1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved. 24 * 25 * Copyright 2011 Jason King. All rights reserved. 26 */ 27 28 #include <assert.h> 29 #include <errno.h> 30 #include <fcntl.h> 31 #include <gelf.h> 32 #include <libelf.h> 33 #include <stdlib.h> 34 #include <string.h> 35 #include <unistd.h> 36 37 #include <sys/fcntl.h> 38 #include <sys/stat.h> 39 #include <sys/sysmacros.h> 40 #include <sys/types.h> 41 42 #include "dis_target.h" 43 #include "dis_util.h" 44 45 /* 46 * Standard ELF disassembler target. 47 * 48 * We only support disassembly of ELF files, though this target interface could 49 * be extended in the future. Each basic type (target, func, section) contains 50 * enough information to uniquely identify the location within the file. The 51 * interfaces use libelf(3LIB) to do the actual processing of the file. 52 */ 53 54 /* 55 * Symbol table entry type. We maintain our own symbol table sorted by address, 56 * with the symbol name already resolved against the ELF symbol table. 57 */ 58 typedef struct sym_entry { 59 GElf_Sym se_sym; /* value of symbol */ 60 char *se_name; /* name of symbol */ 61 int se_shndx; /* section where symbol is located */ 62 } sym_entry_t; 63 64 /* 65 * Create a map of the virtual address ranges of every section. This will 66 * allow us to create dummpy mappings for unassigned addresses. Otherwise 67 * multiple sections with unassigned addresses will appear to overlap and 68 * mess up symbol resolution (which uses the virtual address). 69 */ 70 typedef struct dis_shnmap { 71 const char *dm_name; /* name of section */ 72 uint64_t dm_start; /* virtual address of section */ 73 size_t dm_length; /* address length */ 74 boolean_t dm_mapped; /* did we assign the mapping */ 75 } dis_shnmap_t; 76 77 /* 78 * Target data structure. This structure keeps track of the ELF file 79 * information, a few bits of pre-processed section index information, and 80 * sorted versions of the symbol table. We also keep track of the last symbol 81 * looked up, as the majority of lookups remain within the same symbol. 82 */ 83 struct dis_tgt { 84 Elf *dt_elf; /* libelf handle */ 85 Elf *dt_elf_root; /* main libelf handle (for archives) */ 86 const char *dt_filename; /* name of file */ 87 int dt_fd; /* underlying file descriptor */ 88 size_t dt_shstrndx; /* section index of .shstrtab */ 89 size_t dt_symidx; /* section index of symbol table */ 90 sym_entry_t *dt_symcache; /* last symbol looked up */ 91 sym_entry_t *dt_symtab; /* sorted symbol table */ 92 int dt_symcount; /* # of symbol table entries */ 93 struct dis_tgt *dt_next; /* next target (for archives) */ 94 Elf_Arhdr *dt_arhdr; /* archive header (for archives) */ 95 dis_shnmap_t *dt_shnmap; /* section address map */ 96 size_t dt_shncount; /* # of sections in target */ 97 }; 98 99 /* 100 * Function data structure. We resolve the symbol and lookup the associated ELF 101 * data when building this structure. The offset is calculated based on the 102 * section's starting address. 103 */ 104 struct dis_func { 105 sym_entry_t *df_sym; /* symbol table reference */ 106 Elf_Data *df_data; /* associated ELF data */ 107 size_t df_offset; /* offset within data */ 108 }; 109 110 /* 111 * Section data structure. We store the entire section header so that we can 112 * determine some properties (such as whether or not it contains text) after 113 * building the structure. 114 */ 115 struct dis_scn { 116 GElf_Shdr ds_shdr; 117 const char *ds_name; 118 Elf_Data *ds_data; 119 }; 120 121 /* Lifted from Psymtab.c, omitting STT_TLS */ 122 #define DATA_TYPES \ 123 ((1 << STT_OBJECT) | (1 << STT_FUNC) | (1 << STT_COMMON)) 124 #define IS_DATA_TYPE(tp) (((1 << (tp)) & DATA_TYPES) != 0) 125 126 /* 127 * Save the virtual address range for this section and select the 128 * best section to use as the symbol table. We prefer SHT_SYMTAB 129 * over SHT_DYNSYM. 130 */ 131 /* ARGSUSED */ 132 static void 133 tgt_scn_init(dis_tgt_t *tgt, dis_scn_t *scn, void *data) 134 { 135 int *index = data; 136 137 *index += 1; 138 139 tgt->dt_shnmap[*index].dm_name = scn->ds_name; 140 tgt->dt_shnmap[*index].dm_start = scn->ds_shdr.sh_addr; 141 tgt->dt_shnmap[*index].dm_length = scn->ds_shdr.sh_size; 142 tgt->dt_shnmap[*index].dm_mapped = B_FALSE; 143 144 /* 145 * Prefer SHT_SYMTAB over SHT_DYNSYM 146 */ 147 if (scn->ds_shdr.sh_type == SHT_DYNSYM && tgt->dt_symidx == 0) 148 tgt->dt_symidx = *index; 149 else if (scn->ds_shdr.sh_type == SHT_SYMTAB) 150 tgt->dt_symidx = *index; 151 } 152 153 static int 154 sym_compare(const void *a, const void *b) 155 { 156 const sym_entry_t *syma = a; 157 const sym_entry_t *symb = b; 158 const char *aname = syma->se_name; 159 const char *bname = symb->se_name; 160 161 if (syma->se_sym.st_value < symb->se_sym.st_value) 162 return (-1); 163 164 if (syma->se_sym.st_value > symb->se_sym.st_value) 165 return (1); 166 167 /* 168 * Prefer functions over non-functions 169 */ 170 if (GELF_ST_TYPE(syma->se_sym.st_info) != 171 GELF_ST_TYPE(symb->se_sym.st_info)) { 172 if (GELF_ST_TYPE(syma->se_sym.st_info) == STT_FUNC) 173 return (-1); 174 if (GELF_ST_TYPE(symb->se_sym.st_info) == STT_FUNC) 175 return (1); 176 } 177 178 /* 179 * For symbols with the same address and type, we sort them according to 180 * a hierarchy: 181 * 182 * 1. weak symbols (common name) 183 * 2. global symbols (external name) 184 * 3. local symbols 185 */ 186 if (GELF_ST_BIND(syma->se_sym.st_info) != 187 GELF_ST_BIND(symb->se_sym.st_info)) { 188 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_WEAK) 189 return (-1); 190 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_WEAK) 191 return (1); 192 193 if (GELF_ST_BIND(syma->se_sym.st_info) == STB_GLOBAL) 194 return (-1); 195 if (GELF_ST_BIND(symb->se_sym.st_info) == STB_GLOBAL) 196 return (1); 197 } 198 199 /* 200 * As a last resort, if we have multiple symbols of the same type at the 201 * same address, prefer the version with the fewest leading underscores. 202 */ 203 if (aname == NULL) 204 return (-1); 205 if (bname == NULL) 206 return (1); 207 208 while (*aname == '_' && *bname == '_') { 209 aname++; 210 bname++; 211 } 212 213 if (*bname == '_') 214 return (-1); 215 if (*aname == '_') 216 return (1); 217 218 /* 219 * Prefer the symbol with the smaller size. 220 */ 221 if (syma->se_sym.st_size < symb->se_sym.st_size) 222 return (-1); 223 if (syma->se_sym.st_size > symb->se_sym.st_size) 224 return (1); 225 226 /* 227 * We really do have two identical symbols for some reason. Just report 228 * them as equal, and to the lucky one go the spoils. 229 */ 230 return (0); 231 } 232 233 /* 234 * Construct an optimized symbol table sorted by starting address. 235 */ 236 static void 237 construct_symtab(dis_tgt_t *tgt) 238 { 239 Elf_Scn *scn; 240 GElf_Shdr shdr; 241 Elf_Data *symdata; 242 int i; 243 GElf_Word *symshndx = NULL; 244 int symshndx_size; 245 sym_entry_t *sym; 246 sym_entry_t *p_symtab = NULL; 247 int nsym = 0; /* count of symbols we're not interested in */ 248 249 /* 250 * Find the symshndx section, if any 251 */ 252 for (scn = elf_nextscn(tgt->dt_elf, NULL); scn != NULL; 253 scn = elf_nextscn(tgt->dt_elf, scn)) { 254 if (gelf_getshdr(scn, &shdr) == NULL) 255 break; 256 if (shdr.sh_type == SHT_SYMTAB_SHNDX && 257 shdr.sh_link == tgt->dt_symidx) { 258 Elf_Data *data; 259 260 if ((data = elf_getdata(scn, NULL)) != NULL) { 261 symshndx = (GElf_Word *)data->d_buf; 262 symshndx_size = data->d_size / 263 sizeof (GElf_Word); 264 break; 265 } 266 } 267 } 268 269 if ((scn = elf_getscn(tgt->dt_elf, tgt->dt_symidx)) == NULL) 270 die("%s: failed to get section information", tgt->dt_filename); 271 if (gelf_getshdr(scn, &shdr) == NULL) 272 die("%s: failed to get section header", tgt->dt_filename); 273 if (shdr.sh_entsize == 0) 274 die("%s: symbol table has zero size", tgt->dt_filename); 275 276 if ((symdata = elf_getdata(scn, NULL)) == NULL) 277 die("%s: failed to get symbol table", tgt->dt_filename); 278 279 tgt->dt_symcount = symdata->d_size / gelf_fsize(tgt->dt_elf, ELF_T_SYM, 280 1, EV_CURRENT); 281 282 p_symtab = safe_malloc(tgt->dt_symcount * sizeof (sym_entry_t)); 283 284 for (i = 0, sym = p_symtab; i < tgt->dt_symcount; i++) { 285 if (gelf_getsym(symdata, i, &(sym->se_sym)) == NULL) { 286 warn("%s: gelf_getsym returned NULL for %d", 287 tgt->dt_filename, i); 288 nsym++; 289 continue; 290 } 291 292 /* 293 * We're only interested in data symbols. 294 */ 295 if (!IS_DATA_TYPE(GELF_ST_TYPE(sym->se_sym.st_info))) { 296 nsym++; 297 continue; 298 } 299 300 if (sym->se_sym.st_shndx == SHN_XINDEX && symshndx != NULL) { 301 if (i > symshndx_size) { 302 warn("%s: bad SHNX_XINDEX %d", 303 tgt->dt_filename, i); 304 sym->se_shndx = -1; 305 } else { 306 sym->se_shndx = symshndx[i]; 307 } 308 } else { 309 sym->se_shndx = sym->se_sym.st_shndx; 310 } 311 312 /* Deal with symbols with special section indicies */ 313 if (sym->se_shndx == SHN_ABS) { 314 /* 315 * If st_value == 0, references to these 316 * symbols in code are modified in situ 317 * thus we will never attempt to look 318 * them up. 319 */ 320 if (sym->se_sym.st_value == 0) { 321 /* 322 * References to these symbols in code 323 * are modified in situ by the runtime 324 * linker and no code on disk will ever 325 * attempt to look them up. 326 */ 327 nsym++; 328 continue; 329 } else { 330 /* 331 * If st_value != 0, (such as examining 332 * something in /system/object/.../object) 333 * the values should resolve to a value 334 * within an existing section (such as 335 * .data). This also means it never needs 336 * to have st_value mapped. 337 */ 338 sym++; 339 continue; 340 } 341 } 342 343 /* 344 * Ignore the symbol if it has some other special 345 * section index 346 */ 347 if (sym->se_shndx == SHN_UNDEF || 348 sym->se_shndx >= SHN_LORESERVE) { 349 nsym++; 350 continue; 351 } 352 353 if ((sym->se_name = elf_strptr(tgt->dt_elf, shdr.sh_link, 354 (size_t)sym->se_sym.st_name)) == NULL) { 355 warn("%s: failed to lookup symbol %d name", 356 tgt->dt_filename, i); 357 nsym++; 358 continue; 359 } 360 361 /* 362 * If we had to map this section, its symbol value 363 * also needs to be mapped. 364 */ 365 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 366 sym->se_sym.st_value += 367 tgt->dt_shnmap[sym->se_shndx].dm_start; 368 369 sym++; 370 } 371 372 tgt->dt_symcount -= nsym; 373 tgt->dt_symtab = realloc(p_symtab, tgt->dt_symcount * 374 sizeof (sym_entry_t)); 375 376 qsort(tgt->dt_symtab, tgt->dt_symcount, sizeof (sym_entry_t), 377 sym_compare); 378 } 379 380 /* 381 * Assign virtual address ranges for sections that need it 382 */ 383 static void 384 create_addrmap(dis_tgt_t *tgt) 385 { 386 uint64_t addr; 387 int i; 388 389 if (tgt->dt_shnmap == NULL) 390 return; 391 392 /* find the greatest used address */ 393 for (addr = 0, i = 1; i < tgt->dt_shncount; i++) 394 if (tgt->dt_shnmap[i].dm_start > addr) 395 addr = tgt->dt_shnmap[i].dm_start + 396 tgt->dt_shnmap[i].dm_length; 397 398 addr = P2ROUNDUP(addr, 0x1000); 399 400 /* 401 * Assign section a starting address beyond the largest mapped section 402 * if no address was given. 403 */ 404 for (i = 1; i < tgt->dt_shncount; i++) { 405 if (tgt->dt_shnmap[i].dm_start != 0) 406 continue; 407 408 tgt->dt_shnmap[i].dm_start = addr; 409 tgt->dt_shnmap[i].dm_mapped = B_TRUE; 410 addr = P2ROUNDUP(addr + tgt->dt_shnmap[i].dm_length, 0x1000); 411 } 412 } 413 414 /* 415 * Create a target backed by an ELF file. 416 */ 417 dis_tgt_t * 418 dis_tgt_create(const char *file) 419 { 420 dis_tgt_t *tgt, *current; 421 int idx; 422 Elf *elf; 423 GElf_Ehdr ehdr; 424 Elf_Arhdr *arhdr = NULL; 425 int cmd; 426 427 if (elf_version(EV_CURRENT) == EV_NONE) 428 die("libelf(3ELF) out of date"); 429 430 tgt = safe_malloc(sizeof (dis_tgt_t)); 431 432 if ((tgt->dt_fd = open(file, O_RDONLY)) < 0) { 433 warn("%s: failed opening file, reason: %s", file, 434 strerror(errno)); 435 free(tgt); 436 return (NULL); 437 } 438 439 if ((tgt->dt_elf_root = 440 elf_begin(tgt->dt_fd, ELF_C_READ, NULL)) == NULL) { 441 warn("%s: invalid or corrupt ELF file", file); 442 dis_tgt_destroy(tgt); 443 return (NULL); 444 } 445 446 current = tgt; 447 cmd = ELF_C_READ; 448 while ((elf = elf_begin(tgt->dt_fd, cmd, tgt->dt_elf_root)) != NULL) { 449 size_t shnum = 0; 450 451 if (elf_kind(tgt->dt_elf_root) == ELF_K_AR && 452 (arhdr = elf_getarhdr(elf)) == NULL) { 453 warn("%s: malformed archive", file); 454 dis_tgt_destroy(tgt); 455 return (NULL); 456 } 457 458 /* 459 * Make sure that this Elf file is sane 460 */ 461 if (gelf_getehdr(elf, &ehdr) == NULL) { 462 if (arhdr != NULL) { 463 /* 464 * For archives, we drive on in the face of bad 465 * members. The "/" and "//" members are 466 * special, and should be silently ignored. 467 */ 468 if (strcmp(arhdr->ar_name, "/") != 0 && 469 strcmp(arhdr->ar_name, "//") != 0) 470 warn("%s[%s]: invalid file type", 471 file, arhdr->ar_name); 472 cmd = elf_next(elf); 473 (void) elf_end(elf); 474 continue; 475 } 476 477 warn("%s: invalid file type", file); 478 dis_tgt_destroy(tgt); 479 return (NULL); 480 } 481 482 /* 483 * If we're seeing a new Elf object, then we have an 484 * archive. In this case, we create a new target, and chain it 485 * off the master target. We can later iterate over these 486 * targets using dis_tgt_next(). 487 */ 488 if (current->dt_elf != NULL) { 489 dis_tgt_t *next = safe_malloc(sizeof (dis_tgt_t)); 490 next->dt_elf_root = tgt->dt_elf_root; 491 next->dt_fd = -1; 492 current->dt_next = next; 493 current = next; 494 } 495 current->dt_elf = elf; 496 current->dt_arhdr = arhdr; 497 498 if (elf_getshdrstrndx(elf, ¤t->dt_shstrndx) == -1) { 499 warn("%s: failed to get section string table for " 500 "file", file); 501 dis_tgt_destroy(tgt); 502 return (NULL); 503 } 504 505 if (elf_getshdrnum(elf, &shnum) == -1) { 506 warn("%s: failed to get number of sections in file", 507 file); 508 dis_tgt_destroy(tgt); 509 return (NULL); 510 } 511 512 current->dt_shnmap = safe_malloc(sizeof (dis_shnmap_t) * 513 shnum); 514 current->dt_shncount = shnum; 515 516 idx = 0; 517 dis_tgt_section_iter(current, tgt_scn_init, &idx); 518 current->dt_filename = file; 519 520 create_addrmap(current); 521 if (current->dt_symidx != 0) 522 construct_symtab(current); 523 524 cmd = elf_next(elf); 525 } 526 527 /* 528 * Final sanity check. If we had an archive with no members, then bail 529 * out with a nice message. 530 */ 531 if (tgt->dt_elf == NULL) { 532 warn("%s: empty archive\n", file); 533 dis_tgt_destroy(tgt); 534 return (NULL); 535 } 536 537 return (tgt); 538 } 539 540 /* 541 * Return the filename associated with the target. 542 */ 543 const char * 544 dis_tgt_name(dis_tgt_t *tgt) 545 { 546 return (tgt->dt_filename); 547 } 548 549 /* 550 * Return the archive member name, if any. 551 */ 552 const char * 553 dis_tgt_member(dis_tgt_t *tgt) 554 { 555 if (tgt->dt_arhdr) 556 return (tgt->dt_arhdr->ar_name); 557 else 558 return (NULL); 559 } 560 561 /* 562 * Return the Elf_Ehdr associated with this target. Needed to determine which 563 * disassembler to use. 564 */ 565 void 566 dis_tgt_ehdr(dis_tgt_t *tgt, GElf_Ehdr *ehdr) 567 { 568 (void) gelf_getehdr(tgt->dt_elf, ehdr); 569 } 570 571 /* 572 * Return the next target in the list, if this is an archive. 573 */ 574 dis_tgt_t * 575 dis_tgt_next(dis_tgt_t *tgt) 576 { 577 return (tgt->dt_next); 578 } 579 580 /* 581 * Destroy a target and free up any associated memory. 582 */ 583 void 584 dis_tgt_destroy(dis_tgt_t *tgt) 585 { 586 dis_tgt_t *current, *next; 587 588 current = tgt->dt_next; 589 while (current != NULL) { 590 next = current->dt_next; 591 if (current->dt_elf) 592 (void) elf_end(current->dt_elf); 593 if (current->dt_symtab) 594 free(current->dt_symtab); 595 free(current); 596 current = next; 597 } 598 599 if (tgt->dt_elf) 600 (void) elf_end(tgt->dt_elf); 601 if (tgt->dt_elf_root) 602 (void) elf_end(tgt->dt_elf_root); 603 604 if (tgt->dt_symtab) 605 free(tgt->dt_symtab); 606 607 free(tgt); 608 } 609 610 /* 611 * Given an address, return the section it is in and set the offset within 612 * the section. 613 */ 614 const char * 615 dis_find_section(dis_tgt_t *tgt, uint64_t addr, off_t *offset) 616 { 617 int i; 618 619 for (i = 1; i < tgt->dt_shncount; i++) { 620 if ((addr >= tgt->dt_shnmap[i].dm_start) && 621 (addr < tgt->dt_shnmap[i].dm_start + 622 tgt->dt_shnmap[i].dm_length)) { 623 *offset = addr - tgt->dt_shnmap[i].dm_start; 624 return (tgt->dt_shnmap[i].dm_name); 625 } 626 } 627 628 *offset = 0; 629 return (NULL); 630 } 631 632 /* 633 * Given an address, returns the name of the corresponding symbol, as well as 634 * the offset within that symbol. If no matching symbol is found, then NULL is 635 * returned. 636 * 637 * If 'cache_result' is specified, then we keep track of the resulting symbol. 638 * This cached result is consulted first on subsequent lookups in order to avoid 639 * unecessary lookups. This flag should be used for resolving the current PC, 640 * as the majority of addresses stay within the current function. 641 */ 642 const char * 643 dis_tgt_lookup(dis_tgt_t *tgt, uint64_t addr, off_t *offset, int cache_result, 644 size_t *size, int *isfunc) 645 { 646 int lo, hi, mid; 647 sym_entry_t *sym, *osym, *match; 648 int found; 649 650 if (tgt->dt_symcache != NULL && 651 addr >= tgt->dt_symcache->se_sym.st_value && 652 addr < tgt->dt_symcache->se_sym.st_value + 653 tgt->dt_symcache->se_sym.st_size) { 654 *offset = addr - tgt->dt_symcache->se_sym.st_value; 655 *size = tgt->dt_symcache->se_sym.st_size; 656 return (tgt->dt_symcache->se_name); 657 } 658 659 lo = 0; 660 hi = (tgt->dt_symcount - 1); 661 found = 0; 662 match = osym = NULL; 663 while (lo <= hi) { 664 mid = (lo + hi) / 2; 665 666 sym = &tgt->dt_symtab[mid]; 667 668 if (addr >= sym->se_sym.st_value && 669 addr < sym->se_sym.st_value + sym->se_sym.st_size && 670 (!found || sym->se_sym.st_value > osym->se_sym.st_value)) { 671 osym = sym; 672 found = 1; 673 } else if (addr == sym->se_sym.st_value) { 674 /* 675 * Particularly for .plt objects, it's possible to have 676 * a zero sized object. We want to return this, but we 677 * want it to be a last resort. 678 */ 679 match = sym; 680 } 681 682 if (addr < sym->se_sym.st_value) 683 hi = mid - 1; 684 else 685 lo = mid + 1; 686 } 687 688 if (!found) { 689 if (match) 690 osym = match; 691 else 692 return (NULL); 693 } 694 695 /* 696 * Walk backwards to find the best match. 697 */ 698 do { 699 sym = osym; 700 701 if (osym == tgt->dt_symtab) 702 break; 703 704 osym = osym - 1; 705 } while ((sym->se_sym.st_value == osym->se_sym.st_value) && 706 (addr >= osym->se_sym.st_value) && 707 (addr < osym->se_sym.st_value + osym->se_sym.st_size)); 708 709 if (cache_result) 710 tgt->dt_symcache = sym; 711 712 *offset = addr - sym->se_sym.st_value; 713 *size = sym->se_sym.st_size; 714 if (isfunc) 715 *isfunc = (GELF_ST_TYPE(sym->se_sym.st_info) == STT_FUNC); 716 717 return (sym->se_name); 718 } 719 720 #if !defined(__sparc) 721 /* 722 * Given an address, return the starting offset of the next symbol in the file. 723 * Only needed on variable length instruction architectures. 724 */ 725 off_t 726 dis_tgt_next_symbol(dis_tgt_t *tgt, uint64_t addr) 727 { 728 sym_entry_t *sym; 729 730 for (sym = tgt->dt_symcache; 731 sym != tgt->dt_symtab + tgt->dt_symcount; 732 sym++) { 733 if (sym->se_sym.st_value >= addr) 734 return (sym->se_sym.st_value - addr); 735 } 736 737 return (0); 738 } 739 #endif 740 741 /* 742 * Iterate over all sections in the target, executing the given callback for 743 * each. 744 */ 745 void 746 dis_tgt_section_iter(dis_tgt_t *tgt, section_iter_f func, void *data) 747 { 748 dis_scn_t sdata; 749 Elf_Scn *scn; 750 int idx; 751 752 for (scn = elf_nextscn(tgt->dt_elf, NULL), idx = 1; scn != NULL; 753 scn = elf_nextscn(tgt->dt_elf, scn), idx++) { 754 755 if (gelf_getshdr(scn, &sdata.ds_shdr) == NULL) { 756 warn("%s: failed to get section %d header", 757 tgt->dt_filename, idx); 758 continue; 759 } 760 761 if ((sdata.ds_name = elf_strptr(tgt->dt_elf, tgt->dt_shstrndx, 762 sdata.ds_shdr.sh_name)) == NULL) { 763 warn("%s: failed to get section %d name", 764 tgt->dt_filename, idx); 765 continue; 766 } 767 768 if ((sdata.ds_data = elf_getdata(scn, NULL)) == NULL) { 769 warn("%s: failed to get data for section '%s'", 770 tgt->dt_filename, sdata.ds_name); 771 continue; 772 } 773 774 /* 775 * dis_tgt_section_iter is also used before the section map 776 * is initialized, so only check when we need to. If the 777 * section map is uninitialized, it will return 0 and have 778 * no net effect. 779 */ 780 if (sdata.ds_shdr.sh_addr == 0) 781 sdata.ds_shdr.sh_addr = tgt->dt_shnmap[idx].dm_start; 782 783 func(tgt, &sdata, data); 784 } 785 } 786 787 /* 788 * Return 1 if the given section contains text, 0 otherwise. 789 */ 790 int 791 dis_section_istext(dis_scn_t *scn) 792 { 793 return ((scn->ds_shdr.sh_type == SHT_PROGBITS) && 794 (scn->ds_shdr.sh_flags == (SHF_ALLOC | SHF_EXECINSTR))); 795 } 796 797 /* 798 * Return a pointer to the section data. 799 */ 800 void * 801 dis_section_data(dis_scn_t *scn) 802 { 803 return (scn->ds_data->d_buf); 804 } 805 806 /* 807 * Return the size of the section data. 808 */ 809 size_t 810 dis_section_size(dis_scn_t *scn) 811 { 812 return (scn->ds_data->d_size); 813 } 814 815 /* 816 * Return the address for the given section. 817 */ 818 uint64_t 819 dis_section_addr(dis_scn_t *scn) 820 { 821 return (scn->ds_shdr.sh_addr); 822 } 823 824 /* 825 * Return the name of the current section. 826 */ 827 const char * 828 dis_section_name(dis_scn_t *scn) 829 { 830 return (scn->ds_name); 831 } 832 833 /* 834 * Create an allocated copy of the given section 835 */ 836 dis_scn_t * 837 dis_section_copy(dis_scn_t *scn) 838 { 839 dis_scn_t *new; 840 841 new = safe_malloc(sizeof (dis_scn_t)); 842 (void) memcpy(new, scn, sizeof (dis_scn_t)); 843 844 return (new); 845 } 846 847 /* 848 * Free section memory 849 */ 850 void 851 dis_section_free(dis_scn_t *scn) 852 { 853 free(scn); 854 } 855 856 /* 857 * Iterate over all functions in the target, executing the given callback for 858 * each one. 859 */ 860 void 861 dis_tgt_function_iter(dis_tgt_t *tgt, function_iter_f func, void *data) 862 { 863 int i; 864 sym_entry_t *sym; 865 dis_func_t df; 866 Elf_Scn *scn; 867 GElf_Shdr shdr; 868 869 for (i = 0, sym = tgt->dt_symtab; i < tgt->dt_symcount; i++, sym++) { 870 871 /* ignore non-functions */ 872 if ((GELF_ST_TYPE(sym->se_sym.st_info) != STT_FUNC) || 873 (sym->se_name == NULL) || 874 (sym->se_sym.st_size == 0) || 875 (sym->se_shndx >= SHN_LORESERVE)) 876 continue; 877 878 /* get the ELF data associated with this function */ 879 if ((scn = elf_getscn(tgt->dt_elf, sym->se_shndx)) == NULL || 880 gelf_getshdr(scn, &shdr) == NULL || 881 (df.df_data = elf_getdata(scn, NULL)) == NULL || 882 df.df_data->d_size == 0) { 883 warn("%s: failed to read section %d", 884 tgt->dt_filename, sym->se_shndx); 885 continue; 886 } 887 888 if (tgt->dt_shnmap[sym->se_shndx].dm_mapped) 889 shdr.sh_addr = tgt->dt_shnmap[sym->se_shndx].dm_start; 890 891 /* 892 * Verify that the address lies within the section that we think 893 * it does. 894 */ 895 if (sym->se_sym.st_value < shdr.sh_addr || 896 (sym->se_sym.st_value + sym->se_sym.st_size) > 897 (shdr.sh_addr + shdr.sh_size)) { 898 warn("%s: bad section %d for address %p", 899 tgt->dt_filename, sym->se_sym.st_shndx, 900 sym->se_sym.st_value); 901 continue; 902 } 903 904 df.df_sym = sym; 905 df.df_offset = sym->se_sym.st_value - shdr.sh_addr; 906 907 func(tgt, &df, data); 908 } 909 } 910 911 /* 912 * Return the data associated with a given function. 913 */ 914 void * 915 dis_function_data(dis_func_t *func) 916 { 917 return ((char *)func->df_data->d_buf + func->df_offset); 918 } 919 920 /* 921 * Return the size of a function. 922 */ 923 size_t 924 dis_function_size(dis_func_t *func) 925 { 926 return (func->df_sym->se_sym.st_size); 927 } 928 929 /* 930 * Return the address of a function. 931 */ 932 uint64_t 933 dis_function_addr(dis_func_t *func) 934 { 935 return (func->df_sym->se_sym.st_value); 936 } 937 938 /* 939 * Return the name of the function 940 */ 941 const char * 942 dis_function_name(dis_func_t *func) 943 { 944 return (func->df_sym->se_name); 945 } 946 947 /* 948 * Return a copy of a function. 949 */ 950 dis_func_t * 951 dis_function_copy(dis_func_t *func) 952 { 953 dis_func_t *new; 954 955 new = safe_malloc(sizeof (dis_func_t)); 956 (void) memcpy(new, func, sizeof (dis_func_t)); 957 958 return (new); 959 } 960 961 /* 962 * Free function memory 963 */ 964 void 965 dis_function_free(dis_func_t *func) 966 { 967 free(func); 968 }