the file as an ELF file.  We
 249          * do our own largefile ELF processing, and convert everything to
 250          * GElf structures so that clients can operate on any data model.
 251          */
 252         if (nbytes >= sizeof (Elf32_Ehdr) &&
 253             bcmp(&hdr.e32.e_ident[EI_MAG0], ELFMAG, SELFMAG) == 0) {
 254 #ifdef  _BIG_ENDIAN
 255                 uchar_t order = ELFDATA2MSB;
 256 #else
 257                 uchar_t order = ELFDATA2LSB;
 258 #endif
 259                 GElf_Shdr *sp;
 260 
 261                 void *strs_map;
 262                 size_t strs_mapsz, i;
 263                 const char *strs;
 264 
 265                 if (hdr.e32.e_ident[EI_DATA] != order)
 266                         return (ctf_set_open_errno(errp, ECTF_ENDIAN));
 267                 if (hdr.e32.e_version != EV_CURRENT)
 268                         return (ctf_set_open_errno(errp, ECTF_ELFVERS));
 269 
 270                 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS64) {
 271                         if (nbytes < sizeof (GElf_Ehdr))
 272                                 return (ctf_set_open_errno(errp, ECTF_FMT));
 273                 } else {
 274                         Elf32_Ehdr e32 = hdr.e32;
 275                         ehdr_to_gelf(&e32, &hdr.e64);
 276                 }
 277 
 278                 shnum = hdr.e64.e_shnum;
 279                 shstrndx = hdr.e64.e_shstrndx;
 280 
 281                 /* Extended ELF sections */
 282                 if ((shstrndx == SHN_XINDEX) || (shnum == 0)) {
 283                         if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
 284                                 Elf32_Shdr x32;
 285 
 286                                 if (pread64(fd, &x32, sizeof (x32),
 287                                     hdr.e64.e_shoff) != sizeof (x32))
 288                                         return (ctf_set_open_errno(errp,
 289                                             errno));
 290 
 291                                 shnum = x32.sh_size;
 292                                 shstrndx = x32.sh_link;
 293                         } else {
 294                                 Elf64_Shdr x64;
 295 
 296                                 if (pread64(fd, &x64, sizeof (x64),
 297                                     hdr.e64.e_shoff) != sizeof (x64))
 298                                         return (ctf_set_open_errno(errp,
 299                                             errno));
 300 
 301                                 shnum = x64.sh_size;
 302                                 shstrndx = x64.sh_link;
 303                         }
 304                 }
 305 
 306                 if (shstrndx >= shnum)
 307                         return (ctf_set_open_errno(errp, ECTF_CORRUPT));
 308 
 309                 nbytes = sizeof (GElf_Shdr) * shnum;
 310 
 311                 if ((sp = malloc(nbytes)) == NULL)
 312                         return (ctf_set_open_errno(errp, errno));
 313 
 314                 /*
 315                  * Read in and convert to GElf the array of Shdr structures
 316                  * from e_shoff so we can locate sections of interest.
 317                  */
 318                 if (hdr.e32.e_ident[EI_CLASS] == ELFCLASS32) {
 319                         Elf32_Shdr *sp32;
 320 
 321                         nbytes = sizeof (Elf32_Shdr) * shnum;
 322 
 323                         if ((sp32 = malloc(nbytes)) == NULL || pread64(fd,
 324                             sp32, nbytes, hdr.e64.e_shoff) != nbytes) {
 325                                 free(sp);
 326                                 return (ctf_set_open_errno(errp, errno));
 327                         }
 328 
 329                         for (i = 0; i < shnum; i++)
 330                                 shdr_to_gelf(&sp32[i], &sp[i]);
 331 
 332                         free(sp32);
 333 
 334                 } else if (pread64(fd, sp, nbytes, hdr.e64.e_shoff) != nbytes) {
 335                         free(sp);
 336                         return (ctf_set_open_errno(errp, errno));
 337                 }
 338 
 339                 /*
 340                  * Now mmap the section header strings section so that we can
 341                  * perform string comparison on the section names.
 342                  */
 343                 strs_mapsz = sp[shstrndx].sh_size +
 344                     (sp[shstrndx].sh_offset & ~_PAGEMASK);
 345 
 346                 strs_map = mmap64(NULL, strs_mapsz, PROT_READ, MAP_PRIVATE,
 347                     fd, sp[shstrndx].sh_offset & _PAGEMASK);
 348 
 349                 strs = (const char *)strs_map +
 350                     (sp[shstrndx].sh_offset & ~_PAGEMASK);
 351 
 352                 if (strs_map == MAP_FAILED) {
 353                         free(sp);
 354                         return (ctf_set_open_errno(errp, ECTF_MMAP));
 355                 }
 356 
 357                 /*
 358                  * Iterate over the section header array looking for the CTF
 359                  * section and symbol table.  The strtab is linked to symtab.
 360                  */
 361                 for (i = 0; i < shnum; i++) {
 362                         const GElf_Shdr *shp = &sp[i];
 363                         const GElf_Shdr *lhp = &sp[shp->sh_link];
 364 
 365                         if (shp->sh_link >= shnum)
 366                                 continue; /* corrupt sh_link field */
 367 
 368                         if (shp->sh_name >= sp[shstrndx].sh_size ||
 369                             lhp->sh_name >= sp[shstrndx].sh_size)
 370                                 continue; /* corrupt sh_name field */
 371 
 372                         if (shp->sh_type == SHT_PROGBITS &&
 373                             strcmp(strs + shp->sh_name, _CTF_SECTION) == 0) {
 374                                 ctfsect.cts_name = strs + shp->sh_name;
 375                                 ctfsect.cts_type = shp->sh_type;
 376                                 ctfsect.cts_flags = shp->sh_flags;
 377                                 ctfsect.cts_size = shp->sh_size;
 378                                 ctfsect.cts_entsize = shp->sh_entsize;
 379                                 ctfsect.cts_offset = (off64_t)shp->sh_offset;
 380 
 381                         } else if (shp->sh_type == SHT_SYMTAB) {
 382                                 symsect.cts_name = strs + shp->sh_name;
 383                                 symsect.cts_type = shp->sh_type;
 384                                 symsect.cts_flags = shp->sh_flags;
 385                                 symsect.cts_size = shp->sh_size;
 386                                 symsect.cts_entsize = shp->sh_entsize;
 387                                 symsect.cts_offset = (off64_t)shp->sh_offset;
 388 
 389                                 strsect.cts_name = strs + lhp->sh_name;
 390                                 strsect.cts_type = lhp->sh_type;
 391                                 strsect.cts_flags = lhp->sh_flags;
 392                                 strsect.cts_size = lhp->sh_size;
 393                                 strsect.cts_entsize = lhp->sh_entsize;
 394                                 strsect.cts_offset = (off64_t)lhp->sh_offset;
 395                         }
 396                 }
 397 
 398                 free(sp); /* free section header array */
 399 
 400                 if (ctfsect.cts_type == SHT_NULL) {
 401                         (void) munmap(strs_map, strs_mapsz);
 402                         return (ctf_set_open_errno(errp, ECTF_NOCTFDATA));
 403                 }
 404 
 405                 /*
 406                  * Now mmap the CTF data, symtab, and strtab sections and
 407                  * call ctf_bufopen() to do the rest of the work.
 408                  */
 409                 if (ctf_sect_mmap(&ctfsect, fd) == MAP_FAILED) {
 410                         (void) munmap(strs_map, strs_mapsz);
 411                         return (ctf_set_open_errno(errp, ECTF_MMAP));
 412                 }
 413 
 414                 if (symsect.cts_type != SHT_NULL &&
 415                     strsect.cts_type != SHT_NULL) {
 416                         if (ctf_sect_mmap(&symsect, fd) == MAP_FAILED ||
 417                             ctf_sect_mmap(&strsect, fd) == MAP_FAILED) {
 418                                 (void) ctf_set_open_errno(errp, ECTF_MMAP);
 419                                 goto bad; /* unmap all and abort */
 420                         }
 421                         fp = ctf_bufopen(&ctfsect, &symsect, &strsect, errp);
 422                 } else
 423                         fp = ctf_bufopen(&ctfsect, NULL, NULL, errp);
 424 bad:
 425                 if (fp == NULL) {
 426                         ctf_sect_munmap(&ctfsect);
 427                         ctf_sect_munmap(&symsect);
 428                         ctf_sect_munmap(&strsect);
 429                 } else
 430                         fp->ctf_flags |= LCTF_MMAP;
 431 
 432                 (void) munmap(strs_map, strs_mapsz);
 433                 return (fp);
 434         }
 435 
 436         return (ctf_set_open_errno(errp, ECTF_FMT));
 437 }
 438 
 439 /*
 440  * Open the specified file and return a pointer to a CTF container.  The file
 441  * can be either an ELF file or raw CTF file.  This is just a convenient
 442  * wrapper around ctf_fdopen() for callers.
 443  */
 444 ctf_file_t *
 445 ctf_open(const char *filename, int *errp)
 446 {
 447         ctf_file_t *fp;
 448         int fd;
 449 
 450         if ((fd = open64(filename, O_RDONLY)) == -1) {
 451                 if (errp != NULL)
 452                         *errp = errno;
 453                 return (NULL);
 454         }
 455 
 456         fp = ctf_fdopen(fd, errp);
 457         (void) close(fd);
 458         return (fp);
 459 }
 460 
 461 /*
 462  * Write the uncompressed CTF data stream to the specified file descriptor.
 463  * This is useful for saving the results of dynamic CTF containers.
 464  */
 465 int
 466 ctf_write(ctf_file_t *fp, int fd)
 467 {
 468         const uchar_t *buf = fp->ctf_base;
 469         ssize_t resid = fp->ctf_size;
 470         ssize_t len;
 471 
 472         while (resid != 0) {
 473                 if ((len = write(fd, buf, resid)) <= 0)
 474                         return (ctf_set_errno(fp, errno));
 475                 resid -= len;
 476                 buf += len;
 477         }
 478 
 479         return (0);
 480 }
 481 
 482 /*
 483  * Set the CTF library client version to the specified version.  If version is
 484  * zero, we just return the default library version number.
 485  */
 486 int
 487 ctf_version(int version)
 488 {
 489         if (version < 0) {
 490                 errno = EINVAL;
 491                 return (-1);
 492         }
 493 
 494         if (version > 0) {
 495                 if (version > CTF_VERSION) {
 496                         errno = ENOTSUP;
 497                         return (-1);
 498                 }
 499                 ctf_dprintf("ctf_version: client using version %d\n", version);
 500                 _libctf_version = version;
 501         }
 502 
 503         return (_libctf_version);
 504 }