1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Dump an elf file.
29 */
30 #include <stddef.h>
31 #include <sys/elf_386.h>
32 #include <sys/elf_amd64.h>
33 #include <sys/elf_SPARC.h>
34 #include <_libelf.h>
35 #include <dwarf.h>
36 #include <stdio.h>
37 #include <unistd.h>
38 #include <errno.h>
39 #include <strings.h>
40 #include <debug.h>
41 #include <conv.h>
42 #include <msg.h>
43 #include <_elfdump.h>
44
45
46 /*
47 * VERSYM_STATE is used to maintain information about the VERSYM section
48 * in the object being analyzed. It is filled in by versions(), and used
49 * by init_symtbl_state() when displaying symbol information.
50 *
51 * There are three forms of symbol versioning known to us:
52 *
53 * 1) The original form, introduced with Solaris 2.5, in which
54 * the Versym contains indexes to Verdef records, and the
55 * Versym values for UNDEF symbols resolved by other objects
56 * are all set to 0.
57 * 2) The GNU form, which is backward compatible with the original
58 * Solaris form, but which adds several extensions:
59 * - The Versym also contains indexes to Verneed records, recording
60 * which object/version contributed the external symbol at
61 * link time. These indexes start with the next value following
62 * the final Verdef index. The index is written to the previously
63 * reserved vna_other field of the ELF Vernaux structure.
64 * - The top bit of the Versym value is no longer part of the index,
65 * but is used as a "hidden bit" to prevent binding to the symbol.
66 * - Multiple implementations of a given symbol, contained in varying
67 * versions are allowed, using special assembler pseudo ops,
68 * and encoded in the symbol name using '@' characters.
69 * 3) Modified Solaris form, in which we adopt the first GNU extension
70 * (Versym indexes to Verneed records), but not the others.
71 *
72 * elfdump can handle any of these cases. The presence of a DT_VERSYM
73 * dynamic element indicates a full GNU object. An object that lacks
74 * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
75 * structures is a modified Solaris object. An object that has neither of
76 * these uses the original form.
77 *
78 * max_verndx contains the largest version index that can appear
79 * in a Versym entry. This can never be less than 1: In the case where
80 * there is no verdef/verneed sections, the [0] index is reserved
81 * for local symbols, and the [1] index for globals. If the original
82 * Solaris versioning rules are in effect and there is a verdef section,
83 * then max_verndex is the number of defined versions. If one of the
84 * other versioning forms is in effect, then:
85 * 1) If there is no verneed section, it is the same as for
86 * original Solaris versioning.
87 * 2) If there is a verneed section, the vna_other field of the
88 * Vernaux structs contain versions, and max_verndx is the
89 * largest such index.
90 *
91 * If gnu_full is True, the object uses the full GNU form of versioning.
92 * The value of the gnu_full field is based on the presence of
93 * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
94 * Solaris ld does not.
95 *
96 * The gnu_needed field is True if the Versym contains indexes to
97 * Verneed records, as indicated by non-zero vna_other fields in the Verneed
98 * section. If gnu_full is True, then gnu_needed will always be true.
99 * However, gnu_needed can be true without gnu_full. This is the modified
100 * Solaris form.
101 */
102 typedef struct {
103 Cache *cache; /* Pointer to cache entry for VERSYM */
104 Versym *data; /* Pointer to versym array */
105 int gnu_full; /* True if object uses GNU versioning rules */
106 int gnu_needed; /* True if object uses VERSYM indexes for */
107 /* VERNEED (subset of gnu_full) */
108 int max_verndx; /* largest versym index value */
109 } VERSYM_STATE;
110
111 /*
112 * SYMTBL_STATE is used to maintain information about a single symbol
113 * table section, for use by the routines that display symbol information.
114 */
115 typedef struct {
116 const char *file; /* Name of file */
117 Ehdr *ehdr; /* ELF header for file */
118 Cache *cache; /* Cache of all section headers */
119 uchar_t osabi; /* OSABI to use */
120 Word shnum; /* # of sections in cache */
121 Cache *seccache; /* Cache of symbol table section hdr */
122 Word secndx; /* Index of symbol table section hdr */
123 const char *secname; /* Name of section */
124 uint_t flags; /* Command line option flags */
125 struct { /* Extended section index data */
126 int checked; /* TRUE if already checked for shxndx */
127 Word *data; /* NULL, or extended section index */
128 /* used for symbol table entries */
129 uint_t n; /* # items in shxndx.data */
130 } shxndx;
131 VERSYM_STATE *versym; /* NULL, or associated VERSYM section */
132 Sym *sym; /* Array of symbols */
133 Word symn; /* # of symbols */
134 } SYMTBL_STATE;
135
136 /*
137 * A variable of this type is used to track information related to
138 * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
139 */
140 typedef struct {
141 Word frame_cnt; /* # .eh_frame sections seen */
142 Word frame_ndx; /* Section index of 1st .eh_frame */
143 Word hdr_cnt; /* # .eh_frame_hdr sections seen */
144 Word hdr_ndx; /* Section index of 1st .eh_frame_hdr */
145 uint64_t frame_ptr; /* Value of FramePtr field from first */
146 /* .eh_frame_hdr section */
147 uint64_t frame_base; /* Data addr of 1st .eh_frame */
148 } gnu_eh_state_t;
149
150 /*
151 * C++ .exception_ranges entries make use of the signed ptrdiff_t
152 * type to record self-relative pointer values. We need a type
153 * for this that is matched to the ELFCLASS being processed.
154 */
155 #if defined(_ELF64)
156 typedef int64_t PTRDIFF_T;
157 #else
158 typedef int32_t PTRDIFF_T;
159 #endif
160
161 /*
162 * The Sun C++ ABI uses this struct to define each .exception_ranges
163 * entry. From the ABI:
164 *
165 * The field ret_addr is a self relative pointer to the start of the address
166 * range. The name was chosen because in the current implementation the range
167 * typically starts at the return address for a call site.
168 *
169 * The field length is the difference, in bytes, between the pc of the last
170 * instruction covered by the exception range and the first. When only a
171 * single call site is represented without optimization, this will equal zero.
172 *
173 * The field handler_addr is a relative pointer which stores the difference
174 * between the start of the exception range and the address of all code to
175 * catch exceptions and perform the cleanup for stack unwinding.
176 *
177 * The field type_block is a relative pointer which stores the difference
178 * between the start of the exception range and the address of an array used
179 * for storing a list of the types of exceptions which can be caught within
180 * the exception range.
181 */
182 typedef struct {
183 PTRDIFF_T ret_addr;
184 Xword length;
185 PTRDIFF_T handler_addr;
186 PTRDIFF_T type_block;
187 Xword reserved;
188 } exception_range_entry;
189
190 /*
191 * Focal point for verifying symbol names.
192 */
193 static const char *
194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
195 {
196 /*
197 * If an error in this routine is due to a property of the string
198 * section, as opposed to a bad offset into the section (a property of
199 * the referencing section), then we will detect the same error on
200 * every call involving those sections. We use these static variables
201 * to retain the information needed to only issue each such error once.
202 */
203 static Cache *last_refsec; /* Last referencing section seen */
204 static int strsec_err; /* True if error issued */
205
206 const char *strs;
207 Word strn;
208
209 if (strsec->c_data == NULL)
210 return (NULL);
211
212 strs = (char *)strsec->c_data->d_buf;
213 strn = strsec->c_data->d_size;
214
215 /*
216 * We only print a diagnostic regarding a bad string table once per
217 * input section being processed. If the refsec has changed, reset
218 * our retained error state.
219 */
220 if (last_refsec != refsec) {
221 last_refsec = refsec;
222 strsec_err = 0;
223 }
224
225 /* Verify that strsec really is a string table */
226 if (strsec->c_shdr->sh_type != SHT_STRTAB) {
227 if (!strsec_err) {
228 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
229 file, strsec->c_ndx, refsec->c_ndx);
230 strsec_err = 1;
231 }
232 return (MSG_INTL(MSG_STR_UNKNOWN));
233 }
234
235 /*
236 * Is the string table offset within range of the available strings?
237 */
238 if (name >= strn) {
239 /*
240 * Do we have a empty string table?
241 */
242 if (strs == NULL) {
243 if (!strsec_err) {
244 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
245 file, strsec->c_name);
246 strsec_err = 1;
247 }
248 } else {
249 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
250 file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
251 EC_WORD(name), EC_WORD(strn - 1));
252 }
253
254 /*
255 * Return the empty string so that the calling function can
256 * continue it's output diagnostics.
257 */
258 return (MSG_INTL(MSG_STR_UNKNOWN));
259 }
260 return (strs + name);
261 }
262
263 /*
264 * Relocations can reference section symbols and standard symbols. If the
265 * former, establish the section name.
266 */
267 static const char *
268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
269 Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
270 {
271 Sym *sym;
272 const char *name;
273
274 if (symndx >= symnum) {
275 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
276 file, EC_WORD(symndx), EC_WORD(relndx));
277 return (MSG_INTL(MSG_STR_UNKNOWN));
278 }
279
280 sym = (Sym *)(syms + symndx);
281 name = string(csec, symndx, strsec, file, sym->st_name);
282
283 /*
284 * If the symbol represents a section offset construct an appropriate
285 * string. Note, although section symbol table entries typically have
286 * a NULL name pointer, entries do exist that point into the string
287 * table to their own NULL strings.
288 */
289 if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
290 ((sym->st_name == 0) || (*name == '\0'))) {
291 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
292 cache[sym->st_shndx].c_name);
293 return ((const char *)secstr);
294 }
295
296 return (name);
297 }
298
299 /*
300 * Focal point for establishing a string table section. Data such as the
301 * dynamic information simply points to a string table. Data such as
302 * relocations, reference a symbol table, which in turn is associated with a
303 * string table.
304 */
305 static int
306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
307 Word *symnum, Cache **symsec, Cache **strsec)
308 {
309 Shdr *shdr = cache[ndx].c_shdr;
310
311 if (symtab) {
312 /*
313 * Validate the symbol table section.
314 */
315 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
316 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
317 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
318 return (0);
319 }
320 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
321 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
322 file, cache[ndx].c_name);
323 return (0);
324 }
325
326 /*
327 * Obtain, and verify the symbol table data.
328 */
329 if ((cache[ndx].c_data == NULL) ||
330 (cache[ndx].c_data->d_buf == NULL)) {
331 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
332 file, cache[ndx].c_name);
333 return (0);
334 }
335
336 /*
337 * Establish the string table index.
338 */
339 ndx = shdr->sh_link;
340 shdr = cache[ndx].c_shdr;
341
342 /*
343 * Return symbol table information.
344 */
345 if (symnum)
346 *symnum = (shdr->sh_size / shdr->sh_entsize);
347 if (symsec)
348 *symsec = &cache[ndx];
349 }
350
351 /*
352 * Validate the associated string table section.
353 */
354 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
355 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
356 file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
357 return (0);
358 }
359
360 if (strsec)
361 *strsec = &cache[shdr->sh_link];
362
363 return (1);
364 }
365
366 /*
367 * Lookup a symbol and set Sym accordingly.
368 *
369 * entry:
370 * name - Name of symbol to lookup
371 * cache - Cache of all section headers
372 * shnum - # of sections in cache
373 * sym - Address of pointer to receive symbol
374 * target - NULL, or section to which the symbol must be associated.
375 * symtab - Symbol table to search for symbol
376 * file - Name of file
377 *
378 * exit:
379 * If the symbol is found, *sym is set to reference it, and True is
380 * returned. If target is non-NULL, the symbol must reference the given
381 * section --- otherwise the section is not checked.
382 *
383 * If no symbol is found, False is returned.
384 */
385 static int
386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
387 Cache *target, Cache *symtab, const char *file)
388 {
389 Shdr *shdr;
390 Word symn, cnt;
391 Sym *syms;
392
393 if (symtab == 0)
394 return (0);
395
396 shdr = symtab->c_shdr;
397
398 /*
399 * Determine the symbol data and number.
400 */
401 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
402 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
403 file, symtab->c_name);
404 return (0);
405 }
406 if (symtab->c_data == NULL)
407 return (0);
408
409 /* LINTED */
410 symn = (Word)(shdr->sh_size / shdr->sh_entsize);
411 syms = (Sym *)symtab->c_data->d_buf;
412
413 /*
414 * Get the associated string table section.
415 */
416 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
417 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
418 file, symtab->c_name, EC_WORD(shdr->sh_link));
419 return (0);
420 }
421
422 /*
423 * Loop through the symbol table to find a match.
424 */
425 *sym = NULL;
426 for (cnt = 0; cnt < symn; syms++, cnt++) {
427 const char *symname;
428
429 symname = string(symtab, cnt, &cache[shdr->sh_link], file,
430 syms->st_name);
431
432 if (symname && (strcmp(name, symname) == 0) &&
433 ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
434 /*
435 * It is possible, though rare, for a local and
436 * global symbol of the same name to exist, each
437 * contributed by a different input object. If the
438 * symbol just found is local, remember it, but
439 * continue looking.
440 */
441 *sym = syms;
442 if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
443 break;
444 }
445 }
446
447 return (*sym != NULL);
448 }
449
450 /*
451 * Print section headers.
452 */
453 static void
454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
455 {
456 size_t seccnt;
457
458 for (seccnt = 1; seccnt < shnum; seccnt++) {
459 Cache *_cache = &cache[seccnt];
460 Shdr *shdr = _cache->c_shdr;
461 const char *secname = _cache->c_name;
462
463 /*
464 * Although numerous section header entries can be zero, it's
465 * usually a sign of trouble if the type is zero.
466 */
467 if (shdr->sh_type == 0) {
468 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
469 file, secname, EC_WORD(shdr->sh_type));
470 }
471
472 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
473 continue;
474
475 /*
476 * Identify any sections that are suspicious. A .got section
477 * shouldn't exist in a relocatable object.
478 */
479 if (ehdr->e_type == ET_REL) {
480 if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
481 MSG_ELF_GOT_SIZE) == 0) {
482 (void) fprintf(stderr,
483 MSG_INTL(MSG_GOT_UNEXPECTED), file,
484 secname);
485 }
486 }
487
488 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
489 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
490 Elf_shdr(0, osabi, ehdr->e_machine, shdr);
491 }
492 }
493
494 /*
495 * Obtain a specified Phdr entry.
496 */
497 static Phdr *
498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
499 {
500 Word cnt, tcnt;
501 Phdr *phdr;
502
503 if ((phdr = elf_getphdr(elf)) == NULL) {
504 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
505 return (NULL);
506 }
507
508 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
509 for (tcnt = 0; tcnt < type_cnt; tcnt++) {
510 if (phdr->p_type == type_arr[tcnt])
511 return (phdr);
512 }
513 }
514 return (NULL);
515 }
516
517 /*
518 * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
519 * sections.
520 *
521 * entry:
522 * cache - Cache of all section headers
523 * shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
524 * shnum - Total number of sections which exist
525 * uphdr - NULL, or unwind program header associated with
526 * the .eh_frame_hdr section.
527 * ehdr - ELF header for file
528 * eh_state - Data used across calls to this routine. The
529 * caller should zero it before the first call, and
530 * pass it on every call.
531 * osabi - OSABI to use in displaying information
532 * file - Name of file
533 * flags - Command line option flags
534 */
535 static void
536 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
537 gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
538 {
539 #if defined(_ELF64)
540 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_64
541 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_64
542 #else
543 #define MSG_UNW_BINSRTAB2 MSG_UNW_BINSRTAB2_32
544 #define MSG_UNW_BINSRTABENT MSG_UNW_BINSRTABENT_32
545 #endif
546
547 Cache *_cache = &cache[shndx];
548 Shdr *shdr = _cache->c_shdr;
549 uchar_t *data = (uchar_t *)(_cache->c_data->d_buf);
550 size_t datasize = _cache->c_data->d_size;
551 Conv_dwarf_ehe_buf_t dwarf_ehe_buf;
552 uint64_t ndx, frame_ptr, fde_cnt, tabndx;
553 uint_t vers, frame_ptr_enc, fde_cnt_enc, table_enc;
554 uint64_t initloc, initloc0;
555 uint64_t gotaddr = 0;
556 int cnt;
557
558 for (cnt = 1; cnt < shnum; cnt++) {
559 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
560 MSG_ELF_GOT_SIZE) == 0) {
561 gotaddr = cache[cnt].c_shdr->sh_addr;
562 break;
563 }
564 }
565
566 /*
567 * Is this a .eh_frame_hdr?
568 */
569 if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
570 (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
571 MSG_SCN_FRMHDR_SIZE) == 0)) {
572 /*
573 * There can only be a single .eh_frame_hdr.
574 * Flag duplicates.
575 */
576 if (++eh_state->hdr_cnt > 1)
577 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
578 file, EC_WORD(shndx), _cache->c_name);
579
580 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
581 ndx = 0;
582
583 vers = data[ndx++];
584 frame_ptr_enc = data[ndx++];
585 fde_cnt_enc = data[ndx++];
586 table_enc = data[ndx++];
587
588 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
589
590 frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
591 ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
592 if (eh_state->hdr_cnt == 1) {
593 eh_state->hdr_ndx = shndx;
594 eh_state->frame_ptr = frame_ptr;
595 }
596
597 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
598 conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
599 EC_XWORD(frame_ptr));
600
601 fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
602 ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
603
604 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
605 conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
606 EC_XWORD(fde_cnt));
607 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
608 conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
609 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
610 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
611
612 for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
613 initloc = dwarf_ehe_extract(data, &ndx, table_enc,
614 ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
615 /*LINTED:E_VAR_USED_BEFORE_SET*/
616 if ((tabndx != 0) && (initloc0 > initloc))
617 (void) fprintf(stderr,
618 MSG_INTL(MSG_ERR_BADSORT), file,
619 _cache->c_name, EC_WORD(tabndx));
620 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
621 EC_XWORD(initloc),
622 EC_XWORD(dwarf_ehe_extract(data, &ndx,
623 table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
624 ndx, gotaddr)));
625 initloc0 = initloc;
626 }
627 } else { /* Display the .eh_frame section */
628 eh_state->frame_cnt++;
629 if (eh_state->frame_cnt == 1) {
630 eh_state->frame_ndx = shndx;
631 eh_state->frame_base = shdr->sh_addr;
632 } else if ((eh_state->frame_cnt > 1) &&
633 (ehdr->e_type != ET_REL)) {
634 Conv_inv_buf_t inv_buf;
635
636 (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
637 file, EC_WORD(shndx), _cache->c_name,
638 conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
639 }
640 dump_eh_frame(data, datasize, shdr->sh_addr,
641 ehdr->e_machine, ehdr->e_ident, gotaddr);
642 }
643
644 /*
645 * If we've seen the .eh_frame_hdr and the first .eh_frame section,
646 * compare the header frame_ptr to the address of the actual frame
647 * section to ensure the link-editor got this right. Note, this
648 * diagnostic is only produced when unwind information is explicitly
649 * asked for, as shared objects built with an older ld(1) may reveal
650 * this inconsistency. Although an inconsistency, it doesn't seem to
651 * have any adverse effect on existing tools.
652 */
653 if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
654 (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
655 (eh_state->frame_ptr != eh_state->frame_base))
656 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
657 file, EC_WORD(eh_state->hdr_ndx),
658 cache[eh_state->hdr_ndx].c_name,
659 EC_XWORD(eh_state->frame_ptr),
660 EC_WORD(eh_state->frame_ndx),
661 cache[eh_state->frame_ndx].c_name,
662 EC_XWORD(eh_state->frame_base));
663 #undef MSG_UNW_BINSRTAB2
664 #undef MSG_UNW_BINSRTABENT
665 }
666
667 /*
668 * Convert a self relative pointer into an address. A self relative
669 * pointer adds the address where the pointer resides to the offset
670 * contained in the pointer. The benefit is that the value of the
671 * pointer does not require relocation.
672 *
673 * entry:
674 * base_addr - Address of the pointer.
675 * delta - Offset relative to base_addr giving desired address
676 *
677 * exit:
678 * The computed address is returned.
679 *
680 * note:
681 * base_addr is an unsigned value, while ret_addr is signed. This routine
682 * used explicit testing and casting to explicitly control type
683 * conversion, and ensure that we handle the maximum possible range.
684 */
685 static Addr
686 srelptr(Addr base_addr, PTRDIFF_T delta)
687 {
688 if (delta < 0)
689 return (base_addr - (Addr) (-delta));
690
691 return (base_addr + (Addr) delta);
692 }
693
694 /*
695 * Byte swap a PTRDIFF_T value.
696 */
697 static PTRDIFF_T
698 swap_ptrdiff(PTRDIFF_T value)
699 {
700 PTRDIFF_T r;
701 uchar_t *dst = (uchar_t *)&r;
702 uchar_t *src = (uchar_t *)&value;
703
704 UL_ASSIGN_BSWAP_XWORD(dst, src);
705 return (r);
706 }
707
708 /*
709 * Display exception_range_entry items from the .exception_ranges section
710 * of a Sun C++ object.
711 */
712 static void
713 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
714 {
715 /*
716 * Translate a PTRDIFF_T self-relative address field of
717 * an exception_range_entry struct into an address.
718 *
719 * entry:
720 * exc_addr - Address of base of exception_range_entry struct
721 * cur_ent - Pointer to data in the struct to be translated
722 *
723 * _f - Field of struct to be translated
724 */
725 #define SRELPTR(_f) \
726 srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
727
728 #if defined(_ELF64)
729 #define MSG_EXR_TITLE MSG_EXR_TITLE_64
730 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_64
731 #else
732 #define MSG_EXR_TITLE MSG_EXR_TITLE_32
733 #define MSG_EXR_ENTRY MSG_EXR_ENTRY_32
734 #endif
735
736 exception_range_entry scratch, *ent, *cur_ent = &scratch;
737 char index[MAXNDXSIZE];
738 Word i, nelts;
739 Addr addr, addr0, offset = 0;
740 Addr exc_addr = _cache->c_shdr->sh_addr;
741
742 dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
743 ent = (exception_range_entry *)(_cache->c_data->d_buf);
744 nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
745
746 for (i = 0; i < nelts; i++, ent++) {
747 if (do_swap) {
748 /*
749 * Copy byte swapped values into the scratch buffer.
750 * The reserved field is not used, so we skip it.
751 */
752 scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
753 scratch.length = BSWAP_XWORD(ent->length);
754 scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
755 scratch.type_block = swap_ptrdiff(ent->type_block);
756 } else {
757 cur_ent = ent;
758 }
759
760 /*
761 * The table is required to be sorted by the address
762 * derived from ret_addr, to allow binary searching. Ensure
763 * that addresses grow monotonically.
764 */
765 addr = SRELPTR(ret_addr);
766 /*LINTED:E_VAR_USED_BEFORE_SET*/
767 if ((i != 0) && (addr0 > addr))
768 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
769 file, _cache->c_name, EC_WORD(i));
770
771 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
772 EC_XWORD(i));
773 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
774 EC_ADDR(addr), EC_ADDR(cur_ent->length),
775 EC_ADDR(SRELPTR(handler_addr)),
776 EC_ADDR(SRELPTR(type_block)));
777
778 addr0 = addr;
779 exc_addr += sizeof (exception_range_entry);
780 offset += sizeof (exception_range_entry);
781 }
782
783 #undef SRELPTR
784 #undef MSG_EXR_TITLE
785 #undef MSG_EXR_ENTRY
786 }
787
788 /*
789 * Display information from unwind/exception sections:
790 *
791 * - GNU/amd64 .eh_frame and .eh_frame_hdr
792 * - Sun C++ .exception_ranges
793 *
794 */
795 static void
796 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
797 const char *file, Elf *elf, uint_t flags)
798 {
799 static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
800
801 Word cnt;
802 Phdr *uphdr = NULL;
803 gnu_eh_state_t eh_state;
804
805 /*
806 * Historical background: .eh_frame and .eh_frame_hdr sections
807 * come from the GNU compilers (particularly C++), and are used
808 * under all architectures. Their format is based on DWARF. When
809 * the amd64 ABI was defined, these sections were adopted wholesale
810 * from the existing practice.
811 *
812 * When amd64 support was added to Solaris, support for these
813 * sections was added, using the SHT_AMD64_UNWIND section type
814 * to identify them. At first, we ignored them in objects for
815 * non-amd64 targets, but later broadened our support to include
816 * other architectures in order to better support gcc-generated
817 * objects.
818 *
819 * .exception_ranges implement the same basic concepts, but
820 * were invented at Sun for the Sun C++ compiler.
821 *
822 * We match these sections by name, rather than section type,
823 * because they can come in as either SHT_AMD64_UNWIND, or as
824 * SHT_PROGBITS, and because the type isn't enough to determine
825 * how they should be interpreted.
826 */
827 /* Find the program header for .eh_frame_hdr if present */
828 if (phnum)
829 uphdr = getphdr(phnum, phdr_types,
830 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
831
832 /*
833 * eh_state is used to retain data used by unwind_eh_frame()
834 * across calls.
835 */
836 bzero(&eh_state, sizeof (eh_state));
837
838 for (cnt = 1; cnt < shnum; cnt++) {
839 Cache *_cache = &cache[cnt];
840 Shdr *shdr = _cache->c_shdr;
841 int is_exrange;
842
843 /*
844 * Skip sections of the wrong type. On amd64, they
845 * can be SHT_AMD64_UNWIND. On all platforms, they
846 * can be SHT_PROGBITS (including amd64, if using
847 * the GNU compilers).
848 *
849 * Skip anything other than these two types. The name
850 * test below will thin out the SHT_PROGBITS that don't apply.
851 */
852 if ((shdr->sh_type != SHT_PROGBITS) &&
853 (shdr->sh_type != SHT_AMD64_UNWIND))
854 continue;
855
856 /*
857 * Only sections with certain well known names are of interest.
858 * These are:
859 *
860 * .eh_frame - amd64/GNU-compiler unwind sections
861 * .eh_frame_hdr - Sorted table referencing .eh_frame
862 * .exception_ranges - Sun C++ unwind sections
863 *
864 * We do a prefix comparison, allowing for naming conventions
865 * like .eh_frame.foo, hence the use of strncmp() rather than
866 * strcmp(). This means that we only really need to test for
867 * .eh_frame, as it's a prefix of .eh_frame_hdr.
868 */
869 is_exrange = strncmp(_cache->c_name,
870 MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
871 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
872 MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
873 continue;
874
875 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
876 continue;
877
878 if (_cache->c_data == NULL)
879 continue;
880
881 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
882 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
883
884 if (is_exrange)
885 unwind_exception_ranges(_cache, file,
886 _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
887 else
888 unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
889 &eh_state, osabi, file, flags);
890 }
891 }
892
893 /*
894 * Initialize a symbol table state structure
895 *
896 * entry:
897 * state - State structure to be initialized
898 * cache - Cache of all section headers
899 * shnum - # of sections in cache
900 * secndx - Index of symbol table section
901 * ehdr - ELF header for file
902 * versym - Information about versym section
903 * file - Name of file
904 * flags - Command line option flags
905 */
906 static int
907 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
908 Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
909 uint_t flags)
910 {
911 Shdr *shdr;
912
913 state->file = file;
914 state->ehdr = ehdr;
915 state->cache = cache;
916 state->osabi = osabi;
917 state->shnum = shnum;
918 state->seccache = &cache[secndx];
919 state->secndx = secndx;
920 state->secname = state->seccache->c_name;
921 state->flags = flags;
922 state->shxndx.checked = 0;
923 state->shxndx.data = NULL;
924 state->shxndx.n = 0;
925
926 shdr = state->seccache->c_shdr;
927
928 /*
929 * Check the symbol data and per-item size.
930 */
931 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
932 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
933 file, state->secname);
934 return (0);
935 }
936 if (state->seccache->c_data == NULL)
937 return (0);
938
939 /* LINTED */
940 state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
941 state->sym = (Sym *)state->seccache->c_data->d_buf;
942
943 /*
944 * Check associated string table section.
945 */
946 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
947 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
948 file, state->secname, EC_WORD(shdr->sh_link));
949 return (0);
950 }
951
952 /*
953 * Determine if there is a associated Versym section
954 * with this Symbol Table.
955 */
956 if (versym && versym->cache &&
957 (versym->cache->c_shdr->sh_link == state->secndx))
958 state->versym = versym;
959 else
960 state->versym = NULL;
961
962
963 return (1);
964 }
965
966 /*
967 * Determine the extended section index used for symbol tables entries.
968 */
969 static void
970 symbols_getxindex(SYMTBL_STATE *state)
971 {
972 uint_t symn;
973 Word symcnt;
974
975 state->shxndx.checked = 1; /* Note that we've been called */
976 for (symcnt = 1; symcnt < state->shnum; symcnt++) {
977 Cache *_cache = &state->cache[symcnt];
978 Shdr *shdr = _cache->c_shdr;
979
980 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
981 (shdr->sh_link != state->secndx))
982 continue;
983
984 if ((shdr->sh_entsize) &&
985 /* LINTED */
986 ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
987 continue;
988
989 if (_cache->c_data == NULL)
990 continue;
991
992 state->shxndx.data = _cache->c_data->d_buf;
993 state->shxndx.n = symn;
994 return;
995 }
996 }
997
998 /*
999 * Produce a line of output for the given symbol
1000 *
1001 * entry:
1002 * state - Symbol table state
1003 * symndx - Index of symbol within the table
1004 * info - Value of st_info (indicates local/global range)
1005 * symndx_disp - Index to display. This may not be the same
1006 * as symndx if the display is relative to the logical
1007 * combination of the SUNW_ldynsym/dynsym tables.
1008 * sym - Symbol to display
1009 */
1010 static void
1011 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1012 Sym *sym)
1013 {
1014 /*
1015 * Symbol types for which we check that the specified
1016 * address/size land inside the target section.
1017 */
1018 static const int addr_symtype[] = {
1019 0, /* STT_NOTYPE */
1020 1, /* STT_OBJECT */
1021 1, /* STT_FUNC */
1022 0, /* STT_SECTION */
1023 0, /* STT_FILE */
1024 1, /* STT_COMMON */
1025 0, /* STT_TLS */
1026 0, /* 7 */
1027 0, /* 8 */
1028 0, /* 9 */
1029 0, /* 10 */
1030 0, /* 11 */
1031 0, /* 12 */
1032 0, /* STT_SPARC_REGISTER */
1033 0, /* 14 */
1034 0, /* 15 */
1035 };
1036 #if STT_NUM != (STT_TLS + 1)
1037 #error "STT_NUM has grown. Update addr_symtype[]"
1038 #endif
1039
1040 char index[MAXNDXSIZE];
1041 const char *symname, *sec;
1042 Versym verndx;
1043 int gnuver;
1044 uchar_t type;
1045 Shdr *tshdr;
1046 Word shndx;
1047 Conv_inv_buf_t inv_buf;
1048
1049 /* Ensure symbol index is in range */
1050 if (symndx >= state->symn) {
1051 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1052 state->file, state->secname, EC_WORD(symndx));
1053 return;
1054 }
1055
1056 /*
1057 * If we are using extended symbol indexes, find the
1058 * corresponding SHN_SYMTAB_SHNDX table.
1059 */
1060 if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1061 symbols_getxindex(state);
1062
1063 /* LINTED */
1064 symname = string(state->seccache, symndx,
1065 &state->cache[state->seccache->c_shdr->sh_link], state->file,
1066 sym->st_name);
1067
1068 tshdr = NULL;
1069 sec = NULL;
1070
1071 if (state->ehdr->e_type == ET_CORE) {
1072 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1073 } else if (state->flags & FLG_CTL_FAKESHDR) {
1074 /*
1075 * If we are using fake section headers derived from
1076 * the program headers, then the section indexes
1077 * in the symbols do not correspond to these headers.
1078 * The section names are not available, so all we can
1079 * do is to display them in numeric form.
1080 */
1081 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1082 sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1083 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1084 (sym->st_shndx < state->shnum)) {
1085 shndx = sym->st_shndx;
1086 tshdr = state->cache[shndx].c_shdr;
1087 sec = state->cache[shndx].c_name;
1088 } else if (sym->st_shndx == SHN_XINDEX) {
1089 if (state->shxndx.data) {
1090 Word _shxndx;
1091
1092 if (symndx > state->shxndx.n) {
1093 (void) fprintf(stderr,
1094 MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1095 state->file, state->secname,
1096 EC_WORD(symndx));
1097 } else if ((_shxndx =
1098 state->shxndx.data[symndx]) > state->shnum) {
1099 (void) fprintf(stderr,
1100 MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1101 state->file, state->secname,
1102 EC_WORD(symndx), EC_WORD(_shxndx));
1103 } else {
1104 shndx = _shxndx;
1105 tshdr = state->cache[shndx].c_shdr;
1106 sec = state->cache[shndx].c_name;
1107 }
1108 } else {
1109 (void) fprintf(stderr,
1110 MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1111 state->file, state->secname, EC_WORD(symndx));
1112 }
1113 } else if ((sym->st_shndx < SHN_LORESERVE) &&
1114 (sym->st_shndx >= state->shnum)) {
1115 (void) fprintf(stderr,
1116 MSG_INTL(MSG_ERR_BADSYM5), state->file,
1117 state->secname, EC_WORD(symndx),
1118 demangle(symname, state->flags), sym->st_shndx);
1119 }
1120
1121 /*
1122 * If versioning is available display the
1123 * version index. If not, then use 0.
1124 */
1125 if (state->versym) {
1126 Versym test_verndx;
1127
1128 verndx = test_verndx = state->versym->data[symndx];
1129 gnuver = state->versym->gnu_full;
1130
1131 /*
1132 * Check to see if this is a defined symbol with a
1133 * version index that is outside the valid range for
1134 * the file. The interpretation of this depends on
1135 * the style of versioning used by the object.
1136 *
1137 * Versions >= VER_NDX_LORESERVE have special meanings,
1138 * and are exempt from this checking.
1139 *
1140 * GNU style version indexes use the top bit of the
1141 * 16-bit index value (0x8000) as the "hidden bit".
1142 * We must mask off this bit in order to compare
1143 * the version against the maximum value.
1144 */
1145 if (gnuver)
1146 test_verndx &= ~0x8000;
1147
1148 if ((test_verndx > state->versym->max_verndx) &&
1149 (verndx < VER_NDX_LORESERVE))
1150 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1151 state->file, state->secname, EC_WORD(symndx),
1152 EC_HALF(test_verndx), state->versym->max_verndx);
1153 } else {
1154 verndx = 0;
1155 gnuver = 0;
1156 }
1157
1158 /*
1159 * Error checking for TLS.
1160 */
1161 type = ELF_ST_TYPE(sym->st_info);
1162 if (type == STT_TLS) {
1163 if (tshdr &&
1164 (sym->st_shndx != SHN_UNDEF) &&
1165 ((tshdr->sh_flags & SHF_TLS) == 0)) {
1166 (void) fprintf(stderr,
1167 MSG_INTL(MSG_ERR_BADSYM3), state->file,
1168 state->secname, EC_WORD(symndx),
1169 demangle(symname, state->flags));
1170 }
1171 } else if ((type != STT_SECTION) && sym->st_size &&
1172 tshdr && (tshdr->sh_flags & SHF_TLS)) {
1173 (void) fprintf(stderr,
1174 MSG_INTL(MSG_ERR_BADSYM4), state->file,
1175 state->secname, EC_WORD(symndx),
1176 demangle(symname, state->flags));
1177 }
1178
1179 /*
1180 * If a symbol with non-zero size has a type that
1181 * specifies an address, then make sure the location
1182 * it references is actually contained within the
1183 * section. UNDEF symbols don't count in this case,
1184 * so we ignore them.
1185 *
1186 * The meaning of the st_value field in a symbol
1187 * depends on the type of object. For a relocatable
1188 * object, it is the offset within the section.
1189 * For sharable objects, it is the offset relative to
1190 * the base of the object, and for other types, it is
1191 * the virtual address. To get an offset within the
1192 * section for non-ET_REL files, we subtract the
1193 * base address of the section.
1194 */
1195 if (addr_symtype[type] && (sym->st_size > 0) &&
1196 (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1197 (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1198 Word v = sym->st_value;
1199 if (state->ehdr->e_type != ET_REL)
1200 v -= tshdr->sh_addr;
1201 if (((v + sym->st_size) > tshdr->sh_size)) {
1202 (void) fprintf(stderr,
1203 MSG_INTL(MSG_ERR_BADSYM6), state->file,
1204 state->secname, EC_WORD(symndx),
1205 demangle(symname, state->flags),
1206 EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1207 EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1208 }
1209 }
1210
1211 /*
1212 * A typical symbol table uses the sh_info field to indicate one greater
1213 * than the symbol table index of the last local symbol, STB_LOCAL.
1214 * Therefore, symbol indexes less than sh_info should have local
1215 * binding. Symbol indexes greater than, or equal to sh_info, should
1216 * have global binding. Note, we exclude UNDEF/NOTY symbols with zero
1217 * value and size, as these symbols may be the result of an mcs(1)
1218 * section deletion.
1219 */
1220 if (info) {
1221 uchar_t bind = ELF_ST_BIND(sym->st_info);
1222
1223 if ((symndx < info) && (bind != STB_LOCAL)) {
1224 (void) fprintf(stderr,
1225 MSG_INTL(MSG_ERR_BADSYM7), state->file,
1226 state->secname, EC_WORD(symndx),
1227 demangle(symname, state->flags), EC_XWORD(info));
1228
1229 } else if ((symndx >= info) && (bind == STB_LOCAL) &&
1230 ((sym->st_shndx != SHN_UNDEF) ||
1231 (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1232 (sym->st_size != 0) || (sym->st_value != 0))) {
1233 (void) fprintf(stderr,
1234 MSG_INTL(MSG_ERR_BADSYM8), state->file,
1235 state->secname, EC_WORD(symndx),
1236 demangle(symname, state->flags), EC_XWORD(info));
1237 }
1238 }
1239
1240 (void) snprintf(index, MAXNDXSIZE,
1241 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1242 Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1243 state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1244 }
1245
1246 /*
1247 * Process a SHT_SUNW_cap capabilities section.
1248 */
1249 static int
1250 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1251 uchar_t osabi, Ehdr *ehdr, uint_t flags)
1252 {
1253 SYMTBL_STATE state;
1254 Word cnum, capnum, nulls, symcaps;
1255 int descapndx, objcap, title;
1256 Cap *cap = (Cap *)ccache->c_data->d_buf;
1257 Shdr *cishdr, *cshdr = ccache->c_shdr;
1258 Cache *cicache, *strcache;
1259 Capinfo *capinfo = NULL;
1260 Word capinfonum;
1261 const char *strs = NULL;
1262 size_t strs_size;
1263
1264 if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1265 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1266 file, ccache->c_name);
1267 return (0);
1268 }
1269
1270 /*
1271 * If this capabilities section is associated with symbols, then the
1272 * sh_link field points to the associated capabilities information
1273 * section. The sh_link field of the capabilities information section
1274 * points to the associated symbol table.
1275 */
1276 if (cshdr->sh_link) {
1277 Cache *scache;
1278 Shdr *sshdr;
1279
1280 /*
1281 * Validate that the sh_link field points to a capabilities
1282 * information section.
1283 */
1284 if (cshdr->sh_link >= shnum) {
1285 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1286 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1287 return (0);
1288 }
1289
1290 cicache = &cache[cshdr->sh_link];
1291 cishdr = cicache->c_shdr;
1292
1293 if (cishdr->sh_type != SHT_SUNW_capinfo) {
1294 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1295 file, ccache->c_name, EC_WORD(cshdr->sh_link));
1296 return (0);
1297 }
1298
1299 capinfo = cicache->c_data->d_buf;
1300 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1301
1302 /*
1303 * Validate that the sh_link field of the capabilities
1304 * information section points to a valid symbol table.
1305 */
1306 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1307 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1308 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1309 return (0);
1310 }
1311 scache = &cache[cishdr->sh_link];
1312 sshdr = scache->c_shdr;
1313
1314 if ((sshdr->sh_type != SHT_SYMTAB) &&
1315 (sshdr->sh_type != SHT_DYNSYM)) {
1316 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1317 file, cicache->c_name, EC_WORD(cishdr->sh_link));
1318 return (0);
1319 }
1320
1321 if (!init_symtbl_state(&state, cache, shnum,
1322 cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1323 return (0);
1324 }
1325
1326 /*
1327 * If this capabilities section contains capability string entries,
1328 * then determine the associated string table. Capabilities entries
1329 * that define names require that the capability section indicate
1330 * which string table to use via sh_info.
1331 */
1332 if (cshdr->sh_info) {
1333 Shdr *strshdr;
1334
1335 /*
1336 * Validate that the sh_info field points to a string table.
1337 */
1338 if (cshdr->sh_info >= shnum) {
1339 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1340 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1341 return (0);
1342 }
1343
1344 strcache = &cache[cshdr->sh_info];
1345 strshdr = strcache->c_shdr;
1346
1347 if (strshdr->sh_type != SHT_STRTAB) {
1348 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1349 file, ccache->c_name, EC_WORD(cshdr->sh_info));
1350 return (0);
1351 }
1352 strs = (const char *)strcache->c_data->d_buf;
1353 strs_size = strcache->c_data->d_size;
1354 }
1355
1356 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1357 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1358
1359 capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1360
1361 nulls = symcaps = 0;
1362 objcap = title = 1;
1363 descapndx = -1;
1364
1365 /*
1366 * Traverse the capabilities section printing each capability group.
1367 * The first capabilities group defines any object capabilities. Any
1368 * following groups define symbol capabilities. In the case where no
1369 * object capabilities exist, but symbol capabilities do, a single
1370 * CA_SUNW_NULL terminator for the object capabilities exists.
1371 */
1372 for (cnum = 0; cnum < capnum; cap++, cnum++) {
1373 if (cap->c_tag == CA_SUNW_NULL) {
1374 /*
1375 * A CA_SUNW_NULL tag terminates a capabilities group.
1376 * If the first capabilities tag is CA_SUNW_NULL, then
1377 * no object capabilities exist.
1378 */
1379 if ((nulls++ == 0) && (cnum == 0))
1380 objcap = 0;
1381 title = 1;
1382 } else {
1383 if (title) {
1384 if (nulls == 0) {
1385 /*
1386 * If this capabilities group represents
1387 * the object capabilities (i.e., no
1388 * CA_SUNW_NULL tag has been processed
1389 * yet), then display an object
1390 * capabilities title.
1391 */
1392 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1393 dbg_print(0,
1394 MSG_INTL(MSG_OBJ_CAP_TITLE));
1395 } else {
1396 /*
1397 * If this is a symbols capabilities
1398 * group (i.e., a CA_SUNW_NULL tag has
1399 * already be found that terminates
1400 * the object capabilities group), then
1401 * display a symbol capabilities title,
1402 * and retain this capabilities index
1403 * for later processing.
1404 */
1405 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1406 dbg_print(0,
1407 MSG_INTL(MSG_SYM_CAP_TITLE));
1408 descapndx = cnum;
1409 }
1410 Elf_cap_title(0);
1411 title = 0;
1412 }
1413
1414 /*
1415 * Print the capabilities data.
1416 *
1417 * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1418 * entries require a string table, which should have
1419 * already been established.
1420 */
1421 if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1422 (cap->c_tag == CA_SUNW_MACH) ||
1423 (cap->c_tag == CA_SUNW_ID))) {
1424 (void) fprintf(stderr,
1425 MSG_INTL(MSG_WARN_INVCAP4), file,
1426 EC_WORD(elf_ndxscn(ccache->c_scn)),
1427 ccache->c_name, EC_WORD(cshdr->sh_info));
1428 }
1429 Elf_cap_entry(0, cap, cnum, strs, strs_size,
1430 ehdr->e_machine);
1431 }
1432
1433 /*
1434 * If this CA_SUNW_NULL tag terminates a symbol capabilities
1435 * group, determine the associated symbols.
1436 */
1437 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1438 (descapndx != -1)) {
1439 Capinfo *cip;
1440 Word inum;
1441
1442 symcaps++;
1443
1444 /*
1445 * Make sure we've discovered a SHT_SUNW_capinfo table.
1446 */
1447 if ((cip = capinfo) == NULL) {
1448 (void) fprintf(stderr,
1449 MSG_INTL(MSG_ERR_INVCAP), file,
1450 ccache->c_name, EC_WORD(cshdr->sh_link));
1451 return (0);
1452 }
1453
1454 /*
1455 * Determine what symbols reference this capabilities
1456 * group.
1457 */
1458 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1459 dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1460 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1461
1462 for (inum = 1, cip++; inum < capinfonum;
1463 inum++, cip++) {
1464 Word gndx = (Word)ELF_C_GROUP(*cip);
1465
1466 if (gndx && (gndx == descapndx)) {
1467 output_symbol(&state, inum, 0,
1468 inum, state.sym + inum);
1469 }
1470 }
1471 descapndx = -1;
1472 continue;
1473 }
1474
1475 /*
1476 * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1477 * object is suspicious as it has no effect.
1478 */
1479 if ((cap->c_tag == CA_SUNW_SF_1) &&
1480 (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1481 (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1482 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1483 file, ccache->c_name);
1484 }
1485 }
1486
1487 /*
1488 * If this is a dynamic object, with symbol capabilities, then a
1489 * .SUNW_capchain section should exist. This section contains a chain
1490 * of symbol indexes for each capabilities family. This is the list
1491 * that is searched by ld.so.1 to determine the best capabilities
1492 * candidate.
1493 *
1494 * Note, more than one capabilities lead symbol can point to the same
1495 * family chain. For example, a weak/global pair of symbols can both
1496 * represent the same family of capabilities symbols. Therefore, to
1497 * display all possible families we traverse the capabilities
1498 * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1499 * From these we determine the associated capabilities chain to inspect.
1500 */
1501 if (symcaps &&
1502 ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1503 Capinfo *cip;
1504 Capchain *chain;
1505 Cache *chcache;
1506 Shdr *chshdr;
1507 Word chainnum, inum;
1508
1509 /*
1510 * Validate that the sh_info field of the capabilities
1511 * information section points to a capabilities chain section.
1512 */
1513 if (cishdr->sh_info >= shnum) {
1514 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1515 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1516 return (0);
1517 }
1518
1519 chcache = &cache[cishdr->sh_info];
1520 chshdr = chcache->c_shdr;
1521
1522 if (chshdr->sh_type != SHT_SUNW_capchain) {
1523 (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1524 file, cicache->c_name, EC_WORD(cishdr->sh_info));
1525 return (0);
1526 }
1527
1528 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1529 chain = (Capchain *)chcache->c_data->d_buf;
1530
1531 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1532 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1533
1534 /*
1535 * Traverse the capabilities information section looking for
1536 * CAPINFO_SUNW_GLOB lead capabilities symbols.
1537 */
1538 cip = capinfo;
1539 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1540 const char *name;
1541 Sym *sym;
1542 Word sndx, cndx;
1543 Word gndx = (Word)ELF_C_GROUP(*cip);
1544
1545 if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1546 continue;
1547
1548 /*
1549 * Determine the symbol that is associated with this
1550 * capability information entry, and use this to
1551 * identify this capability family.
1552 */
1553 sym = (Sym *)(state.sym + inum);
1554 name = string(cicache, inum, strcache, file,
1555 sym->st_name);
1556
1557 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1558 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1559 dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1560
1561 cndx = (Word)ELF_C_SYM(*cip);
1562
1563 /*
1564 * Traverse this families chain and identify each
1565 * family member.
1566 */
1567 for (;;) {
1568 char _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1569
1570 if (cndx >= chainnum) {
1571 (void) fprintf(stderr,
1572 MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1573 cicache->c_name, EC_WORD(inum),
1574 EC_WORD(cndx));
1575 break;
1576 }
1577 if ((sndx = chain[cndx]) == 0)
1578 break;
1579
1580 /*
1581 * Determine this entries symbol reference.
1582 */
1583 if (sndx > state.symn) {
1584 (void) fprintf(stderr,
1585 MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1586 EC_WORD(sndx), chcache->c_name,
1587 EC_WORD(cndx));
1588 name = MSG_INTL(MSG_STR_UNKNOWN);
1589 } else {
1590 sym = (Sym *)(state.sym + sndx);
1591 name = string(chcache, sndx,
1592 strcache, file, sym->st_name);
1593 }
1594
1595 /*
1596 * Display the family member.
1597 */
1598 (void) snprintf(_chain, MAXNDXSIZE,
1599 MSG_ORIG(MSG_FMT_INTEGER), cndx);
1600 (void) snprintf(_symndx, MAXNDXSIZE,
1601 MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1602 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1603 _chain, _symndx, demangle(name, flags));
1604
1605 cndx++;
1606 }
1607 }
1608 }
1609 return (objcap);
1610 }
1611
1612 /*
1613 * Print the capabilities.
1614 *
1615 * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1616 * capabilities groups. The first group defines the object capabilities.
1617 * This group defines the minimum capability requirements of the entire
1618 * object file. If this is a dynamic object, this group should be associated
1619 * with a PT_SUNWCAP program header.
1620 *
1621 * Additional capabilities groups define the association of individual symbols
1622 * to specific capabilities.
1623 */
1624 static void
1625 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1626 uchar_t osabi, Elf *elf, uint_t flags)
1627 {
1628 Word cnt;
1629 Shdr *cshdr = NULL;
1630 Cache *ccache;
1631 Off cphdr_off = 0;
1632 Xword cphdr_sz;
1633
1634 /*
1635 * Determine if a global capabilities header exists.
1636 */
1637 if (phnum) {
1638 Phdr *phdr;
1639
1640 if ((phdr = elf_getphdr(elf)) == NULL) {
1641 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1642 return;
1643 }
1644
1645 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1646 if (phdr->p_type == PT_SUNWCAP) {
1647 cphdr_off = phdr->p_offset;
1648 cphdr_sz = phdr->p_filesz;
1649 break;
1650 }
1651 }
1652 }
1653
1654 /*
1655 * Determine if a capabilities section exists.
1656 */
1657 for (cnt = 1; cnt < shnum; cnt++) {
1658 Cache *_cache = &cache[cnt];
1659 Shdr *shdr = _cache->c_shdr;
1660
1661 /*
1662 * Process any capabilities information.
1663 */
1664 if (shdr->sh_type == SHT_SUNW_cap) {
1665 if (cap_section(file, cache, shnum, _cache, osabi,
1666 ehdr, flags)) {
1667 /*
1668 * If this section defined an object capability
1669 * group, retain the section information for
1670 * program header validation.
1671 */
1672 ccache = _cache;
1673 cshdr = shdr;
1674 }
1675 continue;
1676 }
1677 }
1678
1679 if ((cshdr == NULL) && (cphdr_off == 0))
1680 return;
1681
1682 if (cphdr_off && (cshdr == NULL))
1683 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1684
1685 /*
1686 * If this object is an executable or shared object, and it provided
1687 * an object capabilities group, then the group should have an
1688 * accompanying PT_SUNWCAP program header.
1689 */
1690 if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1691 if (cphdr_off == 0) {
1692 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1693 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1694 ccache->c_name);
1695 } else if ((cphdr_off != cshdr->sh_offset) ||
1696 (cphdr_sz != cshdr->sh_size)) {
1697 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1698 file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1699 ccache->c_name);
1700 }
1701 }
1702 }
1703
1704 /*
1705 * Print the interpretor.
1706 */
1707 static void
1708 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1709 {
1710 static Word phdr_types[] = { PT_INTERP };
1711
1712
1713 Word cnt;
1714 Shdr *ishdr = NULL;
1715 Cache *icache;
1716 Off iphdr_off = 0;
1717 Xword iphdr_fsz;
1718
1719 /*
1720 * Determine if an interp header exists.
1721 */
1722 if (phnum) {
1723 Phdr *phdr;
1724
1725 phdr = getphdr(phnum, phdr_types,
1726 sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1727 if (phdr != NULL) {
1728 iphdr_off = phdr->p_offset;
1729 iphdr_fsz = phdr->p_filesz;
1730 }
1731 }
1732
1733 if (iphdr_off == 0)
1734 return;
1735
1736 /*
1737 * Determine if an interp section exists.
1738 */
1739 for (cnt = 1; cnt < shnum; cnt++) {
1740 Cache *_cache = &cache[cnt];
1741 Shdr *shdr = _cache->c_shdr;
1742
1743 /*
1744 * Scan sections to find a section which contains the PT_INTERP
1745 * string. The target section can't be in a NOBITS section.
1746 */
1747 if ((shdr->sh_type == SHT_NOBITS) ||
1748 (iphdr_off < shdr->sh_offset) ||
1749 (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1750 continue;
1751
1752 icache = _cache;
1753 ishdr = shdr;
1754 break;
1755 }
1756
1757 /*
1758 * Print the interpreter string based on the offset defined in the
1759 * program header, as this is the offset used by the kernel.
1760 */
1761 if (ishdr && icache->c_data) {
1762 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1763 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1764 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1765 (char *)icache->c_data->d_buf +
1766 (iphdr_off - ishdr->sh_offset));
1767 } else
1768 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1769
1770 /*
1771 * If there are any inconsistences between the program header and
1772 * section information, flag them.
1773 */
1774 if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1775 (iphdr_fsz != ishdr->sh_size))) {
1776 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1777 icache->c_name);
1778 }
1779 }
1780
1781 /*
1782 * Print the syminfo section.
1783 */
1784 static void
1785 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1786 {
1787 Shdr *infoshdr;
1788 Syminfo *info;
1789 Sym *syms;
1790 Dyn *dyns;
1791 Word infonum, cnt, ndx, symnum, dynnum;
1792 Cache *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1793 Boolean *dynerr;
1794
1795 for (cnt = 1; cnt < shnum; cnt++) {
1796 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1797 infocache = &cache[cnt];
1798 break;
1799 }
1800 }
1801 if (infocache == NULL)
1802 return;
1803
1804 infoshdr = infocache->c_shdr;
1805 if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1806 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1807 file, infocache->c_name);
1808 return;
1809 }
1810 if (infocache->c_data == NULL)
1811 return;
1812
1813 infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1814 info = (Syminfo *)infocache->c_data->d_buf;
1815
1816 /*
1817 * If there is no associated dynamic section, determine if one
1818 * is needed, and if so issue a warning. If there is an
1819 * associated dynamic section, validate it and get the data buffer
1820 * for it.
1821 */
1822 dyns = NULL;
1823 dynnum = 0;
1824 if (infoshdr->sh_info == 0) {
1825 Syminfo *_info = info + 1;
1826
1827 for (ndx = 1; ndx < infonum; ndx++, _info++) {
1828 if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1829 continue;
1830
1831 if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1832 (void) fprintf(stderr,
1833 MSG_INTL(MSG_ERR_BADSHINFO), file,
1834 infocache->c_name,
1835 EC_WORD(infoshdr->sh_info));
1836 }
1837 } else if ((infoshdr->sh_info >= shnum) ||
1838 (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1839 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1840 file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1841 } else {
1842 dyncache = &cache[infoshdr->sh_info];
1843 if ((dyncache->c_data == NULL) ||
1844 ((dyns = dyncache->c_data->d_buf) == NULL)) {
1845 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1846 file, dyncache->c_name);
1847 }
1848 if (dyns != NULL) {
1849 dynnum = dyncache->c_shdr->sh_size /
1850 dyncache->c_shdr->sh_entsize;
1851
1852 /*
1853 * We validate the type of dynamic elements referenced
1854 * from the syminfo. This array is used report any
1855 * bad dynamic entries.
1856 */
1857 if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1858 NULL) {
1859 int err = errno;
1860 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1861 file, strerror(err));
1862 return;
1863 }
1864 }
1865 }
1866
1867 /*
1868 * Get the data buffer for the associated symbol table and string table.
1869 */
1870 if (stringtbl(cache, 1, cnt, shnum, file,
1871 &symnum, &symsec, &strsec) == 0)
1872 return;
1873
1874 syms = symsec->c_data->d_buf;
1875
1876 /*
1877 * Loop through the syminfo entries.
1878 */
1879 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1880 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1881 Elf_syminfo_title(0);
1882
1883 for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1884 Sym *sym;
1885 const char *needed, *name;
1886 Word expect_dt;
1887 Word boundto = info->si_boundto;
1888
1889 if ((info->si_flags == 0) && (boundto == 0))
1890 continue;
1891
1892 sym = &syms[ndx];
1893 name = string(infocache, ndx, strsec, file, sym->st_name);
1894
1895 /* Is si_boundto set to one of the reserved values? */
1896 if (boundto >= SYMINFO_BT_LOWRESERVE) {
1897 Elf_syminfo_entry(0, ndx, info, name, NULL);
1898 continue;
1899 }
1900
1901 /*
1902 * si_boundto is referencing a dynamic section. If we don't
1903 * have one, an error was already issued above, so it suffices
1904 * to display an empty string. If we are out of bounds, then
1905 * report that and then display an empty string.
1906 */
1907 if ((dyns == NULL) || (boundto >= dynnum)) {
1908 if (dyns != NULL)
1909 (void) fprintf(stderr,
1910 MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1911 infocache->c_ndx, infocache->c_name,
1912 EC_WORD(ndx), EC_WORD(dynnum - 1),
1913 EC_WORD(boundto));
1914 Elf_syminfo_entry(0, ndx, info, name,
1915 MSG_ORIG(MSG_STR_EMPTY));
1916 continue;
1917 }
1918
1919 /*
1920 * The si_boundto reference expects a specific dynamic element
1921 * type at the given index. The dynamic element is always a
1922 * string that gives an object name. The specific type depends
1923 * on the si_flags present. Ensure that we've got the right
1924 * type.
1925 */
1926 if (info->si_flags & SYMINFO_FLG_FILTER)
1927 expect_dt = DT_SUNW_FILTER;
1928 else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
1929 expect_dt = DT_SUNW_AUXILIARY;
1930 else if (info->si_flags & (SYMINFO_FLG_DIRECT |
1931 SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
1932 expect_dt = DT_NEEDED;
1933 else
1934 expect_dt = DT_NULL; /* means we ignore the type */
1935
1936 if ((dyns[boundto].d_tag != expect_dt) &&
1937 (expect_dt != DT_NULL)) {
1938 Conv_inv_buf_t buf1, buf2;
1939
1940 /* Only complain about each dynamic element once */
1941 if (!dynerr[boundto]) {
1942 (void) fprintf(stderr,
1943 MSG_INTL(MSG_ERR_BADSIDYNTAG),
1944 file, infocache->c_ndx, infocache->c_name,
1945 EC_WORD(ndx), dyncache->c_ndx,
1946 dyncache->c_name, EC_WORD(boundto),
1947 conv_dyn_tag(expect_dt, osabi,
1948 ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
1949 conv_dyn_tag(dyns[boundto].d_tag, osabi,
1950 ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
1951 dynerr[boundto] = TRUE;
1952 }
1953 }
1954
1955 /*
1956 * Whether or not the DT item we're pointing at is
1957 * of the right type, if it's a type we recognize as
1958 * providing a string, go ahead and show it. Otherwise
1959 * an empty string.
1960 */
1961 switch (dyns[boundto].d_tag) {
1962 case DT_NEEDED:
1963 case DT_SONAME:
1964 case DT_RPATH:
1965 case DT_RUNPATH:
1966 case DT_CONFIG:
1967 case DT_DEPAUDIT:
1968 case DT_USED:
1969 case DT_AUDIT:
1970 case DT_SUNW_AUXILIARY:
1971 case DT_SUNW_FILTER:
1972 case DT_FILTER:
1973 case DT_AUXILIARY:
1974 needed = string(infocache, boundto,
1975 strsec, file, dyns[boundto].d_un.d_val);
1976 break;
1977 default:
1978 needed = MSG_ORIG(MSG_STR_EMPTY);
1979 }
1980 Elf_syminfo_entry(0, ndx, info, name, needed);
1981 }
1982 if (dyns != NULL)
1983 free(dynerr);
1984 }
1985
1986 /*
1987 * Print version definition section entries.
1988 */
1989 static void
1990 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1991 const char *file)
1992 {
1993 Word cnt;
1994 char index[MAXNDXSIZE];
1995
1996 Elf_ver_def_title(0);
1997
1998 for (cnt = 1; cnt <= vdf_num; cnt++,
1999 vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2000 Conv_ver_flags_buf_t ver_flags_buf;
2001 const char *name, *dep;
2002 Half vcnt = vdf->vd_cnt - 1;
2003 Half ndx = vdf->vd_ndx;
2004 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2005
2006 /*
2007 * Obtain the name and first dependency (if any).
2008 */
2009 name = string(vcache, cnt, scache, file, vdap->vda_name);
2010 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2011 if (vcnt)
2012 dep = string(vcache, cnt, scache, file, vdap->vda_name);
2013 else
2014 dep = MSG_ORIG(MSG_STR_EMPTY);
2015
2016 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2017 EC_XWORD(ndx));
2018 Elf_ver_line_1(0, index, name, dep,
2019 conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2020
2021 /*
2022 * Print any additional dependencies.
2023 */
2024 if (vcnt) {
2025 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2026 for (vcnt--; vcnt; vcnt--,
2027 vdap = (Verdaux *)((uintptr_t)vdap +
2028 vdap->vda_next)) {
2029 dep = string(vcache, cnt, scache, file,
2030 vdap->vda_name);
2031 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2032 }
2033 }
2034 }
2035 }
2036
2037 /*
2038 * Print version needed section entries.
2039 *
2040 * entry:
2041 * vnd - Address of verneed data
2042 * vnd_num - # of Verneed entries
2043 * vcache - Cache of verneed section being processed
2044 * scache - Cache of associated string table section
2045 * file - Name of object being processed.
2046 * versym - Information about versym section
2047 *
2048 * exit:
2049 * The versions have been printed. If GNU style versioning
2050 * is in effect, versym->max_verndx has been updated to
2051 * contain the largest version index seen.
2052 *
2053 * note:
2054 * The versym section of an object that follows the original
2055 * Solaris versioning rules only contains indexes into the verdef
2056 * section. Symbols defined in other objects (UNDEF) are given
2057 * a version of 0, indicating that they are not defined by
2058 * this file, and the Verneed entries do not have associated version
2059 * indexes. For these reasons, we do not display a version index
2060 * for original-style Verneed sections.
2061 *
2062 * The GNU versioning extensions alter this: Symbols defined in other
2063 * objects receive a version index in the range above those defined
2064 * by the Verdef section, and the vna_other field of the Vernaux
2065 * structs inside the Verneed section contain the version index for
2066 * that item. We therefore display the index when showing the
2067 * contents of a GNU style Verneed section. You should not
2068 * necessarily expect these indexes to appear in sorted
2069 * order --- it seems that the GNU ld assigns the versions as
2070 * symbols are encountered during linking, and then the results
2071 * are assembled into the Verneed section afterwards.
2072 */
2073 static void
2074 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2075 const char *file, VERSYM_STATE *versym)
2076 {
2077 Word cnt;
2078 char index[MAXNDXSIZE];
2079 const char *index_str;
2080
2081 Elf_ver_need_title(0, versym->gnu_needed);
2082
2083 for (cnt = 1; cnt <= vnd_num; cnt++,
2084 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2085 Conv_ver_flags_buf_t ver_flags_buf;
2086 const char *name, *dep;
2087 Half vcnt = vnd->vn_cnt;
2088 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2089
2090 /*
2091 * Obtain the name of the needed file and the version name
2092 * within it that we're dependent on. Note that the count
2093 * should be at least one, otherwise this is a pretty bogus
2094 * entry.
2095 */
2096 name = string(vcache, cnt, scache, file, vnd->vn_file);
2097 if (vcnt)
2098 dep = string(vcache, cnt, scache, file, vnap->vna_name);
2099 else
2100 dep = MSG_INTL(MSG_STR_NULL);
2101
2102 if (vnap->vna_other == 0) { /* Traditional form */
2103 index_str = MSG_ORIG(MSG_STR_EMPTY);
2104 } else { /* GNU form */
2105 index_str = index;
2106 /* Format the version index value */
2107 (void) snprintf(index, MAXNDXSIZE,
2108 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2109 if (vnap->vna_other > versym->max_verndx)
2110 versym->max_verndx = vnap->vna_other;
2111 }
2112 Elf_ver_line_1(0, index_str, name, dep,
2113 conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2114
2115 /*
2116 * Print any additional version dependencies.
2117 */
2118 if (vcnt) {
2119 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2120 for (vcnt--; vcnt; vcnt--,
2121 vnap = (Vernaux *)((uintptr_t)vnap +
2122 vnap->vna_next)) {
2123 dep = string(vcache, cnt, scache, file,
2124 vnap->vna_name);
2125 if (vnap->vna_other > 0) {
2126 /* Format the next index value */
2127 (void) snprintf(index, MAXNDXSIZE,
2128 MSG_ORIG(MSG_FMT_INDEX),
2129 EC_XWORD(vnap->vna_other));
2130 Elf_ver_line_1(0, index,
2131 MSG_ORIG(MSG_STR_EMPTY), dep,
2132 conv_ver_flags(vnap->vna_flags,
2133 0, &ver_flags_buf));
2134 if (vnap->vna_other >
2135 versym->max_verndx)
2136 versym->max_verndx =
2137 vnap->vna_other;
2138 } else {
2139 Elf_ver_line_3(0,
2140 MSG_ORIG(MSG_STR_EMPTY), dep,
2141 conv_ver_flags(vnap->vna_flags,
2142 0, &ver_flags_buf));
2143 }
2144 }
2145 }
2146 }
2147 }
2148
2149 /*
2150 * Examine the Verneed section for information related to GNU
2151 * style Versym indexing:
2152 * - A non-zero vna_other field indicates that Versym indexes can
2153 * reference Verneed records.
2154 * - If the object uses GNU style Versym indexing, the
2155 * maximum index value is needed to detect bad Versym entries.
2156 *
2157 * entry:
2158 * vnd - Address of verneed data
2159 * vnd_num - # of Verneed entries
2160 * versym - Information about versym section
2161 *
2162 * exit:
2163 * If a non-zero vna_other field is seen, versym->gnu_needed is set.
2164 *
2165 * versym->max_verndx has been updated to contain the largest
2166 * version index seen.
2167 */
2168 static void
2169 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2170 {
2171 Word cnt;
2172
2173 for (cnt = 1; cnt <= vnd_num; cnt++,
2174 vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2175 Half vcnt = vnd->vn_cnt;
2176 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2177
2178 /*
2179 * A non-zero value of vna_other indicates that this
2180 * object references VERNEED items from the VERSYM
2181 * array.
2182 */
2183 if (vnap->vna_other != 0) {
2184 versym->gnu_needed = 1;
2185 if (vnap->vna_other > versym->max_verndx)
2186 versym->max_verndx = vnap->vna_other;
2187 }
2188
2189 /*
2190 * Check any additional version dependencies.
2191 */
2192 if (vcnt) {
2193 vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2194 for (vcnt--; vcnt; vcnt--,
2195 vnap = (Vernaux *)((uintptr_t)vnap +
2196 vnap->vna_next)) {
2197 if (vnap->vna_other == 0)
2198 continue;
2199
2200 versym->gnu_needed = 1;
2201 if (vnap->vna_other > versym->max_verndx)
2202 versym->max_verndx = vnap->vna_other;
2203 }
2204 }
2205 }
2206 }
2207
2208 /*
2209 * Display version section information if the flags require it.
2210 * Return version information needed by other output.
2211 *
2212 * entry:
2213 * cache - Cache of all section headers
2214 * shnum - # of sections in cache
2215 * file - Name of file
2216 * flags - Command line option flags
2217 * versym - VERSYM_STATE block to be filled in.
2218 */
2219 static void
2220 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2221 VERSYM_STATE *versym)
2222 {
2223 GElf_Word cnt;
2224 Cache *verdef_cache = NULL, *verneed_cache = NULL;
2225
2226
2227 /* Gather information about the version sections */
2228 versym->max_verndx = 1;
2229 for (cnt = 1; cnt < shnum; cnt++) {
2230 Cache *_cache = &cache[cnt];
2231 Shdr *shdr = _cache->c_shdr;
2232 Dyn *dyn;
2233 ulong_t numdyn;
2234
2235 switch (shdr->sh_type) {
2236 case SHT_DYNAMIC:
2237 /*
2238 * The GNU ld puts a DT_VERSYM entry in the dynamic
2239 * section so that the runtime linker can use it to
2240 * implement their versioning rules. They allow multiple
2241 * incompatible functions with the same name to exist
2242 * in different versions. The Solaris ld does not
2243 * support this mechanism, and as such, does not
2244 * produce DT_VERSYM. We use this fact to determine
2245 * which ld produced this object, and how to interpret
2246 * the version values.
2247 */
2248 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2249 (_cache->c_data == NULL))
2250 continue;
2251 numdyn = shdr->sh_size / shdr->sh_entsize;
2252 dyn = (Dyn *)_cache->c_data->d_buf;
2253 for (; numdyn-- > 0; dyn++)
2254 if (dyn->d_tag == DT_VERSYM) {
2255 versym->gnu_full =
2256 versym->gnu_needed = 1;
2257 break;
2258 }
2259 break;
2260
2261 case SHT_SUNW_versym:
2262 /* Record data address for later symbol processing */
2263 if (_cache->c_data != NULL) {
2264 versym->cache = _cache;
2265 versym->data = _cache->c_data->d_buf;
2266 continue;
2267 }
2268 break;
2269
2270 case SHT_SUNW_verdef:
2271 case SHT_SUNW_verneed:
2272 /*
2273 * Ensure the data is non-NULL and the number
2274 * of items is non-zero. Otherwise, we don't
2275 * understand the section, and will not use it.
2276 */
2277 if ((_cache->c_data == NULL) ||
2278 (_cache->c_data->d_buf == NULL)) {
2279 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2280 file, _cache->c_name);
2281 continue;
2282 }
2283 if (shdr->sh_info == 0) {
2284 (void) fprintf(stderr,
2285 MSG_INTL(MSG_ERR_BADSHINFO),
2286 file, _cache->c_name,
2287 EC_WORD(shdr->sh_info));
2288 continue;
2289 }
2290
2291 /* Make sure the string table index is in range */
2292 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2293 (void) fprintf(stderr,
2294 MSG_INTL(MSG_ERR_BADSHLINK), file,
2295 _cache->c_name, EC_WORD(shdr->sh_link));
2296 continue;
2297 }
2298
2299 /*
2300 * The section is usable. Save the cache entry.
2301 */
2302 if (shdr->sh_type == SHT_SUNW_verdef) {
2303 verdef_cache = _cache;
2304 /*
2305 * Under Solaris rules, if there is a verdef
2306 * section, the max versym index is number
2307 * of version definitions it supplies.
2308 */
2309 versym->max_verndx = shdr->sh_info;
2310 } else {
2311 verneed_cache = _cache;
2312 }
2313 break;
2314 }
2315 }
2316
2317 /*
2318 * If there is a Verneed section, examine it for information
2319 * related to GNU style versioning.
2320 */
2321 if (verneed_cache != NULL)
2322 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2323 verneed_cache->c_shdr->sh_info, versym);
2324
2325 /*
2326 * Now that all the information is available, display the
2327 * Verdef and Verneed section contents, if requested.
2328 */
2329 if ((flags & FLG_SHOW_VERSIONS) == 0)
2330 return;
2331 if (verdef_cache != NULL) {
2332 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2333 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2334 verdef_cache->c_name);
2335 version_def((Verdef *)verdef_cache->c_data->d_buf,
2336 verdef_cache->c_shdr->sh_info, verdef_cache,
2337 &cache[verdef_cache->c_shdr->sh_link], file);
2338 }
2339 if (verneed_cache != NULL) {
2340 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2341 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2342 verneed_cache->c_name);
2343 /*
2344 * If GNU versioning applies to this object, version_need()
2345 * will update versym->max_verndx, and it is not
2346 * necessary to call update_gnu_verndx().
2347 */
2348 version_need((Verneed *)verneed_cache->c_data->d_buf,
2349 verneed_cache->c_shdr->sh_info, verneed_cache,
2350 &cache[verneed_cache->c_shdr->sh_link], file, versym);
2351 }
2352 }
2353
2354 /*
2355 * Search for and process any symbol tables.
2356 */
2357 void
2358 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2359 VERSYM_STATE *versym, const char *file, uint_t flags)
2360 {
2361 SYMTBL_STATE state;
2362 Cache *_cache;
2363 Word secndx;
2364
2365 for (secndx = 1; secndx < shnum; secndx++) {
2366 Word symcnt;
2367 Shdr *shdr;
2368
2369 _cache = &cache[secndx];
2370 shdr = _cache->c_shdr;
2371
2372 if ((shdr->sh_type != SHT_SYMTAB) &&
2373 (shdr->sh_type != SHT_DYNSYM) &&
2374 ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2375 (osabi != ELFOSABI_SOLARIS)))
2376 continue;
2377 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2378 continue;
2379
2380 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2381 osabi, versym, file, flags))
2382 continue;
2383 /*
2384 * Loop through the symbol tables entries.
2385 */
2386 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2387 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2388 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2389
2390 for (symcnt = 0; symcnt < state.symn; symcnt++)
2391 output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2392 state.sym + symcnt);
2393 }
2394 }
2395
2396 /*
2397 * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2398 * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2399 */
2400 static void
2401 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2402 VERSYM_STATE *versym, const char *file, uint_t flags)
2403 {
2404 SYMTBL_STATE ldynsym_state, dynsym_state;
2405 Cache *sortcache, *symcache;
2406 Shdr *sortshdr, *symshdr;
2407 Word sortsecndx, symsecndx;
2408 Word ldynsym_cnt;
2409 Word *ndx;
2410 Word ndxn;
2411 int output_cnt = 0;
2412 Conv_inv_buf_t inv_buf;
2413
2414 for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2415
2416 sortcache = &cache[sortsecndx];
2417 sortshdr = sortcache->c_shdr;
2418
2419 if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2420 (sortshdr->sh_type != SHT_SUNW_tlssort))
2421 continue;
2422 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2423 sortshdr->sh_type))
2424 continue;
2425
2426 /*
2427 * If the section references a SUNW_ldynsym, then we
2428 * expect to see the associated .dynsym immediately
2429 * following. If it references a .dynsym, there is no
2430 * SUNW_ldynsym. If it is any other type, then we don't
2431 * know what to do with it.
2432 */
2433 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2434 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2435 file, sortcache->c_name,
2436 EC_WORD(sortshdr->sh_link));
2437 continue;
2438 }
2439 symcache = &cache[sortshdr->sh_link];
2440 symshdr = symcache->c_shdr;
2441 symsecndx = sortshdr->sh_link;
2442 ldynsym_cnt = 0;
2443 switch (symshdr->sh_type) {
2444 case SHT_SUNW_LDYNSYM:
2445 if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2446 symsecndx, ehdr, osabi, versym, file, flags))
2447 continue;
2448 ldynsym_cnt = ldynsym_state.symn;
2449 /*
2450 * We know that the dynsym follows immediately
2451 * after the SUNW_ldynsym, and so, should be at
2452 * (sortshdr->sh_link + 1). However, elfdump is a
2453 * diagnostic tool, so we do the full paranoid
2454 * search instead.
2455 */
2456 for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2457 symcache = &cache[symsecndx];
2458 symshdr = symcache->c_shdr;
2459 if (symshdr->sh_type == SHT_DYNSYM)
2460 break;
2461 }
2462 if (symsecndx >= shnum) { /* Dynsym not found! */
2463 (void) fprintf(stderr,
2464 MSG_INTL(MSG_ERR_NODYNSYM),
2465 file, sortcache->c_name);
2466 continue;
2467 }
2468 /* Fallthrough to process associated dynsym */
2469 /* FALLTHROUGH */
2470 case SHT_DYNSYM:
2471 if (!init_symtbl_state(&dynsym_state, cache, shnum,
2472 symsecndx, ehdr, osabi, versym, file, flags))
2473 continue;
2474 break;
2475 default:
2476 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2477 file, sortcache->c_name,
2478 conv_sec_type(osabi, ehdr->e_machine,
2479 symshdr->sh_type, 0, &inv_buf));
2480 continue;
2481 }
2482
2483 /*
2484 * Output header
2485 */
2486 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2487 if (ldynsym_cnt > 0) {
2488 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2489 sortcache->c_name, ldynsym_state.secname,
2490 dynsym_state.secname);
2491 /*
2492 * The data for .SUNW_ldynsym and dynsym sections
2493 * is supposed to be adjacent with SUNW_ldynsym coming
2494 * first. Check, and issue a warning if it isn't so.
2495 */
2496 if (((ldynsym_state.sym + ldynsym_state.symn)
2497 != dynsym_state.sym) &&
2498 ((flags & FLG_CTL_FAKESHDR) == 0))
2499 (void) fprintf(stderr,
2500 MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2501 ldynsym_state.secname,
2502 dynsym_state.secname);
2503 } else {
2504 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2505 sortcache->c_name, dynsym_state.secname);
2506 }
2507 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2508
2509 /* If not first one, insert a line of white space */
2510 if (output_cnt++ > 0)
2511 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2512
2513 /*
2514 * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2515 * symbol indices. Iterate over the array entries,
2516 * dispaying the referenced symbols.
2517 */
2518 ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2519 ndx = (Word *)sortcache->c_data->d_buf;
2520 for (; ndxn-- > 0; ndx++) {
2521 if (*ndx >= ldynsym_cnt) {
2522 Word sec_ndx = *ndx - ldynsym_cnt;
2523
2524 output_symbol(&dynsym_state, sec_ndx, 0,
2525 *ndx, dynsym_state.sym + sec_ndx);
2526 } else {
2527 output_symbol(&ldynsym_state, *ndx, 0,
2528 *ndx, ldynsym_state.sym + *ndx);
2529 }
2530 }
2531 }
2532 }
2533
2534 /*
2535 * Search for and process any relocation sections.
2536 */
2537 static void
2538 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2539 {
2540 Word cnt;
2541
2542 for (cnt = 1; cnt < shnum; cnt++) {
2543 Word type, symnum;
2544 Xword relndx, relnum, relsize;
2545 void *rels;
2546 Sym *syms;
2547 Cache *symsec, *strsec;
2548 Cache *_cache = &cache[cnt];
2549 Shdr *shdr = _cache->c_shdr;
2550 char *relname = _cache->c_name;
2551 Conv_inv_buf_t inv_buf;
2552
2553 if (((type = shdr->sh_type) != SHT_RELA) &&
2554 (type != SHT_REL))
2555 continue;
2556 if (!match(MATCH_F_ALL, relname, cnt, type))
2557 continue;
2558
2559 /*
2560 * Decide entry size.
2561 */
2562 if (((relsize = shdr->sh_entsize) == 0) ||
2563 (relsize > shdr->sh_size)) {
2564 if (type == SHT_RELA)
2565 relsize = sizeof (Rela);
2566 else
2567 relsize = sizeof (Rel);
2568 }
2569
2570 /*
2571 * Determine the number of relocations available.
2572 */
2573 if (shdr->sh_size == 0) {
2574 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2575 file, relname);
2576 continue;
2577 }
2578 if (_cache->c_data == NULL)
2579 continue;
2580
2581 rels = _cache->c_data->d_buf;
2582 relnum = shdr->sh_size / relsize;
2583
2584 /*
2585 * Get the data buffer for the associated symbol table and
2586 * string table.
2587 */
2588 if (stringtbl(cache, 1, cnt, shnum, file,
2589 &symnum, &symsec, &strsec) == 0)
2590 continue;
2591
2592 syms = symsec->c_data->d_buf;
2593
2594 /*
2595 * Loop through the relocation entries.
2596 */
2597 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2598 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2599 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2600
2601 for (relndx = 0; relndx < relnum; relndx++,
2602 rels = (void *)((char *)rels + relsize)) {
2603 Half mach = ehdr->e_machine;
2604 char section[BUFSIZ];
2605 const char *symname;
2606 Word symndx, reltype;
2607 Rela *rela;
2608 Rel *rel;
2609
2610 /*
2611 * Unravel the relocation and determine the symbol with
2612 * which this relocation is associated.
2613 */
2614 if (type == SHT_RELA) {
2615 rela = (Rela *)rels;
2616 symndx = ELF_R_SYM(rela->r_info);
2617 reltype = ELF_R_TYPE(rela->r_info, mach);
2618 } else {
2619 rel = (Rel *)rels;
2620 symndx = ELF_R_SYM(rel->r_info);
2621 reltype = ELF_R_TYPE(rel->r_info, mach);
2622 }
2623
2624 symname = relsymname(cache, _cache, strsec, symndx,
2625 symnum, relndx, syms, section, BUFSIZ, file);
2626
2627 /*
2628 * A zero symbol index is only valid for a few
2629 * relocations.
2630 */
2631 if (symndx == 0) {
2632 int badrel = 0;
2633
2634 if ((mach == EM_SPARC) ||
2635 (mach == EM_SPARC32PLUS) ||
2636 (mach == EM_SPARCV9)) {
2637 if ((reltype != R_SPARC_NONE) &&
2638 (reltype != R_SPARC_REGISTER) &&
2639 (reltype != R_SPARC_RELATIVE))
2640 badrel++;
2641 } else if (mach == EM_386) {
2642 if ((reltype != R_386_NONE) &&
2643 (reltype != R_386_RELATIVE))
2644 badrel++;
2645 } else if (mach == EM_AMD64) {
2646 if ((reltype != R_AMD64_NONE) &&
2647 (reltype != R_AMD64_RELATIVE))
2648 badrel++;
2649 }
2650
2651 if (badrel) {
2652 (void) fprintf(stderr,
2653 MSG_INTL(MSG_ERR_BADREL1), file,
2654 conv_reloc_type(mach, reltype,
2655 0, &inv_buf));
2656 }
2657 }
2658
2659 Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2660 MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2661 rels, relname, symname, 0);
2662 }
2663 }
2664 }
2665
2666
2667 /*
2668 * This value controls which test dyn_test() performs.
2669 */
2670 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2671
2672 /*
2673 * Used by dynamic() to compare the value of a dynamic element against
2674 * the starting address of the section it references.
2675 *
2676 * entry:
2677 * test_type - Specify which dyn item is being tested.
2678 * sh_type - SHT_* type value for required section.
2679 * sec_cache - Cache entry for section, or NULL if the object lacks
2680 * a section of this type.
2681 * dyn - Dyn entry to be tested
2682 * dynsec_cnt - # of dynamic section being examined. The first
2683 * dynamic section is 1, the next is 2, and so on...
2684 * ehdr - ELF header for file
2685 * file - Name of file
2686 */
2687 static void
2688 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2689 Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2690 {
2691 Conv_inv_buf_t buf1, buf2;
2692
2693 /*
2694 * These tests are based around the implicit assumption that
2695 * there is only one dynamic section in an object, and also only
2696 * one of the sections it references. We have therefore gathered
2697 * all of the necessary information to test this in a single pass
2698 * over the section headers, which is very efficient. We are not
2699 * aware of any case where more than one dynamic section would
2700 * be meaningful in an ELF object, so this is a reasonable solution.
2701 *
2702 * To test multiple dynamic sections correctly would be more
2703 * expensive in code and time. We would have to build a data structure
2704 * containing all the dynamic elements. Then, we would use the address
2705 * to locate the section it references and ensure the section is of
2706 * the right type and that the address in the dynamic element is
2707 * to the start of the section. Then, we could check the size and
2708 * entsize values against those same sections. This is O(n^2), and
2709 * also complicated.
2710 *
2711 * In the highly unlikely case that there is more than one dynamic
2712 * section, we only test the first one, and simply allow the values
2713 * of the subsequent one to be displayed unchallenged.
2714 */
2715 if (dynsec_cnt != 1)
2716 return;
2717
2718 /*
2719 * A DT_ item that references a section address should always find
2720 * the section in the file.
2721 */
2722 if (sec_cache == NULL) {
2723 const char *name;
2724
2725 /*
2726 * Supply section names instead of section types for
2727 * things that reference progbits so that the error
2728 * message will make more sense.
2729 */
2730 switch (dyn->d_tag) {
2731 case DT_INIT:
2732 name = MSG_ORIG(MSG_ELF_INIT);
2733 break;
2734 case DT_FINI:
2735 name = MSG_ORIG(MSG_ELF_FINI);
2736 break;
2737 default:
2738 name = conv_sec_type(osabi, ehdr->e_machine,
2739 sh_type, 0, &buf1);
2740 break;
2741 }
2742 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2743 name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2744 CONV_FMT_ALT_CF, &buf2));
2745 return;
2746 }
2747
2748
2749 switch (test_type) {
2750 case DYN_TEST_ADDR:
2751 /* The section address should match the DT_ item value */
2752 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2753 (void) fprintf(stderr,
2754 MSG_INTL(MSG_ERR_DYNBADADDR), file,
2755 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2756 CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2757 sec_cache->c_ndx, sec_cache->c_name,
2758 EC_ADDR(sec_cache->c_shdr->sh_addr));
2759 break;
2760
2761 case DYN_TEST_SIZE:
2762 /* The section size should match the DT_ item value */
2763 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2764 (void) fprintf(stderr,
2765 MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2766 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2767 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2768 sec_cache->c_ndx, sec_cache->c_name,
2769 EC_XWORD(sec_cache->c_shdr->sh_size));
2770 break;
2771
2772 case DYN_TEST_ENTSIZE:
2773 /* The sh_entsize value should match the DT_ item value */
2774 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2775 (void) fprintf(stderr,
2776 MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2777 conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2778 CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2779 sec_cache->c_ndx, sec_cache->c_name,
2780 EC_XWORD(sec_cache->c_shdr->sh_entsize));
2781 break;
2782 }
2783 }
2784
2785 /*
2786 * There are some DT_ entries that have corresponding symbols
2787 * (e.g. DT_INIT and _init). It is expected that these items will
2788 * both have the same value if both are present. This routine
2789 * examines the well known symbol tables for such symbols and
2790 * issues warnings for any that don't match.
2791 *
2792 * entry:
2793 * dyn - Dyn entry to be tested
2794 * symname - Name of symbol that corresponds to dyn
2795 * symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2796 * target_cache - Section the symname section is expected to be
2797 * associated with.
2798 * cache - Cache of all section headers
2799 * shnum - # of sections in cache
2800 * ehdr - ELF header for file
2801 * osabi - OSABI to apply when interpreting object
2802 * file - Name of file
2803 */
2804 static void
2805 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2806 Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2807 Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2808 {
2809 Conv_inv_buf_t buf;
2810 int i;
2811 Sym *sym;
2812 Cache *_cache;
2813
2814 for (i = 0; i < 3; i++) {
2815 switch (i) {
2816 case 0:
2817 _cache = symtab_cache;
2818 break;
2819 case 1:
2820 _cache = dynsym_cache;
2821 break;
2822 case 2:
2823 _cache = ldynsym_cache;
2824 break;
2825 }
2826
2827 if ((_cache != NULL) &&
2828 symlookup(symname, cache, shnum, &sym, target_cache,
2829 _cache, file) && (sym->st_value != dyn->d_un.d_val))
2830 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2831 file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2832 osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2833 symname, EC_ADDR(sym->st_value));
2834 }
2835 }
2836
2837 /*
2838 * Search for and process a .dynamic section.
2839 */
2840 static void
2841 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2842 {
2843 struct {
2844 Cache *symtab;
2845 Cache *dynstr;
2846 Cache *dynsym;
2847 Cache *hash;
2848 Cache *fini;
2849 Cache *fini_array;
2850 Cache *init;
2851 Cache *init_array;
2852 Cache *preinit_array;
2853 Cache *rel;
2854 Cache *rela;
2855 Cache *sunw_cap;
2856 Cache *sunw_capinfo;
2857 Cache *sunw_capchain;
2858 Cache *sunw_ldynsym;
2859 Cache *sunw_move;
2860 Cache *sunw_syminfo;
2861 Cache *sunw_symsort;
2862 Cache *sunw_tlssort;
2863 Cache *sunw_verdef;
2864 Cache *sunw_verneed;
2865 Cache *sunw_versym;
2866 } sec;
2867 Word dynsec_ndx;
2868 Word dynsec_num;
2869 int dynsec_cnt;
2870 Word cnt;
2871 int osabi_solaris = osabi == ELFOSABI_SOLARIS;
2872
2873 /*
2874 * Make a pass over all the sections, gathering section information
2875 * we'll need below.
2876 */
2877 dynsec_num = 0;
2878 bzero(&sec, sizeof (sec));
2879 for (cnt = 1; cnt < shnum; cnt++) {
2880 Cache *_cache = &cache[cnt];
2881
2882 switch (_cache->c_shdr->sh_type) {
2883 case SHT_DYNAMIC:
2884 if (dynsec_num == 0) {
2885 dynsec_ndx = cnt;
2886
2887 /* Does it have a valid string table? */
2888 (void) stringtbl(cache, 0, cnt, shnum, file,
2889 0, 0, &sec.dynstr);
2890 }
2891 dynsec_num++;
2892 break;
2893
2894
2895 case SHT_PROGBITS:
2896 /*
2897 * We want to detect the .init and .fini sections,
2898 * if present. These are SHT_PROGBITS, so all we
2899 * have to go on is the section name. Normally comparing
2900 * names is a bad idea, but there are some special
2901 * names (i.e. .init/.fini/.interp) that are very
2902 * difficult to use in any other context, and for
2903 * these symbols, we do the heuristic match.
2904 */
2905 if (strcmp(_cache->c_name,
2906 MSG_ORIG(MSG_ELF_INIT)) == 0) {
2907 if (sec.init == NULL)
2908 sec.init = _cache;
2909 } else if (strcmp(_cache->c_name,
2910 MSG_ORIG(MSG_ELF_FINI)) == 0) {
2911 if (sec.fini == NULL)
2912 sec.fini = _cache;
2913 }
2914 break;
2915
2916 case SHT_REL:
2917 /*
2918 * We want the SHT_REL section with the lowest
2919 * offset. The linker gathers them together,
2920 * and puts the address of the first one
2921 * into the DT_REL dynamic element.
2922 */
2923 if ((sec.rel == NULL) ||
2924 (_cache->c_shdr->sh_offset <
2925 sec.rel->c_shdr->sh_offset))
2926 sec.rel = _cache;
2927 break;
2928
2929 case SHT_RELA:
2930 /* RELA is handled just like RELA above */
2931 if ((sec.rela == NULL) ||
2932 (_cache->c_shdr->sh_offset <
2933 sec.rela->c_shdr->sh_offset))
2934 sec.rela = _cache;
2935 break;
2936
2937 /*
2938 * The GRAB macro is used for the simple case in which
2939 * we simply grab the first section of the desired type.
2940 */
2941 #define GRAB(_sec_type, _sec_field) \
2942 case _sec_type: \
2943 if (sec._sec_field == NULL) \
2944 sec._sec_field = _cache; \
2945 break
2946 GRAB(SHT_SYMTAB, symtab);
2947 GRAB(SHT_DYNSYM, dynsym);
2948 GRAB(SHT_FINI_ARRAY, fini_array);
2949 GRAB(SHT_HASH, hash);
2950 GRAB(SHT_INIT_ARRAY, init_array);
2951 GRAB(SHT_SUNW_move, sunw_move);
2952 GRAB(SHT_PREINIT_ARRAY, preinit_array);
2953 GRAB(SHT_SUNW_cap, sunw_cap);
2954 GRAB(SHT_SUNW_capinfo, sunw_capinfo);
2955 GRAB(SHT_SUNW_capchain, sunw_capchain);
2956 GRAB(SHT_SUNW_LDYNSYM, sunw_ldynsym);
2957 GRAB(SHT_SUNW_syminfo, sunw_syminfo);
2958 GRAB(SHT_SUNW_symsort, sunw_symsort);
2959 GRAB(SHT_SUNW_tlssort, sunw_tlssort);
2960 GRAB(SHT_SUNW_verdef, sunw_verdef);
2961 GRAB(SHT_SUNW_verneed, sunw_verneed);
2962 GRAB(SHT_SUNW_versym, sunw_versym);
2963 #undef GRAB
2964 }
2965 }
2966
2967 /*
2968 * If no dynamic section, return immediately. If more than one
2969 * dynamic section, then something odd is going on and an error
2970 * is in order, but then continue on and display them all.
2971 */
2972 if (dynsec_num == 0)
2973 return;
2974 if (dynsec_num > 1)
2975 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2976 file, EC_WORD(dynsec_num));
2977
2978
2979 dynsec_cnt = 0;
2980 for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2981 cnt++) {
2982 Dyn *dyn;
2983 ulong_t numdyn;
2984 int ndx, end_ndx;
2985 Cache *_cache = &cache[cnt], *strsec;
2986 Shdr *shdr = _cache->c_shdr;
2987 int dumped = 0;
2988
2989 if (shdr->sh_type != SHT_DYNAMIC)
2990 continue;
2991 dynsec_cnt++;
2992
2993 /*
2994 * Verify the associated string table section.
2995 */
2996 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2997 continue;
2998
2999 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3000 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3001 file, _cache->c_name);
3002 continue;
3003 }
3004 if (_cache->c_data == NULL)
3005 continue;
3006
3007 numdyn = shdr->sh_size / shdr->sh_entsize;
3008 dyn = (Dyn *)_cache->c_data->d_buf;
3009
3010 /*
3011 * We expect the REL/RELA entries to reference the reloc
3012 * section with the lowest address. However, this is
3013 * not true for dumped objects. Detect if this object has
3014 * been dumped so that we can skip the reloc address test
3015 * in that case.
3016 */
3017 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3018 if (dyn->d_tag == DT_FLAGS_1) {
3019 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3020 break;
3021 }
3022 }
3023 dyn = (Dyn *)_cache->c_data->d_buf;
3024
3025 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3026 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3027
3028 Elf_dyn_title(0);
3029
3030 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3031 union {
3032 Conv_inv_buf_t inv;
3033 Conv_dyn_flag_buf_t flag;
3034 Conv_dyn_flag1_buf_t flag1;
3035 Conv_dyn_posflag1_buf_t posflag1;
3036 Conv_dyn_feature1_buf_t feature1;
3037 } c_buf;
3038 const char *name = NULL;
3039
3040 /*
3041 * Print the information numerically, and if possible
3042 * as a string. If a string is available, name is
3043 * set to reference it.
3044 *
3045 * Also, take this opportunity to sanity check
3046 * the values of DT elements. In the code above,
3047 * we gathered information on sections that are
3048 * referenced by the dynamic section. Here, we
3049 * compare the attributes of those sections to
3050 * the DT_ items that reference them and report
3051 * on inconsistencies.
3052 *
3053 * Things not currently tested that could be improved
3054 * in later revisions include:
3055 * - We don't check PLT or GOT related items
3056 * - We don't handle computing the lengths of
3057 * relocation arrays. To handle this
3058 * requires examining data that spans
3059 * across sections, in a contiguous span
3060 * within a single segment.
3061 * - DT_VERDEFNUM and DT_VERNEEDNUM can't be
3062 * verified without parsing the sections.
3063 * - We don't handle DT_SUNW_SYMSZ, which would
3064 * be the sum of the lengths of .dynsym and
3065 * .SUNW_ldynsym
3066 * - DT_SUNW_STRPAD can't be verified other than
3067 * to check that it's not larger than
3068 * the string table.
3069 * - Some items come in "all or none" clusters
3070 * that give an address, element size,
3071 * and data length in bytes. We don't
3072 * verify that there are no missing items
3073 * in such groups.
3074 */
3075 switch (dyn->d_tag) {
3076 case DT_NULL:
3077 /*
3078 * Special case: DT_NULLs can come in groups
3079 * that we prefer to reduce to a single line.
3080 */
3081 end_ndx = ndx;
3082 while ((end_ndx < (numdyn - 1)) &&
3083 ((dyn + 1)->d_tag == DT_NULL)) {
3084 dyn++;
3085 end_ndx++;
3086 }
3087 Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3088 ndx = end_ndx;
3089 continue;
3090
3091 /*
3092 * String items all reference the dynstr. The string()
3093 * function does the necessary sanity checking.
3094 */
3095 case DT_NEEDED:
3096 case DT_SONAME:
3097 case DT_FILTER:
3098 case DT_AUXILIARY:
3099 case DT_CONFIG:
3100 case DT_RPATH:
3101 case DT_RUNPATH:
3102 case DT_USED:
3103 case DT_DEPAUDIT:
3104 case DT_AUDIT:
3105 name = string(_cache, ndx, strsec,
3106 file, dyn->d_un.d_ptr);
3107 break;
3108
3109 case DT_SUNW_AUXILIARY:
3110 case DT_SUNW_FILTER:
3111 if (osabi_solaris)
3112 name = string(_cache, ndx, strsec,
3113 file, dyn->d_un.d_ptr);
3114 break;
3115
3116 case DT_FLAGS:
3117 name = conv_dyn_flag(dyn->d_un.d_val,
3118 0, &c_buf.flag);
3119 break;
3120 case DT_FLAGS_1:
3121 name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3122 &c_buf.flag1);
3123 break;
3124 case DT_POSFLAG_1:
3125 name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3126 &c_buf.posflag1);
3127 break;
3128 case DT_FEATURE_1:
3129 name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3130 &c_buf.feature1);
3131 break;
3132 case DT_DEPRECATED_SPARC_REGISTER:
3133 name = MSG_INTL(MSG_STR_DEPRECATED);
3134 break;
3135
3136 case DT_SUNW_LDMACH:
3137 if (!osabi_solaris)
3138 break;
3139 name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3140 0, &c_buf.inv);
3141 break;
3142
3143 /*
3144 * Cases below this point are strictly sanity checking,
3145 * and do not generate a name string. The TEST_ macros
3146 * are used to hide the boiler plate arguments neeeded
3147 * by dyn_test().
3148 */
3149 #define TEST_ADDR(_sh_type, _sec_field) \
3150 dyn_test(DYN_TEST_ADDR, _sh_type, \
3151 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3152 osabi, file)
3153 #define TEST_SIZE(_sh_type, _sec_field) \
3154 dyn_test(DYN_TEST_SIZE, _sh_type, \
3155 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3156 osabi, file)
3157 #define TEST_ENTSIZE(_sh_type, _sec_field) \
3158 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3159 sec._sec_field, dyn, dynsec_cnt, ehdr, \
3160 osabi, file)
3161
3162 case DT_FINI:
3163 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3164 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3165 sec.fini, cache, shnum, ehdr, osabi, file);
3166 TEST_ADDR(SHT_PROGBITS, fini);
3167 break;
3168
3169 case DT_FINI_ARRAY:
3170 TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3171 break;
3172
3173 case DT_FINI_ARRAYSZ:
3174 TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3175 break;
3176
3177 case DT_HASH:
3178 TEST_ADDR(SHT_HASH, hash);
3179 break;
3180
3181 case DT_INIT:
3182 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3183 sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3184 sec.init, cache, shnum, ehdr, osabi, file);
3185 TEST_ADDR(SHT_PROGBITS, init);
3186 break;
3187
3188 case DT_INIT_ARRAY:
3189 TEST_ADDR(SHT_INIT_ARRAY, init_array);
3190 break;
3191
3192 case DT_INIT_ARRAYSZ:
3193 TEST_SIZE(SHT_INIT_ARRAY, init_array);
3194 break;
3195
3196 case DT_MOVEENT:
3197 TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3198 break;
3199
3200 case DT_MOVESZ:
3201 TEST_SIZE(SHT_SUNW_move, sunw_move);
3202 break;
3203
3204 case DT_MOVETAB:
3205 TEST_ADDR(SHT_SUNW_move, sunw_move);
3206 break;
3207
3208 case DT_PREINIT_ARRAY:
3209 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3210 break;
3211
3212 case DT_PREINIT_ARRAYSZ:
3213 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3214 break;
3215
3216 case DT_REL:
3217 if (!dumped)
3218 TEST_ADDR(SHT_REL, rel);
3219 break;
3220
3221 case DT_RELENT:
3222 TEST_ENTSIZE(SHT_REL, rel);
3223 break;
3224
3225 case DT_RELA:
3226 if (!dumped)
3227 TEST_ADDR(SHT_RELA, rela);
3228 break;
3229
3230 case DT_RELAENT:
3231 TEST_ENTSIZE(SHT_RELA, rela);
3232 break;
3233
3234 case DT_STRTAB:
3235 TEST_ADDR(SHT_STRTAB, dynstr);
3236 break;
3237
3238 case DT_STRSZ:
3239 TEST_SIZE(SHT_STRTAB, dynstr);
3240 break;
3241
3242 case DT_SUNW_CAP:
3243 if (osabi_solaris)
3244 TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3245 break;
3246
3247 case DT_SUNW_CAPINFO:
3248 if (osabi_solaris)
3249 TEST_ADDR(SHT_SUNW_capinfo,
3250 sunw_capinfo);
3251 break;
3252
3253 case DT_SUNW_CAPCHAIN:
3254 if (osabi_solaris)
3255 TEST_ADDR(SHT_SUNW_capchain,
3256 sunw_capchain);
3257 break;
3258
3259 case DT_SUNW_SYMTAB:
3260 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3261 break;
3262
3263 case DT_SYMENT:
3264 TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3265 break;
3266
3267 case DT_SYMINENT:
3268 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3269 break;
3270
3271 case DT_SYMINFO:
3272 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3273 break;
3274
3275 case DT_SYMINSZ:
3276 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3277 break;
3278
3279 case DT_SYMTAB:
3280 TEST_ADDR(SHT_DYNSYM, dynsym);
3281 break;
3282
3283 case DT_SUNW_SORTENT:
3284 /*
3285 * This entry is related to both the symsort and
3286 * tlssort sections.
3287 */
3288 if (osabi_solaris) {
3289 int test_tls =
3290 (sec.sunw_tlssort != NULL);
3291 int test_sym =
3292 (sec.sunw_symsort != NULL) ||
3293 !test_tls;
3294 if (test_sym)
3295 TEST_ENTSIZE(SHT_SUNW_symsort,
3296 sunw_symsort);
3297 if (test_tls)
3298 TEST_ENTSIZE(SHT_SUNW_tlssort,
3299 sunw_tlssort);
3300 }
3301 break;
3302
3303
3304 case DT_SUNW_SYMSORT:
3305 if (osabi_solaris)
3306 TEST_ADDR(SHT_SUNW_symsort,
3307 sunw_symsort);
3308 break;
3309
3310 case DT_SUNW_SYMSORTSZ:
3311 if (osabi_solaris)
3312 TEST_SIZE(SHT_SUNW_symsort,
3313 sunw_symsort);
3314 break;
3315
3316 case DT_SUNW_TLSSORT:
3317 if (osabi_solaris)
3318 TEST_ADDR(SHT_SUNW_tlssort,
3319 sunw_tlssort);
3320 break;
3321
3322 case DT_SUNW_TLSSORTSZ:
3323 if (osabi_solaris)
3324 TEST_SIZE(SHT_SUNW_tlssort,
3325 sunw_tlssort);
3326 break;
3327
3328 case DT_VERDEF:
3329 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3330 break;
3331
3332 case DT_VERNEED:
3333 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3334 break;
3335
3336 case DT_VERSYM:
3337 TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3338 break;
3339 #undef TEST_ADDR
3340 #undef TEST_SIZE
3341 #undef TEST_ENTSIZE
3342 }
3343
3344 if (name == NULL)
3345 name = MSG_ORIG(MSG_STR_EMPTY);
3346 Elf_dyn_entry(0, dyn, ndx, name,
3347 osabi, ehdr->e_machine);
3348 }
3349 }
3350 }
3351
3352 /*
3353 * Search for and process a MOVE section.
3354 */
3355 static void
3356 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3357 {
3358 Word cnt;
3359 const char *fmt = NULL;
3360
3361 for (cnt = 1; cnt < shnum; cnt++) {
3362 Word movenum, symnum, ndx;
3363 Sym *syms;
3364 Cache *_cache = &cache[cnt];
3365 Shdr *shdr = _cache->c_shdr;
3366 Cache *symsec, *strsec;
3367 Move *move;
3368
3369 if (shdr->sh_type != SHT_SUNW_move)
3370 continue;
3371 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3372 continue;
3373
3374 /*
3375 * Determine the move data and number.
3376 */
3377 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3378 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3379 file, _cache->c_name);
3380 continue;
3381 }
3382 if (_cache->c_data == NULL)
3383 continue;
3384
3385 move = (Move *)_cache->c_data->d_buf;
3386 movenum = shdr->sh_size / shdr->sh_entsize;
3387
3388 /*
3389 * Get the data buffer for the associated symbol table and
3390 * string table.
3391 */
3392 if (stringtbl(cache, 1, cnt, shnum, file,
3393 &symnum, &symsec, &strsec) == 0)
3394 return;
3395
3396 syms = (Sym *)symsec->c_data->d_buf;
3397
3398 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3399 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3400 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3401
3402 if (fmt == NULL)
3403 fmt = MSG_INTL(MSG_MOVE_ENTRY);
3404
3405 for (ndx = 0; ndx < movenum; move++, ndx++) {
3406 const char *symname;
3407 char index[MAXNDXSIZE], section[BUFSIZ];
3408 Word symndx, shndx;
3409 Sym *sym;
3410
3411 /*
3412 * Check for null entries
3413 */
3414 if ((move->m_info == 0) && (move->m_value == 0) &&
3415 (move->m_poffset == 0) && (move->m_repeat == 0) &&
3416 (move->m_stride == 0)) {
3417 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3418 EC_XWORD(move->m_poffset), 0, 0, 0,
3419 EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3420 continue;
3421 }
3422 if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3423 (symndx >= symnum)) {
3424 (void) fprintf(stderr,
3425 MSG_INTL(MSG_ERR_BADMINFO), file,
3426 _cache->c_name, EC_XWORD(move->m_info));
3427
3428 (void) snprintf(index, MAXNDXSIZE,
3429 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3430 dbg_print(0, fmt, index,
3431 EC_XWORD(move->m_poffset),
3432 ELF_M_SIZE(move->m_info), move->m_repeat,
3433 move->m_stride, move->m_value,
3434 MSG_INTL(MSG_STR_UNKNOWN));
3435 continue;
3436 }
3437
3438 symname = relsymname(cache, _cache, strsec,
3439 symndx, symnum, ndx, syms, section, BUFSIZ, file);
3440 sym = (Sym *)(syms + symndx);
3441
3442 /*
3443 * Additional sanity check.
3444 */
3445 shndx = sym->st_shndx;
3446 if (!((shndx == SHN_COMMON) ||
3447 (((shndx >= 1) && (shndx <= shnum)) &&
3448 (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3449 (void) fprintf(stderr,
3450 MSG_INTL(MSG_ERR_BADSYM2), file,
3451 _cache->c_name, EC_WORD(symndx),
3452 demangle(symname, flags));
3453 }
3454
3455 (void) snprintf(index, MAXNDXSIZE,
3456 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3457 dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3458 ELF_M_SIZE(move->m_info), move->m_repeat,
3459 move->m_stride, move->m_value,
3460 demangle(symname, flags));
3461 }
3462 }
3463 }
3464
3465 /*
3466 * parse_note_t is used to track the state used by parse_note_entry()
3467 * between calls, and also to return the results of each call.
3468 */
3469 typedef struct {
3470 /* pns_ fields track progress through the data */
3471 const char *pns_file; /* File name */
3472 Cache *pns_cache; /* Note section cache entry */
3473 size_t pns_size; /* # unprocessed data bytes */
3474 Word *pns_data; /* # to next unused data byte */
3475
3476 /* pn_ fields return the results for a single call */
3477 Word pn_namesz; /* Value of note namesz field */
3478 Word pn_descsz; /* Value of note descsz field */
3479 Word pn_type; /* Value of note type field */
3480 const char *pn_name; /* if (namesz > 0) ptr to name bytes */
3481 const char *pn_desc; /* if (descsx > 0) ptr to data bytes */
3482 } parse_note_t;
3483
3484 /*
3485 * Extract the various sub-parts of a note entry, and advance the
3486 * data pointer past it.
3487 *
3488 * entry:
3489 * The state pns_ fields contain current values for the Note section
3490 *
3491 * exit:
3492 * On success, True (1) is returned, the state pns_ fields have been
3493 * advanced to point at the start of the next entry, and the information
3494 * for the recovered note entry is found in the state pn_ fields.
3495 *
3496 * On failure, False (0) is returned. The values contained in state
3497 * are undefined.
3498 */
3499 static int
3500 parse_note_entry(parse_note_t *state)
3501 {
3502 size_t pad, noteoff;
3503
3504 noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3505 /*
3506 * Make sure we can at least reference the 3 initial entries
3507 * (4-byte words) of the note information block.
3508 */
3509 if (state->pns_size >= (sizeof (Word) * 3)) {
3510 state->pns_size -= (sizeof (Word) * 3);
3511 } else {
3512 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3513 state->pns_file, state->pns_cache->c_name,
3514 EC_WORD(noteoff));
3515 return (0);
3516 }
3517
3518 /*
3519 * Make sure any specified name string can be referenced.
3520 */
3521 if ((state->pn_namesz = *state->pns_data++) != 0) {
3522 if (state->pns_size >= state->pn_namesz) {
3523 state->pns_size -= state->pn_namesz;
3524 } else {
3525 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3526 state->pns_file, state->pns_cache->c_name,
3527 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3528 return (0);
3529 }
3530 }
3531
3532 /*
3533 * Make sure any specified descriptor can be referenced.
3534 */
3535 if ((state->pn_descsz = *state->pns_data++) != 0) {
3536 /*
3537 * If namesz isn't a 4-byte multiple, account for any
3538 * padding that must exist before the descriptor.
3539 */
3540 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3541 pad = sizeof (Word) - pad;
3542 state->pns_size -= pad;
3543 }
3544 if (state->pns_size >= state->pn_descsz) {
3545 state->pns_size -= state->pn_descsz;
3546 } else {
3547 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3548 state->pns_file, state->pns_cache->c_name,
3549 EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3550 return (0);
3551 }
3552 }
3553
3554 state->pn_type = *state->pns_data++;
3555
3556 /* Name */
3557 if (state->pn_namesz) {
3558 state->pn_name = (char *)state->pns_data;
3559 pad = (state->pn_namesz +
3560 (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3561 /* LINTED */
3562 state->pns_data = (Word *)(state->pn_name + pad);
3563 }
3564
3565 /*
3566 * If multiple information blocks exist within a .note section
3567 * account for any padding that must exist before the next
3568 * information block.
3569 */
3570 if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3571 pad = sizeof (Word) - pad;
3572 if (state->pns_size > pad)
3573 state->pns_size -= pad;
3574 }
3575
3576 /* Data */
3577 if (state->pn_descsz) {
3578 state->pn_desc = (const char *)state->pns_data;
3579 /* LINTED */
3580 state->pns_data = (Word *)(state->pn_desc +
3581 state->pn_descsz + pad);
3582 }
3583
3584 return (1);
3585 }
3586
3587 /*
3588 * Callback function for use with conv_str_to_c_literal() below.
3589 */
3590 /*ARGSUSED2*/
3591 static void
3592 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3593 {
3594 (void) fwrite(ptr, size, 1, stdout);
3595 }
3596
3597 /*
3598 * Traverse a note section analyzing each note information block.
3599 * The data buffers size is used to validate references before they are made,
3600 * and is decremented as each element is processed.
3601 */
3602 void
3603 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3604 {
3605 int cnt = 0;
3606 int is_corenote;
3607 int do_swap;
3608 Conv_inv_buf_t inv_buf;
3609 parse_note_t pnstate;
3610
3611 pnstate.pns_file = file;
3612 pnstate.pns_cache = cache;
3613 pnstate.pns_size = size;
3614 pnstate.pns_data = data;
3615 do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3616
3617 /*
3618 * Print out a single `note' information block.
3619 */
3620 while (pnstate.pns_size > 0) {
3621
3622 if (parse_note_entry(&pnstate) == 0)
3623 return;
3624
3625 /*
3626 * Is this a Solaris core note? Such notes all have
3627 * the name "CORE".
3628 */
3629 is_corenote = (ehdr->e_type == ET_CORE) &&
3630 (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3631 (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3632 MSG_STR_CORE_SIZE + 1) == 0);
3633
3634 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3635 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3636 cnt++;
3637 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3638 EC_WORD(pnstate.pn_namesz));
3639 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3640 EC_WORD(pnstate.pn_descsz));
3641
3642 if (is_corenote)
3643 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3644 conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3645 else
3646 dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3647 EC_WORD(pnstate.pn_type));
3648 if (pnstate.pn_namesz) {
3649 dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3650 /*
3651 * The name string can contain embedded 'null'
3652 * bytes and/or unprintable characters. Also,
3653 * the final NULL is documented in the ELF ABI
3654 * as being included in the namesz. So, display
3655 * the name using C literal string notation, and
3656 * include the terminating NULL in the output.
3657 * We don't show surrounding double quotes, as
3658 * that implies the termination that we are showing
3659 * explicitly.
3660 */
3661 (void) fwrite(MSG_ORIG(MSG_STR_8SP),
3662 MSG_STR_8SP_SIZE, 1, stdout);
3663 conv_str_to_c_literal(pnstate.pn_name,
3664 pnstate.pn_namesz, c_literal_cb, NULL);
3665 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3666 }
3667
3668 if (pnstate.pn_descsz) {
3669 int hexdump = 1;
3670
3671 /*
3672 * If this is a core note, let the corenote()
3673 * function handle it.
3674 */
3675 if (is_corenote) {
3676 /* We only issue the bad arch error once */
3677 static int badnote_done = 0;
3678 corenote_ret_t corenote_ret;
3679
3680 corenote_ret = corenote(ehdr->e_machine,
3681 do_swap, pnstate.pn_type, pnstate.pn_desc,
3682 pnstate.pn_descsz);
3683 switch (corenote_ret) {
3684 case CORENOTE_R_OK:
3685 hexdump = 0;
3686 break;
3687 case CORENOTE_R_BADDATA:
3688 (void) fprintf(stderr,
3689 MSG_INTL(MSG_NOTE_BADCOREDATA),
3690 file);
3691 break;
3692 case CORENOTE_R_BADARCH:
3693 if (badnote_done)
3694 break;
3695 (void) fprintf(stderr,
3696 MSG_INTL(MSG_NOTE_BADCOREARCH),
3697 file,
3698 conv_ehdr_mach(ehdr->e_machine,
3699 0, &inv_buf));
3700 break;
3701 }
3702 }
3703
3704 /*
3705 * The default thing when we don't understand
3706 * the note data is to display it as hex bytes.
3707 */
3708 if (hexdump) {
3709 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3710 dump_hex_bytes(pnstate.pn_desc,
3711 pnstate.pn_descsz, 8, 4, 4);
3712 }
3713 }
3714 }
3715 }
3716
3717 /*
3718 * Search for and process .note sections.
3719 *
3720 * Returns the number of note sections seen.
3721 */
3722 static Word
3723 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3724 {
3725 Word cnt, note_cnt = 0;
3726
3727 /*
3728 * Otherwise look for any .note sections.
3729 */
3730 for (cnt = 1; cnt < shnum; cnt++) {
3731 Cache *_cache = &cache[cnt];
3732 Shdr *shdr = _cache->c_shdr;
3733
3734 if (shdr->sh_type != SHT_NOTE)
3735 continue;
3736 note_cnt++;
3737 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3738 continue;
3739
3740 /*
3741 * As these sections are often hand rolled, make sure they're
3742 * properly aligned before proceeding, and issue an error
3743 * as necessary.
3744 *
3745 * Note that we will continue on to display the note even
3746 * if it has bad alignment. We can do this safely, because
3747 * libelf knows the alignment required for SHT_NOTE, and
3748 * takes steps to deliver a properly aligned buffer to us
3749 * even if the actual file is misaligned.
3750 */
3751 if (shdr->sh_offset & (sizeof (Word) - 1))
3752 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3753 file, _cache->c_name);
3754
3755 if (_cache->c_data == NULL)
3756 continue;
3757
3758 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3759 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3760 note_entry(_cache, (Word *)_cache->c_data->d_buf,
3761 /* LINTED */
3762 (Word)_cache->c_data->d_size, ehdr, file);
3763 }
3764
3765 return (note_cnt);
3766 }
3767
3768 /*
3769 * The Linux Standard Base defines a special note named .note.ABI-tag
3770 * that is used to maintain Linux ABI information. Presence of this section
3771 * is a strong indication that the object should be considered to be
3772 * ELFOSABI_LINUX.
3773 *
3774 * This function returns True (1) if such a note is seen, and False (0)
3775 * otherwise.
3776 */
3777 static int
3778 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3779 {
3780 Word cnt;
3781
3782 for (cnt = 1; cnt < shnum; cnt++) {
3783 parse_note_t pnstate;
3784 Cache *_cache = &cache[cnt];
3785 Shdr *shdr = _cache->c_shdr;
3786
3787 /*
3788 * Section must be SHT_NOTE, must have the name
3789 * .note.ABI-tag, and must have data.
3790 */
3791 if ((shdr->sh_type != SHT_NOTE) ||
3792 (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3793 _cache->c_name) != 0) || (_cache->c_data == NULL))
3794 continue;
3795
3796 pnstate.pns_file = file;
3797 pnstate.pns_cache = _cache;
3798 pnstate.pns_size = _cache->c_data->d_size;
3799 pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3800
3801 while (pnstate.pns_size > 0) {
3802 Word *w;
3803
3804 if (parse_note_entry(&pnstate) == 0)
3805 break;
3806
3807 /*
3808 * The type must be 1, and the name must be "GNU".
3809 * The descsz must be at least 16 bytes.
3810 */
3811 if ((pnstate.pn_type != 1) ||
3812 (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3813 (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3814 MSG_STR_CORE_SIZE + 1) != 0) ||
3815 (pnstate.pn_descsz < 16))
3816 continue;
3817
3818 /*
3819 * desc contains 4 32-bit fields. Field 0 must be 0,
3820 * indicating Linux. The second, third, and fourth
3821 * fields represent the earliest Linux kernel
3822 * version compatible with this object.
3823 */
3824 /*LINTED*/
3825 w = (Word *) pnstate.pn_desc;
3826 if (*w == 0)
3827 return (1);
3828 }
3829 }
3830
3831 return (0);
3832 }
3833
3834 /*
3835 * Determine an individual hash entry. This may be the initial hash entry,
3836 * or an associated chain entry.
3837 */
3838 static void
3839 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3840 Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3841 uint_t flags, int chain)
3842 {
3843 Sym *sym;
3844 const char *symname, *str;
3845 char _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3846 ulong_t nbkt, nhash;
3847
3848 if (symndx > symn) {
3849 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3850 EC_WORD(symndx), EC_WORD(hashndx));
3851 symname = MSG_INTL(MSG_STR_UNKNOWN);
3852 } else {
3853 sym = (Sym *)(syms + symndx);
3854 symname = string(refsec, symndx, strsec, file, sym->st_name);
3855 }
3856
3857 if (chain == 0) {
3858 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3859 hashndx);
3860 str = (const char *)_bucket;
3861 } else
3862 str = MSG_ORIG(MSG_STR_EMPTY);
3863
3864 (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3865 EC_WORD(symndx));
3866 dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3867 demangle(symname, flags));
3868
3869 /*
3870 * Determine if this string is in the correct bucket.
3871 */
3872 nhash = elf_hash(symname);
3873 nbkt = nhash % bkts;
3874
3875 if (nbkt != hashndx) {
3876 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3877 hsecname, symname, EC_WORD(hashndx), nbkt);
3878 }
3879 }
3880
3881 #define MAXCOUNT 500
3882
3883 static void
3884 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3885 {
3886 static int count[MAXCOUNT];
3887 Word cnt;
3888 ulong_t ndx, bkts;
3889 char number[MAXNDXSIZE];
3890
3891 for (cnt = 1; cnt < shnum; cnt++) {
3892 uint_t *hash, *chain;
3893 Cache *_cache = &cache[cnt];
3894 Shdr *sshdr, *hshdr = _cache->c_shdr;
3895 char *ssecname, *hsecname = _cache->c_name;
3896 Sym *syms;
3897 Word symn;
3898
3899 if (hshdr->sh_type != SHT_HASH)
3900 continue;
3901
3902 /*
3903 * Determine the hash table data and size.
3904 */
3905 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3906 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3907 file, hsecname);
3908 continue;
3909 }
3910 if (_cache->c_data == NULL)
3911 continue;
3912
3913 hash = (uint_t *)_cache->c_data->d_buf;
3914 bkts = *hash;
3915 chain = hash + 2 + bkts;
3916 hash += 2;
3917
3918 /*
3919 * Get the data buffer for the associated symbol table.
3920 */
3921 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3922 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3923 file, hsecname, EC_WORD(hshdr->sh_link));
3924 continue;
3925 }
3926
3927 _cache = &cache[hshdr->sh_link];
3928 ssecname = _cache->c_name;
3929
3930 if (_cache->c_data == NULL)
3931 continue;
3932
3933 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3934 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3935 file, ssecname);
3936 continue;
3937 }
3938
3939 sshdr = _cache->c_shdr;
3940 /* LINTED */
3941 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3942
3943 /*
3944 * Get the associated string table section.
3945 */
3946 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3947 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3948 file, ssecname, EC_WORD(sshdr->sh_link));
3949 continue;
3950 }
3951
3952 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3953 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3954 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3955
3956 /*
3957 * Loop through the hash buckets, printing the appropriate
3958 * symbols.
3959 */
3960 for (ndx = 0; ndx < bkts; ndx++, hash++) {
3961 Word _ndx, _cnt;
3962
3963 if (*hash == 0) {
3964 count[0]++;
3965 continue;
3966 }
3967
3968 hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3969 ndx, *hash, symn, syms, file, bkts, flags, 0);
3970
3971 /*
3972 * Determine if any other symbols are chained to this
3973 * bucket.
3974 */
3975 _ndx = chain[*hash];
3976 _cnt = 1;
3977 while (_ndx) {
3978 hash_entry(_cache, &cache[sshdr->sh_link],
3979 hsecname, ndx, _ndx, symn, syms, file,
3980 bkts, flags, 1);
3981 _ndx = chain[_ndx];
3982 _cnt++;
3983 }
3984
3985 if (_cnt >= MAXCOUNT) {
3986 (void) fprintf(stderr,
3987 MSG_INTL(MSG_HASH_OVERFLW), file,
3988 _cache->c_name, EC_WORD(ndx),
3989 EC_WORD(_cnt));
3990 } else
3991 count[_cnt]++;
3992 }
3993 break;
3994 }
3995
3996 /*
3997 * Print out the count information.
3998 */
3999 bkts = cnt = 0;
4000 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4001
4002 for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4003 Word _cnt;
4004
4005 if ((_cnt = count[ndx]) == 0)
4006 continue;
4007
4008 (void) snprintf(number, MAXNDXSIZE,
4009 MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4010 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4011 EC_WORD(ndx));
4012 bkts += _cnt;
4013 cnt += (Word)(ndx * _cnt);
4014 }
4015 if (cnt) {
4016 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4017 bkts);
4018 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4019 EC_WORD(cnt));
4020 }
4021 }
4022
4023 static void
4024 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4025 {
4026 Word scnt;
4027
4028 for (scnt = 1; scnt < shnum; scnt++) {
4029 Cache *_cache = &cache[scnt];
4030 Shdr *shdr = _cache->c_shdr;
4031 Word *grpdata, gcnt, grpcnt, symnum, unknown;
4032 Cache *symsec, *strsec;
4033 Sym *syms, *sym;
4034 char flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4035 const char *grpnam;
4036
4037 if (shdr->sh_type != SHT_GROUP)
4038 continue;
4039 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4040 continue;
4041 if ((_cache->c_data == NULL) ||
4042 ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4043 continue;
4044 grpcnt = shdr->sh_size / sizeof (Word);
4045
4046 /*
4047 * Get the data buffer for the associated symbol table and
4048 * string table.
4049 */
4050 if (stringtbl(cache, 1, scnt, shnum, file,
4051 &symnum, &symsec, &strsec) == 0)
4052 return;
4053
4054 syms = symsec->c_data->d_buf;
4055
4056 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4057 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4058 dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4059
4060 /*
4061 * The first element of the group defines the group. The
4062 * associated symbol is defined by the sh_link field.
4063 */
4064 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4065 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4066 file, _cache->c_name, EC_WORD(shdr->sh_info));
4067 return;
4068 }
4069
4070 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4071 if (grpdata[0] & GRP_COMDAT) {
4072 (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4073 }
4074 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4075 size_t len = strlen(flgstrbuf);
4076
4077 (void) snprintf(&flgstrbuf[len],
4078 (MSG_GRP_COMDAT_SIZE + 10 - len),
4079 MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4080 }
4081 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4082 sym = (Sym *)(syms + shdr->sh_info);
4083
4084 /*
4085 * The GNU assembler can use section symbols as the signature
4086 * symbol as described by this comment in the gold linker
4087 * (found via google):
4088 *
4089 * It seems that some versions of gas will create a
4090 * section group associated with a section symbol, and
4091 * then fail to give a name to the section symbol. In
4092 * such a case, use the name of the section.
4093 *
4094 * In order to support such objects, we do the same.
4095 */
4096 grpnam = string(_cache, 0, strsec, file, sym->st_name);
4097 if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4098 (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4099 grpnam = cache[sym->st_shndx].c_name;
4100
4101 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4102 demangle(grpnam, flags));
4103
4104 for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4105 char index[MAXNDXSIZE];
4106 const char *name;
4107
4108 (void) snprintf(index, MAXNDXSIZE,
4109 MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4110
4111 if (grpdata[gcnt] >= shnum)
4112 name = MSG_INTL(MSG_GRP_INVALSCN);
4113 else
4114 name = cache[grpdata[gcnt]].c_name;
4115
4116 (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4117 EC_XWORD(grpdata[gcnt]));
4118 }
4119 }
4120 }
4121
4122 static void
4123 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4124 {
4125 Cache *gotcache = NULL, *symtab = NULL;
4126 Addr gotbgn, gotend;
4127 Shdr *gotshdr;
4128 Word cnt, gotents, gotndx;
4129 size_t gentsize;
4130 Got_info *gottable;
4131 char *gotdata;
4132 Sym *gotsym;
4133 Xword gotsymaddr;
4134 uint_t sys_encoding;
4135
4136 /*
4137 * First, find the got.
4138 */
4139 for (cnt = 1; cnt < shnum; cnt++) {
4140 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4141 MSG_ELF_GOT_SIZE) == 0) {
4142 gotcache = &cache[cnt];
4143 break;
4144 }
4145 }
4146 if (gotcache == NULL)
4147 return;
4148
4149 /*
4150 * A got section within a relocatable object is suspicious.
4151 */
4152 if (ehdr->e_type == ET_REL) {
4153 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4154 gotcache->c_name);
4155 }
4156
4157 gotshdr = gotcache->c_shdr;
4158 if (gotshdr->sh_size == 0) {
4159 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4160 file, gotcache->c_name);
4161 return;
4162 }
4163
4164 gotbgn = gotshdr->sh_addr;
4165 gotend = gotbgn + gotshdr->sh_size;
4166
4167 /*
4168 * Some architectures don't properly set the sh_entsize for the GOT
4169 * table. If it's not set, default to a size of a pointer.
4170 */
4171 if ((gentsize = gotshdr->sh_entsize) == 0)
4172 gentsize = sizeof (Xword);
4173
4174 if (gotcache->c_data == NULL)
4175 return;
4176
4177 /* LINTED */
4178 gotents = (Word)(gotshdr->sh_size / gentsize);
4179 gotdata = gotcache->c_data->d_buf;
4180
4181 if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4182 int err = errno;
4183 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4184 strerror(err));
4185 return;
4186 }
4187
4188 /*
4189 * Now we scan through all the sections looking for any relocations
4190 * that may be against the GOT. Since these may not be isolated to a
4191 * .rel[a].got section we check them all.
4192 * While scanning sections save the symbol table entry (a symtab
4193 * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4194 */
4195 for (cnt = 1; cnt < shnum; cnt++) {
4196 Word type, symnum;
4197 Xword relndx, relnum, relsize;
4198 void *rels;
4199 Sym *syms;
4200 Cache *symsec, *strsec;
4201 Cache *_cache = &cache[cnt];
4202 Shdr *shdr;
4203
4204 shdr = _cache->c_shdr;
4205 type = shdr->sh_type;
4206
4207 if ((symtab == 0) && (type == SHT_DYNSYM)) {
4208 symtab = _cache;
4209 continue;
4210 }
4211 if (type == SHT_SYMTAB) {
4212 symtab = _cache;
4213 continue;
4214 }
4215 if ((type != SHT_RELA) && (type != SHT_REL))
4216 continue;
4217
4218 /*
4219 * Decide entry size.
4220 */
4221 if (((relsize = shdr->sh_entsize) == 0) ||
4222 (relsize > shdr->sh_size)) {
4223 if (type == SHT_RELA)
4224 relsize = sizeof (Rela);
4225 else
4226 relsize = sizeof (Rel);
4227 }
4228
4229 /*
4230 * Determine the number of relocations available.
4231 */
4232 if (shdr->sh_size == 0) {
4233 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4234 file, _cache->c_name);
4235 continue;
4236 }
4237 if (_cache->c_data == NULL)
4238 continue;
4239
4240 rels = _cache->c_data->d_buf;
4241 relnum = shdr->sh_size / relsize;
4242
4243 /*
4244 * Get the data buffer for the associated symbol table and
4245 * string table.
4246 */
4247 if (stringtbl(cache, 1, cnt, shnum, file,
4248 &symnum, &symsec, &strsec) == 0)
4249 continue;
4250
4251 syms = symsec->c_data->d_buf;
4252
4253 /*
4254 * Loop through the relocation entries.
4255 */
4256 for (relndx = 0; relndx < relnum; relndx++,
4257 rels = (void *)((char *)rels + relsize)) {
4258 char section[BUFSIZ];
4259 Addr offset;
4260 Got_info *gip;
4261 Word symndx, reltype;
4262 Rela *rela;
4263 Rel *rel;
4264
4265 /*
4266 * Unravel the relocation.
4267 */
4268 if (type == SHT_RELA) {
4269 rela = (Rela *)rels;
4270 symndx = ELF_R_SYM(rela->r_info);
4271 reltype = ELF_R_TYPE(rela->r_info,
4272 ehdr->e_machine);
4273 offset = rela->r_offset;
4274 } else {
4275 rel = (Rel *)rels;
4276 symndx = ELF_R_SYM(rel->r_info);
4277 reltype = ELF_R_TYPE(rel->r_info,
4278 ehdr->e_machine);
4279 offset = rel->r_offset;
4280 }
4281
4282 /*
4283 * Only pay attention to relocations against the GOT.
4284 */
4285 if ((offset < gotbgn) || (offset >= gotend))
4286 continue;
4287
4288 /* LINTED */
4289 gotndx = (Word)((offset - gotbgn) /
4290 gotshdr->sh_entsize);
4291 gip = &gottable[gotndx];
4292
4293 if (gip->g_reltype != 0) {
4294 (void) fprintf(stderr,
4295 MSG_INTL(MSG_GOT_MULTIPLE), file,
4296 EC_WORD(gotndx), EC_ADDR(offset));
4297 continue;
4298 }
4299
4300 if (symndx)
4301 gip->g_symname = relsymname(cache, _cache,
4302 strsec, symndx, symnum, relndx, syms,
4303 section, BUFSIZ, file);
4304 gip->g_reltype = reltype;
4305 gip->g_rel = rels;
4306 }
4307 }
4308
4309 if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4310 symtab, file))
4311 gotsymaddr = gotsym->st_value;
4312 else
4313 gotsymaddr = gotbgn;
4314
4315 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4316 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4317 Elf_got_title(0);
4318
4319 sys_encoding = _elf_sys_encoding();
4320 for (gotndx = 0; gotndx < gotents; gotndx++) {
4321 Got_info *gip;
4322 Sword gindex;
4323 Addr gaddr;
4324 Xword gotentry;
4325
4326 gip = &gottable[gotndx];
4327
4328 gaddr = gotbgn + (gotndx * gentsize);
4329 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4330
4331 if (gentsize == sizeof (Word))
4332 /* LINTED */
4333 gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4334 else
4335 /* LINTED */
4336 gotentry = *((Xword *)(gotdata) + gotndx);
4337
4338 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4339 ehdr->e_ident[EI_DATA], sys_encoding,
4340 gip->g_reltype, gip->g_rel, gip->g_symname);
4341 }
4342 free(gottable);
4343 }
4344
4345 void
4346 checksum(Elf *elf)
4347 {
4348 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4349 dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4350 }
4351
4352 /*
4353 * This variable is used by regular() to communicate the address of
4354 * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4355 * the qsort() interface does not include a userdata argument by which
4356 * such arbitrary data can be passed, so we are stuck using global data.
4357 */
4358 static Cache *sort_shdr_ndx_arr_cache;
4359
4360
4361 /*
4362 * Used with qsort() to sort the section indices so that they can be
4363 * used to access the section headers in order of increasing data offset.
4364 *
4365 * entry:
4366 * sort_shdr_ndx_arr_cache - Contains address of
4367 * section header cache.
4368 * v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4369 *
4370 * exit:
4371 * Returns -1 (less than), 0 (equal) or 1 (greater than).
4372 */
4373 static int
4374 sort_shdr_ndx_arr(const void *v1, const void *v2)
4375 {
4376 Cache *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4377 Cache *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4378
4379 if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4380 return (-1);
4381
4382 if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4383 return (1);
4384
4385 return (0);
4386 }
4387
4388
4389 static int
4390 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4391 size_t shnum, Cache **cache_ret, Word flags)
4392 {
4393 Elf_Scn *scn;
4394 Elf_Data *data;
4395 size_t ndx;
4396 Shdr *nameshdr;
4397 char *names = NULL;
4398 Cache *cache, *_cache;
4399 size_t *shdr_ndx_arr, shdr_ndx_arr_cnt;
4400
4401
4402 /*
4403 * Obtain the .shstrtab data buffer to provide the required section
4404 * name strings.
4405 */
4406 if (shstrndx == SHN_UNDEF) {
4407 /*
4408 * It is rare, but legal, for an object to lack a
4409 * header string table section.
4410 */
4411 names = NULL;
4412 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4413 } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4414 failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4415 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4416 EC_XWORD(shstrndx));
4417
4418 } else if ((data = elf_getdata(scn, NULL)) == NULL) {
4419 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4420 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4421 EC_XWORD(shstrndx));
4422
4423 } else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4424 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4425 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4426 EC_WORD(elf_ndxscn(scn)));
4427
4428 } else if ((names = data->d_buf) == NULL)
4429 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4430
4431 /*
4432 * Allocate a cache to maintain a descriptor for each section.
4433 */
4434 if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4435 int err = errno;
4436 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4437 file, strerror(err));
4438 return (0);
4439 }
4440
4441 *cache = cache_init;
4442 _cache = cache;
4443 _cache++;
4444
4445 /*
4446 * Allocate an array that will hold the section index for
4447 * each section that has data in the ELF file:
4448 *
4449 * - Is not a NOBITS section
4450 * - Data has non-zero length
4451 *
4452 * Note that shnum is an upper bound on the size required. It
4453 * is likely that we won't use a few of these array elements.
4454 * Allocating a modest amount of extra memory in this case means
4455 * that we can avoid an extra loop to count the number of needed
4456 * items, and can fill this array immediately in the first loop
4457 * below.
4458 */
4459 if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4460 int err = errno;
4461 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4462 file, strerror(err));
4463 return (0);
4464 }
4465 shdr_ndx_arr_cnt = 0;
4466
4467 /*
4468 * Traverse the sections of the file. This gathering of data is
4469 * carried out in two passes. First, the section headers are captured
4470 * and the section header names are evaluated. A verification pass is
4471 * then carried out over the section information. Files have been
4472 * known to exhibit overlapping (and hence erroneous) section header
4473 * information.
4474 *
4475 * Finally, the data for each section is obtained. This processing is
4476 * carried out after section verification because should any section
4477 * header overlap occur, and a file needs translating (ie. xlate'ing
4478 * information from a non-native architecture file), then the process
4479 * of translation can corrupt the section header information. Of
4480 * course, if there is any section overlap, the data related to the
4481 * sections is going to be compromised. However, it is the translation
4482 * of this data that has caused problems with elfdump()'s ability to
4483 * extract the data.
4484 */
4485 for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4486 ndx++, _cache++) {
4487 char scnndxnm[100];
4488
4489 _cache->c_ndx = ndx;
4490 _cache->c_scn = scn;
4491
4492 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4493 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4494 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4495 EC_WORD(elf_ndxscn(scn)));
4496 }
4497
4498 /*
4499 * If this section has data in the file, include it in
4500 * the array of sections to check for address overlap.
4501 */
4502 if ((_cache->c_shdr->sh_size != 0) &&
4503 (_cache->c_shdr->sh_type != SHT_NOBITS))
4504 shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4505
4506 /*
4507 * If a shstrtab exists, assign the section name.
4508 */
4509 if (names && _cache->c_shdr) {
4510 if (_cache->c_shdr->sh_name &&
4511 /* LINTED */
4512 (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4513 const char *symname;
4514 char *secname;
4515
4516 secname = names + _cache->c_shdr->sh_name;
4517
4518 /*
4519 * A SUN naming convention employs a "%" within
4520 * a section name to indicate a section/symbol
4521 * name. This originated from the compilers
4522 * -xF option, that places functions into their
4523 * own sections. This convention (which has no
4524 * formal standard) has also been followed for
4525 * COMDAT sections. To demangle the symbol
4526 * name, the name must be separated from the
4527 * section name.
4528 */
4529 if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4530 ((symname = strchr(secname, '%')) == NULL))
4531 _cache->c_name = secname;
4532 else {
4533 size_t secsz = ++symname - secname;
4534 size_t strsz;
4535
4536 symname = demangle(symname, flags);
4537 strsz = secsz + strlen(symname) + 1;
4538
4539 if ((_cache->c_name =
4540 malloc(strsz)) == NULL) {
4541 int err = errno;
4542 (void) fprintf(stderr,
4543 MSG_INTL(MSG_ERR_MALLOC),
4544 file, strerror(err));
4545 return (0);
4546 }
4547 (void) snprintf(_cache->c_name, strsz,
4548 MSG_ORIG(MSG_FMT_SECSYM),
4549 EC_WORD(secsz), secname, symname);
4550 }
4551
4552 continue;
4553 }
4554
4555 /*
4556 * Generate an error if the section name index is zero
4557 * or exceeds the shstrtab data. Fall through to
4558 * fabricate a section name.
4559 */
4560 if ((_cache->c_shdr->sh_name == 0) ||
4561 /* LINTED */
4562 (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4563 (void) fprintf(stderr,
4564 MSG_INTL(MSG_ERR_BADSHNAME), file,
4565 EC_WORD(ndx),
4566 EC_XWORD(_cache->c_shdr->sh_name));
4567 }
4568 }
4569
4570 /*
4571 * If there exists no shstrtab data, or a section header has no
4572 * name (an invalid index of 0), then compose a name for the
4573 * section.
4574 */
4575 (void) snprintf(scnndxnm, sizeof (scnndxnm),
4576 MSG_INTL(MSG_FMT_SCNNDX), ndx);
4577
4578 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4579 int err = errno;
4580 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4581 file, strerror(err));
4582 return (0);
4583 }
4584 (void) strcpy(_cache->c_name, scnndxnm);
4585 }
4586
4587 /*
4588 * Having collected all the sections, validate their address range.
4589 * Cases have existed where the section information has been invalid.
4590 * This can lead to all sorts of other, hard to diagnose errors, as
4591 * each section is processed individually (ie. with elf_getdata()).
4592 * Here, we carry out some address comparisons to catch a family of
4593 * overlapping memory issues we have observed (likely, there are others
4594 * that we have yet to discover).
4595 *
4596 * Note, should any memory overlap occur, obtaining any additional
4597 * data from the file is questionable. However, it might still be
4598 * possible to inspect the ELF header, Programs headers, or individual
4599 * sections, so rather than bailing on an error condition, continue
4600 * processing to see if any data can be salvaged.
4601 */
4602 if (shdr_ndx_arr_cnt > 1) {
4603 sort_shdr_ndx_arr_cache = cache;
4604 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4605 sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4606 }
4607 for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4608 Cache *_cache = cache + shdr_ndx_arr[ndx];
4609 Shdr *shdr = _cache->c_shdr;
4610 Off bgn1, bgn = shdr->sh_offset;
4611 Off end1, end = shdr->sh_offset + shdr->sh_size;
4612 size_t ndx1;
4613
4614 /*
4615 * Check the section against all following ones, reporting
4616 * any overlaps. Since we've sorted the sections by offset,
4617 * we can stop after the first comparison that fails. There
4618 * are no overlaps in a properly formed ELF file, in which
4619 * case this algorithm runs in O(n) time. This will degenerate
4620 * to O(n^2) for a completely broken file. Such a file is
4621 * (1) highly unlikely, and (2) unusable, so it is reasonable
4622 * for the analysis to take longer.
4623 */
4624 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4625 Cache *_cache1 = cache + shdr_ndx_arr[ndx1];
4626 Shdr *shdr1 = _cache1->c_shdr;
4627
4628 bgn1 = shdr1->sh_offset;
4629 end1 = shdr1->sh_offset + shdr1->sh_size;
4630
4631 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4632 ((bgn1 < end) && (end1 >= end))) {
4633 (void) fprintf(stderr,
4634 MSG_INTL(MSG_ERR_SECMEMOVER), file,
4635 EC_WORD(elf_ndxscn(_cache->c_scn)),
4636 _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4637 EC_WORD(elf_ndxscn(_cache1->c_scn)),
4638 _cache1->c_name, EC_OFF(bgn1),
4639 EC_OFF(end1));
4640 } else { /* No overlap, so can stop */
4641 break;
4642 }
4643 }
4644
4645 /*
4646 * In addition to checking for sections overlapping
4647 * each other (done above), we should also make sure
4648 * the section doesn't overlap the section header array.
4649 */
4650 bgn1 = ehdr->e_shoff;
4651 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4652
4653 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4654 ((bgn1 < end) && (end1 >= end))) {
4655 (void) fprintf(stderr,
4656 MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4657 EC_OFF(end1),
4658 EC_WORD(elf_ndxscn(_cache->c_scn)),
4659 _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4660 }
4661 }
4662
4663 /*
4664 * Obtain the data for each section.
4665 */
4666 for (ndx = 1; ndx < shnum; ndx++) {
4667 Cache *_cache = &cache[ndx];
4668 Elf_Scn *scn = _cache->c_scn;
4669
4670 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4671 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4672 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4673 EC_WORD(elf_ndxscn(scn)));
4674 }
4675
4676 /*
4677 * If a string table, verify that it has NULL first and
4678 * final bytes.
4679 */
4680 if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4681 (_cache->c_data->d_buf != NULL) &&
4682 (_cache->c_data->d_size > 0)) {
4683 const char *s = _cache->c_data->d_buf;
4684
4685 if ((*s != '\0') ||
4686 (*(s + _cache->c_data->d_size - 1) != '\0'))
4687 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4688 file, _cache->c_name);
4689 }
4690 }
4691
4692 return (1);
4693 }
4694
4695
4696
4697 /*
4698 * Generate a cache of section headers and related information
4699 * for use by the rest of elfdump. If requested (or the file
4700 * contains no section headers), we generate a fake set of
4701 * headers from the information accessible from the program headers.
4702 * Otherwise, we use the real section headers contained in the file.
4703 */
4704 static int
4705 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4706 size_t shstrndx, size_t *shnum, uint_t *flags)
4707 {
4708 /*
4709 * If there are no section headers, then resort to synthesizing
4710 * section headers from the program headers. This is normally
4711 * only done by explicit request, but in this case there's no
4712 * reason not to go ahead, since the alternative is simply to quit.
4713 */
4714 if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4715 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4716 *flags |= FLG_CTL_FAKESHDR;
4717 }
4718
4719 if (*flags & FLG_CTL_FAKESHDR) {
4720 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4721 return (0);
4722 } else {
4723 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4724 cache, *flags) == 0)
4725 return (0);
4726 }
4727
4728 return (1);
4729 }
4730
4731 int
4732 regular(const char *file, int fd, Elf *elf, uint_t flags,
4733 const char *wname, int wfd, uchar_t osabi)
4734 {
4735 enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4736 Elf_Scn *scn;
4737 Ehdr *ehdr;
4738 size_t ndx, shstrndx, shnum, phnum;
4739 Shdr *shdr;
4740 Cache *cache;
4741 VERSYM_STATE versym = { 0 };
4742 int ret = 0;
4743 int addr_align;
4744
4745 if ((ehdr = elf_getehdr(elf)) == NULL) {
4746 failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4747 return (ret);
4748 }
4749
4750 if (elf_getshdrnum(elf, &shnum) == -1) {
4751 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4752 return (ret);
4753 }
4754
4755 if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4756 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4757 return (ret);
4758 }
4759
4760 if (elf_getphdrnum(elf, &phnum) == -1) {
4761 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4762 return (ret);
4763 }
4764 /*
4765 * If the user requested section headers derived from the
4766 * program headers (-P option) and this file doesn't have
4767 * any program headers (i.e. ET_REL), then we can't do it.
4768 */
4769 if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4770 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4771 return (ret);
4772 }
4773
4774
4775 if ((scn = elf_getscn(elf, 0)) != NULL) {
4776 if ((shdr = elf_getshdr(scn)) == NULL) {
4777 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4778 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4779 return (ret);
4780 }
4781 } else
4782 shdr = NULL;
4783
4784 /*
4785 * Print the elf header.
4786 */
4787 if (flags & FLG_SHOW_EHDR)
4788 Elf_ehdr(0, ehdr, shdr);
4789
4790 /*
4791 * If the section headers or program headers have inadequate
4792 * alignment for the class of object, print a warning. libelf
4793 * can handle such files, but programs that use them can crash
4794 * when they dereference unaligned items.
4795 *
4796 * Note that the AMD64 ABI, although it is a 64-bit architecture,
4797 * allows access to data types smaller than 128-bits to be on
4798 * word alignment.
4799 */
4800 if (ehdr->e_machine == EM_AMD64)
4801 addr_align = sizeof (Word);
4802 else
4803 addr_align = sizeof (Addr);
4804
4805 if (ehdr->e_phoff & (addr_align - 1))
4806 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4807 if (ehdr->e_shoff & (addr_align - 1))
4808 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4809
4810
4811 /*
4812 * Determine the Operating System ABI (osabi) we will use to
4813 * interpret the object.
4814 */
4815 if (flags & FLG_CTL_OSABI) {
4816 /*
4817 * If the user explicitly specifies '-O none', we need
4818 * to display a completely generic view of the file.
4819 * However, libconv is written to assume that ELFOSABI_NONE
4820 * is equivalent to ELFOSABI_SOLARIS. To get the desired
4821 * effect, we use an osabi that libconv has no knowledge of.
4822 */
4823 if (osabi == ELFOSABI_NONE)
4824 osabi = ELFOSABI_UNKNOWN4;
4825 } else {
4826 /* Determine osabi from file */
4827 osabi = ehdr->e_ident[EI_OSABI];
4828 if (osabi == ELFOSABI_NONE) {
4829 /*
4830 * Chicken/Egg scenario:
4831 *
4832 * Ideally, we wait to create the section header cache
4833 * until after the program headers are printed. If we
4834 * only output program headers, we can skip building
4835 * the cache entirely.
4836 *
4837 * Proper interpretation of program headers requires
4838 * the osabi, which is supposed to be in the ELF header.
4839 * However, many systems (Solaris and Linux included)
4840 * have a history of setting the osabi to the generic
4841 * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4842 * in such cases, but would like to check the object
4843 * to see if it has a Linux .note.ABI-tag section,
4844 * which implies ELFOSABI_LINUX. This requires a
4845 * section header cache.
4846 *
4847 * To break the cycle, we create section headers now
4848 * if osabi is ELFOSABI_NONE, and later otherwise.
4849 * If it succeeds, we use them, if not, we defer
4850 * exiting until after the program headers are out.
4851 */
4852 if (create_cache(file, fd, elf, ehdr, &cache,
4853 shstrndx, &shnum, &flags) == 0) {
4854 cache_state = CACHE_FAIL;
4855 } else {
4856 cache_state = CACHE_OK;
4857 if (has_linux_abi_note(cache, shnum, file)) {
4858 Conv_inv_buf_t ibuf1, ibuf2;
4859
4860 (void) fprintf(stderr,
4861 MSG_INTL(MSG_INFO_LINUXOSABI), file,
4862 conv_ehdr_osabi(osabi, 0, &ibuf1),
4863 conv_ehdr_osabi(ELFOSABI_LINUX,
4864 0, &ibuf2));
4865 osabi = ELFOSABI_LINUX;
4866 }
4867 }
4868 }
4869 /*
4870 * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4871 * Mapping NONE to SOLARIS simplifies the required test.
4872 */
4873 if (osabi == ELFOSABI_NONE)
4874 osabi = ELFOSABI_SOLARIS;
4875 }
4876
4877 /*
4878 * Print the program headers.
4879 */
4880 if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4881 Phdr *phdr;
4882
4883 if ((phdr = elf_getphdr(elf)) == NULL) {
4884 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4885 return (ret);
4886 }
4887
4888 for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4889 if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4890 NULL, ndx, phdr->p_type))
4891 continue;
4892
4893 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4894 dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4895 Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4896 }
4897 }
4898
4899 /*
4900 * If we have flag bits set that explicitly require a show or calc
4901 * operation, but none of them require the section headers, then
4902 * we are done and can return now.
4903 */
4904 if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4905 ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4906 return (ret);
4907
4908 /*
4909 * Everything from this point on requires section headers.
4910 * If we have no section headers, there is no reason to continue.
4911 *
4912 * If we tried above to create the section header cache and failed,
4913 * it is time to exit. Otherwise, create it if needed.
4914 */
4915 switch (cache_state) {
4916 case CACHE_NEEDED:
4917 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4918 &shnum, &flags) == 0)
4919 return (ret);
4920 break;
4921 case CACHE_FAIL:
4922 return (ret);
4923 }
4924 if (shnum <= 1)
4925 goto done;
4926
4927 /*
4928 * If -w was specified, find and write out the section(s) data.
4929 */
4930 if (wfd) {
4931 for (ndx = 1; ndx < shnum; ndx++) {
4932 Cache *_cache = &cache[ndx];
4933
4934 if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4935 ndx, _cache->c_shdr->sh_type) &&
4936 _cache->c_data && _cache->c_data->d_buf) {
4937 if (write(wfd, _cache->c_data->d_buf,
4938 _cache->c_data->d_size) !=
4939 _cache->c_data->d_size) {
4940 int err = errno;
4941 (void) fprintf(stderr,
4942 MSG_INTL(MSG_ERR_WRITE), wname,
4943 strerror(err));
4944 /*
4945 * Return an exit status of 1, because
4946 * the failure is not related to the
4947 * ELF file, but by system resources.
4948 */
4949 ret = 1;
4950 goto done;
4951 }
4952 }
4953 }
4954 }
4955
4956 /*
4957 * If we have no flag bits set that explicitly require a show or calc
4958 * operation, but match options (-I, -N, -T) were used, then run
4959 * through the section headers and see if we can't deduce show flags
4960 * from the match options given.
4961 *
4962 * We don't do this if -w was specified, because (-I, -N, -T) used
4963 * with -w in lieu of some other option is supposed to be quiet.
4964 */
4965 if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4966 ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4967 for (ndx = 1; ndx < shnum; ndx++) {
4968 Cache *_cache = &cache[ndx];
4969
4970 if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4971 ndx, _cache->c_shdr->sh_type))
4972 continue;
4973
4974 switch (_cache->c_shdr->sh_type) {
4975 case SHT_PROGBITS:
4976 /*
4977 * Heuristic time: It is usually bad form
4978 * to assume the meaning/format of a PROGBITS
4979 * section based on its name. However, there
4980 * are ABI mandated exceptions. Check for
4981 * these special names.
4982 */
4983
4984 /* The ELF ABI specifies .interp and .got */
4985 if (strcmp(_cache->c_name,
4986 MSG_ORIG(MSG_ELF_INTERP)) == 0) {
4987 flags |= FLG_SHOW_INTERP;
4988 break;
4989 }
4990 if (strcmp(_cache->c_name,
4991 MSG_ORIG(MSG_ELF_GOT)) == 0) {
4992 flags |= FLG_SHOW_GOT;
4993 break;
4994 }
4995 /*
4996 * The GNU compilers, and amd64 ABI, define
4997 * .eh_frame and .eh_frame_hdr. The Sun
4998 * C++ ABI defines .exception_ranges.
4999 */
5000 if ((strncmp(_cache->c_name,
5001 MSG_ORIG(MSG_SCN_FRM),
5002 MSG_SCN_FRM_SIZE) == 0) ||
5003 (strncmp(_cache->c_name,
5004 MSG_ORIG(MSG_SCN_EXRANGE),
5005 MSG_SCN_EXRANGE_SIZE) == 0)) {
5006 flags |= FLG_SHOW_UNWIND;
5007 break;
5008 }
5009 break;
5010
5011 case SHT_SYMTAB:
5012 case SHT_DYNSYM:
5013 case SHT_SUNW_LDYNSYM:
5014 case SHT_SUNW_versym:
5015 case SHT_SYMTAB_SHNDX:
5016 flags |= FLG_SHOW_SYMBOLS;
5017 break;
5018
5019 case SHT_RELA:
5020 case SHT_REL:
5021 flags |= FLG_SHOW_RELOC;
5022 break;
5023
5024 case SHT_HASH:
5025 flags |= FLG_SHOW_HASH;
5026 break;
5027
5028 case SHT_DYNAMIC:
5029 flags |= FLG_SHOW_DYNAMIC;
5030 break;
5031
5032 case SHT_NOTE:
5033 flags |= FLG_SHOW_NOTE;
5034 break;
5035
5036 case SHT_GROUP:
5037 flags |= FLG_SHOW_GROUP;
5038 break;
5039
5040 case SHT_SUNW_symsort:
5041 case SHT_SUNW_tlssort:
5042 flags |= FLG_SHOW_SORT;
5043 break;
5044
5045 case SHT_SUNW_cap:
5046 flags |= FLG_SHOW_CAP;
5047 break;
5048
5049 case SHT_SUNW_move:
5050 flags |= FLG_SHOW_MOVE;
5051 break;
5052
5053 case SHT_SUNW_syminfo:
5054 flags |= FLG_SHOW_SYMINFO;
5055 break;
5056
5057 case SHT_SUNW_verdef:
5058 case SHT_SUNW_verneed:
5059 flags |= FLG_SHOW_VERSIONS;
5060 break;
5061
5062 case SHT_AMD64_UNWIND:
5063 flags |= FLG_SHOW_UNWIND;
5064 break;
5065 }
5066 }
5067 }
5068
5069
5070 if (flags & FLG_SHOW_SHDR)
5071 sections(file, cache, shnum, ehdr, osabi);
5072
5073 if (flags & FLG_SHOW_INTERP)
5074 interp(file, cache, shnum, phnum, elf);
5075
5076 if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5077 versions(cache, shnum, file, flags, &versym);
5078
5079 if (flags & FLG_SHOW_SYMBOLS)
5080 symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5081
5082 if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5083 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5084
5085 if (flags & FLG_SHOW_HASH)
5086 hash(cache, shnum, file, flags);
5087
5088 if (flags & FLG_SHOW_GOT)
5089 got(cache, shnum, ehdr, file);
5090
5091 if (flags & FLG_SHOW_GROUP)
5092 group(cache, shnum, file, flags);
5093
5094 if (flags & FLG_SHOW_SYMINFO)
5095 syminfo(cache, shnum, ehdr, osabi, file);
5096
5097 if (flags & FLG_SHOW_RELOC)
5098 reloc(cache, shnum, ehdr, file);
5099
5100 if (flags & FLG_SHOW_DYNAMIC)
5101 dynamic(cache, shnum, ehdr, osabi, file);
5102
5103 if (flags & FLG_SHOW_NOTE) {
5104 Word note_cnt;
5105 size_t note_shnum;
5106 Cache *note_cache;
5107
5108 note_cnt = note(cache, shnum, ehdr, file);
5109
5110 /*
5111 * Solaris core files have section headers, but these
5112 * headers do not include SHT_NOTE sections that reference
5113 * the core note sections. This means that note() won't
5114 * find the core notes. Fake section headers (-P option)
5115 * recover these sections, but it is inconvenient to require
5116 * users to specify -P in this situation. If the following
5117 * are all true:
5118 *
5119 * - No note sections were found
5120 * - This is a core file
5121 * - We are not already using fake section headers
5122 *
5123 * then we will automatically generate fake section headers
5124 * and then process them in a second call to note().
5125 */
5126 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5127 !(flags & FLG_CTL_FAKESHDR) &&
5128 (fake_shdr_cache(file, fd, elf, ehdr,
5129 ¬e_cache, ¬e_shnum) != 0)) {
5130 (void) note(note_cache, note_shnum, ehdr, file);
5131 fake_shdr_cache_free(note_cache, note_shnum);
5132 }
5133 }
5134
5135 if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5136 move(cache, shnum, file, flags);
5137
5138 if (flags & FLG_CALC_CHECKSUM)
5139 checksum(elf);
5140
5141 if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5142 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5143
5144 if ((flags & FLG_SHOW_UNWIND) &&
5145 ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5146 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5147
5148
5149 /* Release the memory used to cache section headers */
5150 done:
5151 if (flags & FLG_CTL_FAKESHDR)
5152 fake_shdr_cache_free(cache, shnum);
5153 else
5154 free(cache);
5155
5156 return (ret);
5157 }