1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  */
  26 
  27 /*
  28  * Dump an elf file.
  29  */
  30 #include        <stddef.h>
  31 #include        <sys/elf_386.h>
  32 #include        <sys/elf_amd64.h>
  33 #include        <sys/elf_SPARC.h>
  34 #include        <_libelf.h>
  35 #include        <dwarf.h>
  36 #include        <stdio.h>
  37 #include        <unistd.h>
  38 #include        <errno.h>
  39 #include        <strings.h>
  40 #include        <debug.h>
  41 #include        <conv.h>
  42 #include        <msg.h>
  43 #include        <_elfdump.h>
  44 
  45 
  46 /*
  47  * VERSYM_STATE is used to maintain information about the VERSYM section
  48  * in the object being analyzed. It is filled in by versions(), and used
  49  * by init_symtbl_state() when displaying symbol information.
  50  *
  51  * There are three forms of symbol versioning known to us:
  52  *
  53  * 1) The original form, introduced with Solaris 2.5, in which
  54  *      the Versym contains indexes to Verdef records, and the
  55  *      Versym values for UNDEF symbols resolved by other objects
  56  *      are all set to 0.
  57  * 2) The GNU form, which is backward compatible with the original
  58  *      Solaris form, but which adds several extensions:
  59  *      - The Versym also contains indexes to Verneed records, recording
  60  *              which object/version contributed the external symbol at
  61  *              link time. These indexes start with the next value following
  62  *              the final Verdef index. The index is written to the previously
  63  *              reserved vna_other field of the ELF Vernaux structure.
  64  *      - The top bit of the Versym value is no longer part of the index,
  65  *              but is used as a "hidden bit" to prevent binding to the symbol.
  66  *      - Multiple implementations of a given symbol, contained in varying
  67  *              versions are allowed, using special assembler pseudo ops,
  68  *              and encoded in the symbol name using '@' characters.
  69  * 3) Modified Solaris form, in which we adopt the first GNU extension
  70  *      (Versym indexes to Verneed records), but not the others.
  71  *
  72  * elfdump can handle any of these cases. The presence of a DT_VERSYM
  73  * dynamic element indicates a full GNU object. An object that lacks
  74  * a DT_VERSYM entry, but which has non-zero vna_other fields in the Vernaux
  75  * structures is a modified Solaris object. An object that has neither of
  76  * these uses the original form.
  77  *
  78  * max_verndx contains the largest version index that can appear
  79  * in a Versym entry. This can never be less than 1: In the case where
  80  * there is no verdef/verneed sections, the [0] index is reserved
  81  * for local symbols, and the [1] index for globals. If the original
  82  * Solaris versioning rules are in effect and there is a verdef section,
  83  * then max_verndex is the number of defined versions. If one of the
  84  * other versioning forms is in effect, then:
  85  *      1) If there is no verneed section, it is the same as for
  86  *              original Solaris versioning.
  87  *      2) If there is a verneed section, the vna_other field of the
  88  *              Vernaux structs contain versions, and max_verndx is the
  89  *              largest such index.
  90  *
  91  * If gnu_full is True, the object uses the full GNU form of versioning.
  92  * The value of the gnu_full field is based on the presence of
  93  * a DT_VERSYM entry in the dynamic section: GNU ld produces these, and
  94  * Solaris ld does not.
  95  *
  96  * The gnu_needed field is True if the Versym contains indexes to
  97  * Verneed records, as indicated by non-zero vna_other fields in the Verneed
  98  * section. If gnu_full is True, then gnu_needed will always be true.
  99  * However, gnu_needed can be true without gnu_full. This is the modified
 100  * Solaris form.
 101  */
 102 typedef struct {
 103         Cache   *cache;         /* Pointer to cache entry for VERSYM */
 104         Versym  *data;          /* Pointer to versym array */
 105         int     gnu_full;       /* True if object uses GNU versioning rules */
 106         int     gnu_needed;     /* True if object uses VERSYM indexes for */
 107                                 /*      VERNEED (subset of gnu_full) */
 108         int     max_verndx;     /* largest versym index value */
 109 } VERSYM_STATE;
 110 
 111 /*
 112  * SYMTBL_STATE is used to maintain information about a single symbol
 113  * table section, for use by the routines that display symbol information.
 114  */
 115 typedef struct {
 116         const char      *file;          /* Name of file */
 117         Ehdr            *ehdr;          /* ELF header for file */
 118         Cache           *cache;         /* Cache of all section headers */
 119         uchar_t         osabi;          /* OSABI to use */
 120         Word            shnum;          /* # of sections in cache */
 121         Cache           *seccache;      /* Cache of symbol table section hdr */
 122         Word            secndx;         /* Index of symbol table section hdr */
 123         const char      *secname;       /* Name of section */
 124         uint_t          flags;          /* Command line option flags */
 125         struct {                        /* Extended section index data */
 126                 int     checked;        /* TRUE if already checked for shxndx */
 127                 Word    *data;          /* NULL, or extended section index */
 128                                         /*      used for symbol table entries */
 129                 uint_t  n;              /* # items in shxndx.data */
 130         } shxndx;
 131         VERSYM_STATE    *versym;        /* NULL, or associated VERSYM section */
 132         Sym             *sym;           /* Array of symbols */
 133         Word            symn;           /* # of symbols */
 134 } SYMTBL_STATE;
 135 
 136 /*
 137  * A variable of this type is used to track information related to
 138  * .eh_frame and .eh_frame_hdr sections across calls to unwind_eh_frame().
 139  */
 140 typedef struct {
 141         Word            frame_cnt;      /* # .eh_frame sections seen */
 142         Word            frame_ndx;      /* Section index of 1st .eh_frame */
 143         Word            hdr_cnt;        /* # .eh_frame_hdr sections seen */
 144         Word            hdr_ndx;        /* Section index of 1st .eh_frame_hdr */
 145         uint64_t        frame_ptr;      /* Value of FramePtr field from first */
 146                                         /*      .eh_frame_hdr section */
 147         uint64_t        frame_base;     /* Data addr of 1st .eh_frame  */
 148 } gnu_eh_state_t;
 149 
 150 /*
 151  * C++ .exception_ranges entries make use of the signed ptrdiff_t
 152  * type to record self-relative pointer values. We need a type
 153  * for this that is matched to the ELFCLASS being processed.
 154  */
 155 #if     defined(_ELF64)
 156         typedef int64_t PTRDIFF_T;
 157 #else
 158         typedef int32_t PTRDIFF_T;
 159 #endif
 160 
 161 /*
 162  * The Sun C++ ABI uses this struct to define each .exception_ranges
 163  * entry. From the ABI:
 164  *
 165  * The field ret_addr is a self relative pointer to the start of the address
 166  * range. The name was chosen because in the current implementation the range
 167  * typically starts at the return address for a call site.
 168  *
 169  * The field length is the difference, in bytes, between the pc of the last
 170  * instruction covered by the exception range and the first. When only a
 171  * single call site is represented without optimization, this will equal zero.
 172  *
 173  * The field handler_addr is a relative pointer which stores the difference
 174  * between the start of the exception range and the address of all code to
 175  * catch exceptions and perform the cleanup for stack unwinding.
 176  *
 177  * The field type_block is a relative pointer which stores the difference
 178  * between the start of the exception range and the address of an array used
 179  * for storing a list of the types of exceptions which can be caught within
 180  * the exception range.
 181  */
 182 typedef struct {
 183         PTRDIFF_T       ret_addr;
 184         Xword           length;
 185         PTRDIFF_T       handler_addr;
 186         PTRDIFF_T       type_block;
 187         Xword           reserved;
 188 } exception_range_entry;
 189 
 190 /*
 191  * Focal point for verifying symbol names.
 192  */
 193 static const char *
 194 string(Cache *refsec, Word ndx, Cache *strsec, const char *file, Word name)
 195 {
 196         /*
 197          * If an error in this routine is due to a property of the string
 198          * section, as opposed to a bad offset into the section (a property of
 199          * the referencing section), then we will detect the same error on
 200          * every call involving those sections. We use these static variables
 201          * to retain the information needed to only issue each such error once.
 202          */
 203         static Cache    *last_refsec;   /* Last referencing section seen */
 204         static int      strsec_err;     /* True if error issued */
 205 
 206         const char      *strs;
 207         Word            strn;
 208 
 209         if (strsec->c_data == NULL)
 210                 return (NULL);
 211 
 212         strs = (char *)strsec->c_data->d_buf;
 213         strn = strsec->c_data->d_size;
 214 
 215         /*
 216          * We only print a diagnostic regarding a bad string table once per
 217          * input section being processed. If the refsec has changed, reset
 218          * our retained error state.
 219          */
 220         if (last_refsec != refsec) {
 221                 last_refsec = refsec;
 222                 strsec_err = 0;
 223         }
 224 
 225         /* Verify that strsec really is a string table */
 226         if (strsec->c_shdr->sh_type != SHT_STRTAB) {
 227                 if (!strsec_err) {
 228                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOTSTRTAB),
 229                             file, strsec->c_ndx, refsec->c_ndx);
 230                         strsec_err = 1;
 231                 }
 232                 return (MSG_INTL(MSG_STR_UNKNOWN));
 233         }
 234 
 235         /*
 236          * Is the string table offset within range of the available strings?
 237          */
 238         if (name >= strn) {
 239                 /*
 240                  * Do we have a empty string table?
 241                  */
 242                 if (strs == NULL) {
 243                         if (!strsec_err) {
 244                                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
 245                                     file, strsec->c_name);
 246                                 strsec_err = 1;
 247                         }
 248                 } else {
 249                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSTOFF),
 250                             file, refsec->c_name, EC_WORD(ndx), strsec->c_name,
 251                             EC_WORD(name), EC_WORD(strn - 1));
 252                 }
 253 
 254                 /*
 255                  * Return the empty string so that the calling function can
 256                  * continue it's output diagnostics.
 257                  */
 258                 return (MSG_INTL(MSG_STR_UNKNOWN));
 259         }
 260         return (strs + name);
 261 }
 262 
 263 /*
 264  * Relocations can reference section symbols and standard symbols.  If the
 265  * former, establish the section name.
 266  */
 267 static const char *
 268 relsymname(Cache *cache, Cache *csec, Cache *strsec, Word symndx, Word symnum,
 269     Word relndx, Sym *syms, char *secstr, size_t secsz, const char *file)
 270 {
 271         Sym             *sym;
 272         const char      *name;
 273 
 274         if (symndx >= symnum) {
 275                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_RELBADSYMNDX),
 276                     file, EC_WORD(symndx), EC_WORD(relndx));
 277                 return (MSG_INTL(MSG_STR_UNKNOWN));
 278         }
 279 
 280         sym = (Sym *)(syms + symndx);
 281         name = string(csec, symndx, strsec, file, sym->st_name);
 282 
 283         /*
 284          * If the symbol represents a section offset construct an appropriate
 285          * string.  Note, although section symbol table entries typically have
 286          * a NULL name pointer, entries do exist that point into the string
 287          * table to their own NULL strings.
 288          */
 289         if ((ELF_ST_TYPE(sym->st_info) == STT_SECTION) &&
 290             ((sym->st_name == 0) || (*name == '\0'))) {
 291                 (void) snprintf(secstr, secsz, MSG_INTL(MSG_STR_SECTION),
 292                     cache[sym->st_shndx].c_name);
 293                 return ((const char *)secstr);
 294         }
 295 
 296         return (name);
 297 }
 298 
 299 /*
 300  * Focal point for establishing a string table section.  Data such as the
 301  * dynamic information simply points to a string table.  Data such as
 302  * relocations, reference a symbol table, which in turn is associated with a
 303  * string table.
 304  */
 305 static int
 306 stringtbl(Cache *cache, int symtab, Word ndx, Word shnum, const char *file,
 307     Word *symnum, Cache **symsec, Cache **strsec)
 308 {
 309         Shdr    *shdr = cache[ndx].c_shdr;
 310 
 311         if (symtab) {
 312                 /*
 313                  * Validate the symbol table section.
 314                  */
 315                 if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
 316                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
 317                             file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
 318                         return (0);
 319                 }
 320                 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
 321                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
 322                             file, cache[ndx].c_name);
 323                         return (0);
 324                 }
 325 
 326                 /*
 327                  * Obtain, and verify the symbol table data.
 328                  */
 329                 if ((cache[ndx].c_data == NULL) ||
 330                     (cache[ndx].c_data->d_buf == NULL)) {
 331                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
 332                             file, cache[ndx].c_name);
 333                         return (0);
 334                 }
 335 
 336                 /*
 337                  * Establish the string table index.
 338                  */
 339                 ndx = shdr->sh_link;
 340                 shdr = cache[ndx].c_shdr;
 341 
 342                 /*
 343                  * Return symbol table information.
 344                  */
 345                 if (symnum)
 346                         *symnum = (shdr->sh_size / shdr->sh_entsize);
 347                 if (symsec)
 348                         *symsec = &cache[ndx];
 349         }
 350 
 351         /*
 352          * Validate the associated string table section.
 353          */
 354         if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
 355                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
 356                     file, cache[ndx].c_name, EC_WORD(shdr->sh_link));
 357                 return (0);
 358         }
 359 
 360         if (strsec)
 361                 *strsec = &cache[shdr->sh_link];
 362 
 363         return (1);
 364 }
 365 
 366 /*
 367  * Lookup a symbol and set Sym accordingly.
 368  *
 369  * entry:
 370  *      name - Name of symbol to lookup
 371  *      cache - Cache of all section headers
 372  *      shnum - # of sections in cache
 373  *      sym - Address of pointer to receive symbol
 374  *      target - NULL, or section to which the symbol must be associated.
 375  *      symtab - Symbol table to search for symbol
 376  *      file - Name of file
 377  *
 378  * exit:
 379  *      If the symbol is found, *sym is set to reference it, and True is
 380  *      returned. If target is non-NULL, the symbol must reference the given
 381  *      section --- otherwise the section is not checked.
 382  *
 383  *      If no symbol is found, False is returned.
 384  */
 385 static int
 386 symlookup(const char *name, Cache *cache, Word shnum, Sym **sym,
 387     Cache *target, Cache *symtab, const char *file)
 388 {
 389         Shdr    *shdr;
 390         Word    symn, cnt;
 391         Sym     *syms;
 392 
 393         if (symtab == 0)
 394                 return (0);
 395 
 396         shdr = symtab->c_shdr;
 397 
 398         /*
 399          * Determine the symbol data and number.
 400          */
 401         if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
 402                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
 403                     file, symtab->c_name);
 404                 return (0);
 405         }
 406         if (symtab->c_data == NULL)
 407                 return (0);
 408 
 409         /* LINTED */
 410         symn = (Word)(shdr->sh_size / shdr->sh_entsize);
 411         syms = (Sym *)symtab->c_data->d_buf;
 412 
 413         /*
 414          * Get the associated string table section.
 415          */
 416         if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
 417                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
 418                     file, symtab->c_name, EC_WORD(shdr->sh_link));
 419                 return (0);
 420         }
 421 
 422         /*
 423          * Loop through the symbol table to find a match.
 424          */
 425         *sym = NULL;
 426         for (cnt = 0; cnt < symn; syms++, cnt++) {
 427                 const char      *symname;
 428 
 429                 symname = string(symtab, cnt, &cache[shdr->sh_link], file,
 430                     syms->st_name);
 431 
 432                 if (symname && (strcmp(name, symname) == 0) &&
 433                     ((target == NULL) || (target->c_ndx == syms->st_shndx))) {
 434                         /*
 435                          * It is possible, though rare, for a local and
 436                          * global symbol of the same name to exist, each
 437                          * contributed by a different input object. If the
 438                          * symbol just found is local, remember it, but
 439                          * continue looking.
 440                          */
 441                         *sym = syms;
 442                         if (ELF_ST_BIND(syms->st_info) != STB_LOCAL)
 443                                 break;
 444                 }
 445         }
 446 
 447         return (*sym != NULL);
 448 }
 449 
 450 /*
 451  * Print section headers.
 452  */
 453 static void
 454 sections(const char *file, Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi)
 455 {
 456         size_t  seccnt;
 457 
 458         for (seccnt = 1; seccnt < shnum; seccnt++) {
 459                 Cache           *_cache = &cache[seccnt];
 460                 Shdr            *shdr = _cache->c_shdr;
 461                 const char      *secname = _cache->c_name;
 462 
 463                 /*
 464                  * Although numerous section header entries can be zero, it's
 465                  * usually a sign of trouble if the type is zero.
 466                  */
 467                 if (shdr->sh_type == 0) {
 468                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHTYPE),
 469                             file, secname, EC_WORD(shdr->sh_type));
 470                 }
 471 
 472                 if (!match(MATCH_F_ALL, secname, seccnt, shdr->sh_type))
 473                         continue;
 474 
 475                 /*
 476                  * Identify any sections that are suspicious.  A .got section
 477                  * shouldn't exist in a relocatable object.
 478                  */
 479                 if (ehdr->e_type == ET_REL) {
 480                         if (strncmp(secname, MSG_ORIG(MSG_ELF_GOT),
 481                             MSG_ELF_GOT_SIZE) == 0) {
 482                                 (void) fprintf(stderr,
 483                                     MSG_INTL(MSG_GOT_UNEXPECTED), file,
 484                                     secname);
 485                         }
 486                 }
 487 
 488                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
 489                 dbg_print(0, MSG_INTL(MSG_ELF_SHDR), EC_WORD(seccnt), secname);
 490                 Elf_shdr(0, osabi, ehdr->e_machine, shdr);
 491         }
 492 }
 493 
 494 /*
 495  * Obtain a specified Phdr entry.
 496  */
 497 static Phdr *
 498 getphdr(Word phnum, Word *type_arr, Word type_cnt, const char *file, Elf *elf)
 499 {
 500         Word    cnt, tcnt;
 501         Phdr    *phdr;
 502 
 503         if ((phdr = elf_getphdr(elf)) == NULL) {
 504                 failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
 505                 return (NULL);
 506         }
 507 
 508         for (cnt = 0; cnt < phnum; phdr++, cnt++) {
 509                 for (tcnt = 0; tcnt < type_cnt; tcnt++) {
 510                         if (phdr->p_type == type_arr[tcnt])
 511                                 return (phdr);
 512                 }
 513         }
 514         return (NULL);
 515 }
 516 
 517 /*
 518  * Display the contents of GNU/amd64 .eh_frame and .eh_frame_hdr
 519  * sections.
 520  *
 521  * entry:
 522  *      cache - Cache of all section headers
 523  *      shndx - Index of .eh_frame or .eh_frame_hdr section to be displayed
 524  *      shnum - Total number of sections which exist
 525  *      uphdr - NULL, or unwind program header associated with
 526  *              the .eh_frame_hdr section.
 527  *      ehdr - ELF header for file
 528  *      eh_state - Data used across calls to this routine. The
 529  *              caller should zero it before the first call, and
 530  *              pass it on every call.
 531  *      osabi - OSABI to use in displaying information
 532  *      file - Name of file
 533  *      flags - Command line option flags
 534  */
 535 static void
 536 unwind_eh_frame(Cache *cache, Word shndx, Word shnum, Phdr *uphdr, Ehdr *ehdr,
 537     gnu_eh_state_t *eh_state, uchar_t osabi, const char *file, uint_t flags)
 538 {
 539 #if     defined(_ELF64)
 540 #define MSG_UNW_BINSRTAB2       MSG_UNW_BINSRTAB2_64
 541 #define MSG_UNW_BINSRTABENT     MSG_UNW_BINSRTABENT_64
 542 #else
 543 #define MSG_UNW_BINSRTAB2       MSG_UNW_BINSRTAB2_32
 544 #define MSG_UNW_BINSRTABENT     MSG_UNW_BINSRTABENT_32
 545 #endif
 546 
 547         Cache                   *_cache = &cache[shndx];
 548         Shdr                    *shdr = _cache->c_shdr;
 549         uchar_t                 *data = (uchar_t *)(_cache->c_data->d_buf);
 550         size_t                  datasize = _cache->c_data->d_size;
 551         Conv_dwarf_ehe_buf_t    dwarf_ehe_buf;
 552         uint64_t                ndx, frame_ptr, fde_cnt, tabndx;
 553         uint_t                  vers, frame_ptr_enc, fde_cnt_enc, table_enc;
 554         uint64_t                initloc, initloc0;
 555         uint64_t                gotaddr = 0;
 556         int                     cnt;
 557 
 558         for (cnt = 1; cnt < shnum; cnt++) {
 559                 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
 560                     MSG_ELF_GOT_SIZE) == 0) {
 561                         gotaddr = cache[cnt].c_shdr->sh_addr;
 562                         break;
 563                 }
 564         }
 565 
 566         /*
 567          * Is this a .eh_frame_hdr?
 568          */
 569         if ((uphdr && (shdr->sh_addr == uphdr->p_vaddr)) ||
 570             (strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRMHDR),
 571             MSG_SCN_FRMHDR_SIZE) == 0)) {
 572                 /*
 573                  * There can only be a single .eh_frame_hdr.
 574                  * Flag duplicates.
 575                  */
 576                 if (++eh_state->hdr_cnt > 1)
 577                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTEHFRMHDR),
 578                             file, EC_WORD(shndx), _cache->c_name);
 579 
 580                 dbg_print(0, MSG_ORIG(MSG_UNW_FRMHDR));
 581                 ndx = 0;
 582 
 583                 vers = data[ndx++];
 584                 frame_ptr_enc = data[ndx++];
 585                 fde_cnt_enc = data[ndx++];
 586                 table_enc = data[ndx++];
 587 
 588                 dbg_print(0, MSG_ORIG(MSG_UNW_FRMVERS), vers);
 589 
 590                 frame_ptr = dwarf_ehe_extract(data, &ndx, frame_ptr_enc,
 591                     ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
 592                 if (eh_state->hdr_cnt == 1) {
 593                         eh_state->hdr_ndx = shndx;
 594                         eh_state->frame_ptr = frame_ptr;
 595                 }
 596 
 597                 dbg_print(0, MSG_ORIG(MSG_UNW_FRPTRENC),
 598                     conv_dwarf_ehe(frame_ptr_enc, &dwarf_ehe_buf),
 599                     EC_XWORD(frame_ptr));
 600 
 601                 fde_cnt = dwarf_ehe_extract(data, &ndx, fde_cnt_enc,
 602                     ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
 603 
 604                 dbg_print(0, MSG_ORIG(MSG_UNW_FDCNENC),
 605                     conv_dwarf_ehe(fde_cnt_enc, &dwarf_ehe_buf),
 606                     EC_XWORD(fde_cnt));
 607                 dbg_print(0, MSG_ORIG(MSG_UNW_TABENC),
 608                     conv_dwarf_ehe(table_enc, &dwarf_ehe_buf));
 609                 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB1));
 610                 dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTAB2));
 611 
 612                 for (tabndx = 0; tabndx < fde_cnt; tabndx++) {
 613                         initloc = dwarf_ehe_extract(data, &ndx, table_enc,
 614                             ehdr->e_ident, B_TRUE, shdr->sh_addr, ndx, gotaddr);
 615                         /*LINTED:E_VAR_USED_BEFORE_SET*/
 616                         if ((tabndx != 0) && (initloc0 > initloc))
 617                                 (void) fprintf(stderr,
 618                                     MSG_INTL(MSG_ERR_BADSORT), file,
 619                                     _cache->c_name, EC_WORD(tabndx));
 620                         dbg_print(0, MSG_ORIG(MSG_UNW_BINSRTABENT),
 621                             EC_XWORD(initloc),
 622                             EC_XWORD(dwarf_ehe_extract(data, &ndx,
 623                             table_enc, ehdr->e_ident, B_TRUE, shdr->sh_addr,
 624                             ndx, gotaddr)));
 625                         initloc0 = initloc;
 626                 }
 627         } else {                /* Display the .eh_frame section */
 628                 eh_state->frame_cnt++;
 629                 if (eh_state->frame_cnt == 1) {
 630                         eh_state->frame_ndx = shndx;
 631                         eh_state->frame_base = shdr->sh_addr;
 632                 } else if ((eh_state->frame_cnt >  1) &&
 633                     (ehdr->e_type != ET_REL)) {
 634                         Conv_inv_buf_t  inv_buf;
 635 
 636                         (void) fprintf(stderr, MSG_INTL(MSG_WARN_MULTEHFRM),
 637                             file, EC_WORD(shndx), _cache->c_name,
 638                             conv_ehdr_type(osabi, ehdr->e_type, 0, &inv_buf));
 639                 }
 640                 dump_eh_frame(data, datasize, shdr->sh_addr,
 641                     ehdr->e_machine, ehdr->e_ident, gotaddr);
 642         }
 643 
 644         /*
 645          * If we've seen the .eh_frame_hdr and the first .eh_frame section,
 646          * compare the header frame_ptr to the address of the actual frame
 647          * section to ensure the link-editor got this right.  Note, this
 648          * diagnostic is only produced when unwind information is explicitly
 649          * asked for, as shared objects built with an older ld(1) may reveal
 650          * this inconsistency.  Although an inconsistency, it doesn't seem to
 651          * have any adverse effect on existing tools.
 652          */
 653         if (((flags & FLG_MASK_SHOW) != FLG_MASK_SHOW) &&
 654             (eh_state->hdr_cnt > 0) && (eh_state->frame_cnt > 0) &&
 655             (eh_state->frame_ptr != eh_state->frame_base))
 656                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADEHFRMPTR),
 657                     file, EC_WORD(eh_state->hdr_ndx),
 658                     cache[eh_state->hdr_ndx].c_name,
 659                     EC_XWORD(eh_state->frame_ptr),
 660                     EC_WORD(eh_state->frame_ndx),
 661                     cache[eh_state->frame_ndx].c_name,
 662                     EC_XWORD(eh_state->frame_base));
 663 #undef MSG_UNW_BINSRTAB2
 664 #undef MSG_UNW_BINSRTABENT
 665 }
 666 
 667 /*
 668  * Convert a self relative pointer into an address. A self relative
 669  * pointer adds the address where the pointer resides to the offset
 670  * contained in the pointer. The benefit is that the value of the
 671  * pointer does not require relocation.
 672  *
 673  * entry:
 674  *      base_addr - Address of the pointer.
 675  *      delta - Offset relative to base_addr giving desired address
 676  *
 677  * exit:
 678  *      The computed address is returned.
 679  *
 680  * note:
 681  *      base_addr is an unsigned value, while ret_addr is signed. This routine
 682  *      used explicit testing and casting to explicitly control type
 683  *      conversion, and ensure that we handle the maximum possible range.
 684  */
 685 static Addr
 686 srelptr(Addr base_addr, PTRDIFF_T delta)
 687 {
 688         if (delta < 0)
 689                 return (base_addr - (Addr) (-delta));
 690 
 691         return (base_addr + (Addr) delta);
 692 }
 693 
 694 /*
 695  * Byte swap a PTRDIFF_T value.
 696  */
 697 static PTRDIFF_T
 698 swap_ptrdiff(PTRDIFF_T value)
 699 {
 700         PTRDIFF_T r;
 701         uchar_t *dst = (uchar_t *)&r;
 702         uchar_t *src = (uchar_t *)&value;
 703 
 704         UL_ASSIGN_BSWAP_XWORD(dst, src);
 705         return (r);
 706 }
 707 
 708 /*
 709  * Display exception_range_entry items from the .exception_ranges section
 710  * of a Sun C++ object.
 711  */
 712 static void
 713 unwind_exception_ranges(Cache *_cache, const char *file, int do_swap)
 714 {
 715         /*
 716          * Translate a PTRDIFF_T self-relative address field of
 717          * an exception_range_entry struct into an address.
 718          *
 719          * entry:
 720          *      exc_addr - Address of base of exception_range_entry struct
 721          *      cur_ent - Pointer to data in the struct to be translated
 722          *
 723          *      _f - Field of struct to be translated
 724          */
 725 #define SRELPTR(_f) \
 726         srelptr(exc_addr + offsetof(exception_range_entry, _f), cur_ent->_f)
 727 
 728 #if     defined(_ELF64)
 729 #define MSG_EXR_TITLE   MSG_EXR_TITLE_64
 730 #define MSG_EXR_ENTRY   MSG_EXR_ENTRY_64
 731 #else
 732 #define MSG_EXR_TITLE   MSG_EXR_TITLE_32
 733 #define MSG_EXR_ENTRY   MSG_EXR_ENTRY_32
 734 #endif
 735 
 736         exception_range_entry   scratch, *ent, *cur_ent = &scratch;
 737         char                    index[MAXNDXSIZE];
 738         Word                    i, nelts;
 739         Addr                    addr, addr0, offset = 0;
 740         Addr                    exc_addr = _cache->c_shdr->sh_addr;
 741 
 742         dbg_print(0, MSG_INTL(MSG_EXR_TITLE));
 743         ent = (exception_range_entry *)(_cache->c_data->d_buf);
 744         nelts = _cache->c_data->d_size / sizeof (exception_range_entry);
 745 
 746         for (i = 0; i < nelts; i++, ent++) {
 747                 if (do_swap) {
 748                         /*
 749                          * Copy byte swapped values into the scratch buffer.
 750                          * The reserved field is not used, so we skip it.
 751                          */
 752                         scratch.ret_addr = swap_ptrdiff(ent->ret_addr);
 753                         scratch.length = BSWAP_XWORD(ent->length);
 754                         scratch.handler_addr = swap_ptrdiff(ent->handler_addr);
 755                         scratch.type_block = swap_ptrdiff(ent->type_block);
 756                 } else {
 757                         cur_ent = ent;
 758                 }
 759 
 760                 /*
 761                  * The table is required to be sorted by the address
 762                  * derived from ret_addr, to allow binary searching. Ensure
 763                  * that addresses grow monotonically.
 764                  */
 765                 addr = SRELPTR(ret_addr);
 766                 /*LINTED:E_VAR_USED_BEFORE_SET*/
 767                 if ((i != 0) && (addr0 > addr))
 768                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSORT),
 769                             file, _cache->c_name, EC_WORD(i));
 770 
 771                 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
 772                     EC_XWORD(i));
 773                 dbg_print(0, MSG_INTL(MSG_EXR_ENTRY), index, EC_ADDR(offset),
 774                     EC_ADDR(addr), EC_ADDR(cur_ent->length),
 775                     EC_ADDR(SRELPTR(handler_addr)),
 776                     EC_ADDR(SRELPTR(type_block)));
 777 
 778                 addr0 = addr;
 779                 exc_addr += sizeof (exception_range_entry);
 780                 offset += sizeof (exception_range_entry);
 781         }
 782 
 783 #undef SRELPTR
 784 #undef MSG_EXR_TITLE
 785 #undef MSG_EXR_ENTRY
 786 }
 787 
 788 /*
 789  * Display information from unwind/exception sections:
 790  *
 791  * -    GNU/amd64 .eh_frame and .eh_frame_hdr
 792  * -    Sun C++ .exception_ranges
 793  *
 794  */
 795 static void
 796 unwind(Cache *cache, Word shnum, Word phnum, Ehdr *ehdr, uchar_t osabi,
 797     const char *file, Elf *elf, uint_t flags)
 798 {
 799         static Word phdr_types[] = { PT_SUNW_UNWIND, PT_SUNW_EH_FRAME };
 800 
 801         Word                    cnt;
 802         Phdr                    *uphdr = NULL;
 803         gnu_eh_state_t          eh_state;
 804 
 805         /*
 806          * Historical background: .eh_frame and .eh_frame_hdr sections
 807          * come from the GNU compilers (particularly C++), and are used
 808          * under all architectures. Their format is based on DWARF. When
 809          * the amd64 ABI was defined, these sections were adopted wholesale
 810          * from the existing practice.
 811          *
 812          * When amd64 support was added to Solaris, support for these
 813          * sections was added, using the SHT_AMD64_UNWIND section type
 814          * to identify them. At first, we ignored them in objects for
 815          * non-amd64 targets, but later broadened our support to include
 816          * other architectures in order to better support gcc-generated
 817          * objects.
 818          *
 819          * .exception_ranges implement the same basic concepts, but
 820          * were invented at Sun for the Sun C++ compiler.
 821          *
 822          * We match these sections by name, rather than section type,
 823          * because they can come in as either SHT_AMD64_UNWIND, or as
 824          * SHT_PROGBITS, and because the type isn't enough to determine
 825          * how they should be interpreted.
 826          */
 827         /* Find the program header for .eh_frame_hdr if present */
 828         if (phnum)
 829                 uphdr = getphdr(phnum, phdr_types,
 830                     sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
 831 
 832         /*
 833          * eh_state is used to retain data used by unwind_eh_frame()
 834          * across calls.
 835          */
 836         bzero(&eh_state, sizeof (eh_state));
 837 
 838         for (cnt = 1; cnt < shnum; cnt++) {
 839                 Cache           *_cache = &cache[cnt];
 840                 Shdr            *shdr = _cache->c_shdr;
 841                 int             is_exrange;
 842 
 843                 /*
 844                  * Skip sections of the wrong type. On amd64, they
 845                  * can be SHT_AMD64_UNWIND. On all platforms, they
 846                  * can be SHT_PROGBITS (including amd64, if using
 847                  * the GNU compilers).
 848                  *
 849                  * Skip anything other than these two types. The name
 850                  * test below will thin out the SHT_PROGBITS that don't apply.
 851                  */
 852                 if ((shdr->sh_type != SHT_PROGBITS) &&
 853                     (shdr->sh_type != SHT_AMD64_UNWIND))
 854                         continue;
 855 
 856                 /*
 857                  * Only sections with certain well known names are of interest.
 858                  * These are:
 859                  *
 860                  *      .eh_frame - amd64/GNU-compiler unwind sections
 861                  *      .eh_frame_hdr - Sorted table referencing .eh_frame
 862                  *      .exception_ranges - Sun C++ unwind sections
 863                  *
 864                  * We do a prefix comparison, allowing for naming conventions
 865                  * like .eh_frame.foo, hence the use of strncmp() rather than
 866                  * strcmp(). This means that we only really need to test for
 867                  * .eh_frame, as it's a prefix of .eh_frame_hdr.
 868                  */
 869                 is_exrange =  strncmp(_cache->c_name,
 870                     MSG_ORIG(MSG_SCN_EXRANGE), MSG_SCN_EXRANGE_SIZE) == 0;
 871                 if ((strncmp(_cache->c_name, MSG_ORIG(MSG_SCN_FRM),
 872                     MSG_SCN_FRM_SIZE) != 0) && !is_exrange)
 873                         continue;
 874 
 875                 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
 876                         continue;
 877 
 878                 if (_cache->c_data == NULL)
 879                         continue;
 880 
 881                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
 882                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_UNWIND), _cache->c_name);
 883 
 884                 if (is_exrange)
 885                         unwind_exception_ranges(_cache, file,
 886                             _elf_sys_encoding() != ehdr->e_ident[EI_DATA]);
 887                 else
 888                         unwind_eh_frame(cache, cnt, shnum, uphdr, ehdr,
 889                             &eh_state, osabi, file, flags);
 890         }
 891 }
 892 
 893 /*
 894  * Initialize a symbol table state structure
 895  *
 896  * entry:
 897  *      state - State structure to be initialized
 898  *      cache - Cache of all section headers
 899  *      shnum - # of sections in cache
 900  *      secndx - Index of symbol table section
 901  *      ehdr - ELF header for file
 902  *      versym - Information about versym section
 903  *      file - Name of file
 904  *      flags - Command line option flags
 905  */
 906 static int
 907 init_symtbl_state(SYMTBL_STATE *state, Cache *cache, Word shnum, Word secndx,
 908     Ehdr *ehdr, uchar_t osabi, VERSYM_STATE *versym, const char *file,
 909     uint_t flags)
 910 {
 911         Shdr *shdr;
 912 
 913         state->file = file;
 914         state->ehdr = ehdr;
 915         state->cache = cache;
 916         state->osabi = osabi;
 917         state->shnum = shnum;
 918         state->seccache = &cache[secndx];
 919         state->secndx = secndx;
 920         state->secname = state->seccache->c_name;
 921         state->flags = flags;
 922         state->shxndx.checked = 0;
 923         state->shxndx.data = NULL;
 924         state->shxndx.n = 0;
 925 
 926         shdr = state->seccache->c_shdr;
 927 
 928         /*
 929          * Check the symbol data and per-item size.
 930          */
 931         if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
 932                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
 933                     file, state->secname);
 934                 return (0);
 935         }
 936         if (state->seccache->c_data == NULL)
 937                 return (0);
 938 
 939         /* LINTED */
 940         state->symn = (Word)(shdr->sh_size / shdr->sh_entsize);
 941         state->sym = (Sym *)state->seccache->c_data->d_buf;
 942 
 943         /*
 944          * Check associated string table section.
 945          */
 946         if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
 947                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
 948                     file, state->secname, EC_WORD(shdr->sh_link));
 949                 return (0);
 950         }
 951 
 952         /*
 953          * Determine if there is a associated Versym section
 954          * with this Symbol Table.
 955          */
 956         if (versym && versym->cache &&
 957             (versym->cache->c_shdr->sh_link == state->secndx))
 958                 state->versym = versym;
 959         else
 960                 state->versym = NULL;
 961 
 962 
 963         return (1);
 964 }
 965 
 966 /*
 967  * Determine the extended section index used for symbol tables entries.
 968  */
 969 static void
 970 symbols_getxindex(SYMTBL_STATE *state)
 971 {
 972         uint_t  symn;
 973         Word    symcnt;
 974 
 975         state->shxndx.checked = 1;   /* Note that we've been called */
 976         for (symcnt = 1; symcnt < state->shnum; symcnt++) {
 977                 Cache   *_cache = &state->cache[symcnt];
 978                 Shdr    *shdr = _cache->c_shdr;
 979 
 980                 if ((shdr->sh_type != SHT_SYMTAB_SHNDX) ||
 981                     (shdr->sh_link != state->secndx))
 982                         continue;
 983 
 984                 if ((shdr->sh_entsize) &&
 985                     /* LINTED */
 986                     ((symn = (uint_t)(shdr->sh_size / shdr->sh_entsize)) == 0))
 987                         continue;
 988 
 989                 if (_cache->c_data == NULL)
 990                         continue;
 991 
 992                 state->shxndx.data = _cache->c_data->d_buf;
 993                 state->shxndx.n = symn;
 994                 return;
 995         }
 996 }
 997 
 998 /*
 999  * Produce a line of output for the given symbol
1000  *
1001  * entry:
1002  *      state - Symbol table state
1003  *      symndx - Index of symbol within the table
1004  *      info - Value of st_info (indicates local/global range)
1005  *      symndx_disp - Index to display. This may not be the same
1006  *              as symndx if the display is relative to the logical
1007  *              combination of the SUNW_ldynsym/dynsym tables.
1008  *      sym - Symbol to display
1009  */
1010 static void
1011 output_symbol(SYMTBL_STATE *state, Word symndx, Word info, Word disp_symndx,
1012     Sym *sym)
1013 {
1014         /*
1015          * Symbol types for which we check that the specified
1016          * address/size land inside the target section.
1017          */
1018         static const int addr_symtype[] = {
1019                 0,                      /* STT_NOTYPE */
1020                 1,                      /* STT_OBJECT */
1021                 1,                      /* STT_FUNC */
1022                 0,                      /* STT_SECTION */
1023                 0,                      /* STT_FILE */
1024                 1,                      /* STT_COMMON */
1025                 0,                      /* STT_TLS */
1026                 0,                      /* 7 */
1027                 0,                      /* 8 */
1028                 0,                      /* 9 */
1029                 0,                      /* 10 */
1030                 0,                      /* 11 */
1031                 0,                      /* 12 */
1032                 0,                      /* STT_SPARC_REGISTER */
1033                 0,                      /* 14 */
1034                 0,                      /* 15 */
1035         };
1036 #if STT_NUM != (STT_TLS + 1)
1037 #error "STT_NUM has grown. Update addr_symtype[]"
1038 #endif
1039 
1040         char            index[MAXNDXSIZE];
1041         const char      *symname, *sec;
1042         Versym          verndx;
1043         int             gnuver;
1044         uchar_t         type;
1045         Shdr            *tshdr;
1046         Word            shndx;
1047         Conv_inv_buf_t  inv_buf;
1048 
1049         /* Ensure symbol index is in range */
1050         if (symndx >= state->symn) {
1051                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSYMNDX),
1052                     state->file, state->secname, EC_WORD(symndx));
1053                 return;
1054         }
1055 
1056         /*
1057          * If we are using extended symbol indexes, find the
1058          * corresponding SHN_SYMTAB_SHNDX table.
1059          */
1060         if ((sym->st_shndx == SHN_XINDEX) && (state->shxndx.checked == 0))
1061                 symbols_getxindex(state);
1062 
1063         /* LINTED */
1064         symname = string(state->seccache, symndx,
1065             &state->cache[state->seccache->c_shdr->sh_link], state->file,
1066             sym->st_name);
1067 
1068         tshdr = NULL;
1069         sec = NULL;
1070 
1071         if (state->ehdr->e_type == ET_CORE) {
1072                 sec = (char *)MSG_INTL(MSG_STR_UNKNOWN);
1073         } else if (state->flags & FLG_CTL_FAKESHDR) {
1074                 /*
1075                  * If we are using fake section headers derived from
1076                  * the program headers, then the section indexes
1077                  * in the symbols do not correspond to these headers.
1078                  * The section names are not available, so all we can
1079                  * do is to display them in numeric form.
1080                  */
1081                 sec = conv_sym_shndx(state->osabi, state->ehdr->e_machine,
1082                     sym->st_shndx, CONV_FMT_DECIMAL, &inv_buf);
1083         } else if ((sym->st_shndx < SHN_LORESERVE) &&
1084             (sym->st_shndx < state->shnum)) {
1085                 shndx = sym->st_shndx;
1086                 tshdr = state->cache[shndx].c_shdr;
1087                 sec = state->cache[shndx].c_name;
1088         } else if (sym->st_shndx == SHN_XINDEX) {
1089                 if (state->shxndx.data) {
1090                         Word    _shxndx;
1091 
1092                         if (symndx > state->shxndx.n) {
1093                                 (void) fprintf(stderr,
1094                                     MSG_INTL(MSG_ERR_BADSYMXINDEX1),
1095                                     state->file, state->secname,
1096                                     EC_WORD(symndx));
1097                         } else if ((_shxndx =
1098                             state->shxndx.data[symndx]) > state->shnum) {
1099                                 (void) fprintf(stderr,
1100                                     MSG_INTL(MSG_ERR_BADSYMXINDEX2),
1101                                     state->file, state->secname,
1102                                     EC_WORD(symndx), EC_WORD(_shxndx));
1103                         } else {
1104                                 shndx = _shxndx;
1105                                 tshdr = state->cache[shndx].c_shdr;
1106                                 sec = state->cache[shndx].c_name;
1107                         }
1108                 } else {
1109                         (void) fprintf(stderr,
1110                             MSG_INTL(MSG_ERR_BADSYMXINDEX3),
1111                             state->file, state->secname, EC_WORD(symndx));
1112                 }
1113         } else if ((sym->st_shndx < SHN_LORESERVE) &&
1114             (sym->st_shndx >= state->shnum)) {
1115                 (void) fprintf(stderr,
1116                     MSG_INTL(MSG_ERR_BADSYM5), state->file,
1117                     state->secname, EC_WORD(symndx),
1118                     demangle(symname, state->flags), sym->st_shndx);
1119         }
1120 
1121         /*
1122          * If versioning is available display the
1123          * version index. If not, then use 0.
1124          */
1125         if (state->versym) {
1126                 Versym test_verndx;
1127 
1128                 verndx = test_verndx = state->versym->data[symndx];
1129                 gnuver = state->versym->gnu_full;
1130 
1131                 /*
1132                  * Check to see if this is a defined symbol with a
1133                  * version index that is outside the valid range for
1134                  * the file. The interpretation of this depends on
1135                  * the style of versioning used by the object.
1136                  *
1137                  * Versions >= VER_NDX_LORESERVE have special meanings,
1138                  * and are exempt from this checking.
1139                  *
1140                  * GNU style version indexes use the top bit of the
1141                  * 16-bit index value (0x8000) as the "hidden bit".
1142                  * We must mask off this bit in order to compare
1143                  * the version against the maximum value.
1144                  */
1145                 if (gnuver)
1146                         test_verndx &= ~0x8000;
1147 
1148                 if ((test_verndx > state->versym->max_verndx) &&
1149                     (verndx < VER_NDX_LORESERVE))
1150                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADVER),
1151                             state->file, state->secname, EC_WORD(symndx),
1152                             EC_HALF(test_verndx), state->versym->max_verndx);
1153         } else {
1154                 verndx = 0;
1155                 gnuver = 0;
1156         }
1157 
1158         /*
1159          * Error checking for TLS.
1160          */
1161         type = ELF_ST_TYPE(sym->st_info);
1162         if (type == STT_TLS) {
1163                 if (tshdr &&
1164                     (sym->st_shndx != SHN_UNDEF) &&
1165                     ((tshdr->sh_flags & SHF_TLS) == 0)) {
1166                         (void) fprintf(stderr,
1167                             MSG_INTL(MSG_ERR_BADSYM3), state->file,
1168                             state->secname, EC_WORD(symndx),
1169                             demangle(symname, state->flags));
1170                 }
1171         } else if ((type != STT_SECTION) && sym->st_size &&
1172             tshdr && (tshdr->sh_flags & SHF_TLS)) {
1173                 (void) fprintf(stderr,
1174                     MSG_INTL(MSG_ERR_BADSYM4), state->file,
1175                     state->secname, EC_WORD(symndx),
1176                     demangle(symname, state->flags));
1177         }
1178 
1179         /*
1180          * If a symbol with non-zero size has a type that
1181          * specifies an address, then make sure the location
1182          * it references is actually contained within the
1183          * section.  UNDEF symbols don't count in this case,
1184          * so we ignore them.
1185          *
1186          * The meaning of the st_value field in a symbol
1187          * depends on the type of object. For a relocatable
1188          * object, it is the offset within the section.
1189          * For sharable objects, it is the offset relative to
1190          * the base of the object, and for other types, it is
1191          * the virtual address. To get an offset within the
1192          * section for non-ET_REL files, we subtract the
1193          * base address of the section.
1194          */
1195         if (addr_symtype[type] && (sym->st_size > 0) &&
1196             (sym->st_shndx != SHN_UNDEF) && ((sym->st_shndx < SHN_LORESERVE) ||
1197             (sym->st_shndx == SHN_XINDEX)) && (tshdr != NULL)) {
1198                 Word v = sym->st_value;
1199                         if (state->ehdr->e_type != ET_REL)
1200                                 v -= tshdr->sh_addr;
1201                 if (((v + sym->st_size) > tshdr->sh_size)) {
1202                         (void) fprintf(stderr,
1203                             MSG_INTL(MSG_ERR_BADSYM6), state->file,
1204                             state->secname, EC_WORD(symndx),
1205                             demangle(symname, state->flags),
1206                             EC_WORD(shndx), EC_XWORD(tshdr->sh_size),
1207                             EC_XWORD(sym->st_value), EC_XWORD(sym->st_size));
1208                 }
1209         }
1210 
1211         /*
1212          * A typical symbol table uses the sh_info field to indicate one greater
1213          * than the symbol table index of the last local symbol, STB_LOCAL.
1214          * Therefore, symbol indexes less than sh_info should have local
1215          * binding.  Symbol indexes greater than, or equal to sh_info, should
1216          * have global binding.  Note, we exclude UNDEF/NOTY symbols with zero
1217          * value and size, as these symbols may be the result of an mcs(1)
1218          * section deletion.
1219          */
1220         if (info) {
1221                 uchar_t bind = ELF_ST_BIND(sym->st_info);
1222 
1223                 if ((symndx < info) && (bind != STB_LOCAL)) {
1224                         (void) fprintf(stderr,
1225                             MSG_INTL(MSG_ERR_BADSYM7), state->file,
1226                             state->secname, EC_WORD(symndx),
1227                             demangle(symname, state->flags), EC_XWORD(info));
1228 
1229                 } else if ((symndx >= info) && (bind == STB_LOCAL) &&
1230                     ((sym->st_shndx != SHN_UNDEF) ||
1231                     (ELF_ST_TYPE(sym->st_info) != STT_NOTYPE) ||
1232                     (sym->st_size != 0) || (sym->st_value != 0))) {
1233                         (void) fprintf(stderr,
1234                             MSG_INTL(MSG_ERR_BADSYM8), state->file,
1235                             state->secname, EC_WORD(symndx),
1236                             demangle(symname, state->flags), EC_XWORD(info));
1237                 }
1238         }
1239 
1240         (void) snprintf(index, MAXNDXSIZE,
1241             MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(disp_symndx));
1242         Elf_syms_table_entry(0, ELF_DBG_ELFDUMP, index, state->osabi,
1243             state->ehdr->e_machine, sym, verndx, gnuver, sec, symname);
1244 }
1245 
1246 /*
1247  * Process a SHT_SUNW_cap capabilities section.
1248  */
1249 static int
1250 cap_section(const char *file, Cache *cache, Word shnum, Cache *ccache,
1251     uchar_t osabi, Ehdr *ehdr, uint_t flags)
1252 {
1253         SYMTBL_STATE    state;
1254         Word            cnum, capnum, nulls, symcaps;
1255         int             descapndx, objcap, title;
1256         Cap             *cap = (Cap *)ccache->c_data->d_buf;
1257         Shdr            *cishdr, *cshdr = ccache->c_shdr;
1258         Cache           *cicache, *strcache;
1259         Capinfo         *capinfo = NULL;
1260         Word            capinfonum;
1261         const char      *strs = NULL;
1262         size_t          strs_size;
1263 
1264         if ((cshdr->sh_entsize == 0) || (cshdr->sh_size == 0)) {
1265                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1266                     file, ccache->c_name);
1267                 return (0);
1268         }
1269 
1270         /*
1271          * If this capabilities section is associated with symbols, then the
1272          * sh_link field points to the associated capabilities information
1273          * section.  The sh_link field of the capabilities information section
1274          * points to the associated symbol table.
1275          */
1276         if (cshdr->sh_link) {
1277                 Cache   *scache;
1278                 Shdr    *sshdr;
1279 
1280                 /*
1281                  * Validate that the sh_link field points to a capabilities
1282                  * information section.
1283                  */
1284                 if (cshdr->sh_link >= shnum) {
1285                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1286                             file, ccache->c_name, EC_WORD(cshdr->sh_link));
1287                         return (0);
1288                 }
1289 
1290                 cicache = &cache[cshdr->sh_link];
1291                 cishdr = cicache->c_shdr;
1292 
1293                 if (cishdr->sh_type != SHT_SUNW_capinfo) {
1294                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1295                             file, ccache->c_name, EC_WORD(cshdr->sh_link));
1296                         return (0);
1297                 }
1298 
1299                 capinfo = cicache->c_data->d_buf;
1300                 capinfonum = (Word)(cishdr->sh_size / cishdr->sh_entsize);
1301 
1302                 /*
1303                  * Validate that the sh_link field of the capabilities
1304                  * information section points to a valid symbol table.
1305                  */
1306                 if ((cishdr->sh_link == 0) || (cishdr->sh_link >= shnum)) {
1307                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1308                             file, cicache->c_name, EC_WORD(cishdr->sh_link));
1309                         return (0);
1310                 }
1311                 scache = &cache[cishdr->sh_link];
1312                 sshdr = scache->c_shdr;
1313 
1314                 if ((sshdr->sh_type != SHT_SYMTAB) &&
1315                     (sshdr->sh_type != SHT_DYNSYM)) {
1316                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO1),
1317                             file, cicache->c_name, EC_WORD(cishdr->sh_link));
1318                         return (0);
1319                 }
1320 
1321                 if (!init_symtbl_state(&state, cache, shnum,
1322                     cishdr->sh_link, ehdr, osabi, NULL, file, flags))
1323                         return (0);
1324         }
1325 
1326         /*
1327          * If this capabilities section contains capability string entries,
1328          * then determine the associated string table.  Capabilities entries
1329          * that define names require that the capability section indicate
1330          * which string table to use via sh_info.
1331          */
1332         if (cshdr->sh_info) {
1333                 Shdr    *strshdr;
1334 
1335                 /*
1336                  * Validate that the sh_info field points to a string table.
1337                  */
1338                 if (cshdr->sh_info >= shnum) {
1339                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1340                             file, ccache->c_name, EC_WORD(cshdr->sh_info));
1341                         return (0);
1342                 }
1343 
1344                 strcache = &cache[cshdr->sh_info];
1345                 strshdr = strcache->c_shdr;
1346 
1347                 if (strshdr->sh_type != SHT_STRTAB) {
1348                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAP),
1349                             file, ccache->c_name, EC_WORD(cshdr->sh_info));
1350                         return (0);
1351                 }
1352                 strs = (const char *)strcache->c_data->d_buf;
1353                 strs_size = strcache->c_data->d_size;
1354         }
1355 
1356         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1357         dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAP), ccache->c_name);
1358 
1359         capnum = (Word)(cshdr->sh_size / cshdr->sh_entsize);
1360 
1361         nulls = symcaps = 0;
1362         objcap = title = 1;
1363         descapndx = -1;
1364 
1365         /*
1366          * Traverse the capabilities section printing each capability group.
1367          * The first capabilities group defines any object capabilities.  Any
1368          * following groups define symbol capabilities.  In the case where no
1369          * object capabilities exist, but symbol capabilities do, a single
1370          * CA_SUNW_NULL terminator for the object capabilities exists.
1371          */
1372         for (cnum = 0; cnum < capnum; cap++, cnum++) {
1373                 if (cap->c_tag == CA_SUNW_NULL) {
1374                         /*
1375                          * A CA_SUNW_NULL tag terminates a capabilities group.
1376                          * If the first capabilities tag is CA_SUNW_NULL, then
1377                          * no object capabilities exist.
1378                          */
1379                         if ((nulls++ == 0) && (cnum == 0))
1380                                 objcap = 0;
1381                         title = 1;
1382                 } else {
1383                         if (title) {
1384                                 if (nulls == 0) {
1385                                         /*
1386                                          * If this capabilities group represents
1387                                          * the object capabilities (i.e., no
1388                                          * CA_SUNW_NULL tag has been processed
1389                                          * yet), then display an object
1390                                          * capabilities title.
1391                                          */
1392                                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1393                                         dbg_print(0,
1394                                             MSG_INTL(MSG_OBJ_CAP_TITLE));
1395                                 } else {
1396                                         /*
1397                                          * If this is a symbols capabilities
1398                                          * group (i.e., a CA_SUNW_NULL tag has
1399                                          * already be found that terminates
1400                                          * the object capabilities group), then
1401                                          * display a symbol capabilities title,
1402                                          * and retain this capabilities index
1403                                          * for later processing.
1404                                          */
1405                                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1406                                         dbg_print(0,
1407                                             MSG_INTL(MSG_SYM_CAP_TITLE));
1408                                         descapndx = cnum;
1409                                 }
1410                                 Elf_cap_title(0);
1411                                 title = 0;
1412                         }
1413 
1414                         /*
1415                          * Print the capabilities data.
1416                          *
1417                          * Note that CA_SUNW_PLAT, CA_SUNW_MACH and CA_SUNW_ID
1418                          * entries require a string table, which should have
1419                          * already been established.
1420                          */
1421                         if ((strs == NULL) && ((cap->c_tag == CA_SUNW_PLAT) ||
1422                             (cap->c_tag == CA_SUNW_MACH) ||
1423                             (cap->c_tag == CA_SUNW_ID))) {
1424                                 (void) fprintf(stderr,
1425                                     MSG_INTL(MSG_WARN_INVCAP4), file,
1426                                     EC_WORD(elf_ndxscn(ccache->c_scn)),
1427                                     ccache->c_name, EC_WORD(cshdr->sh_info));
1428                         }
1429                         Elf_cap_entry(0, cap, cnum, strs, strs_size,
1430                             ehdr->e_machine);
1431                 }
1432 
1433                 /*
1434                  * If this CA_SUNW_NULL tag terminates a symbol capabilities
1435                  * group, determine the associated symbols.
1436                  */
1437                 if ((cap->c_tag == CA_SUNW_NULL) && (nulls > 1) &&
1438                     (descapndx != -1)) {
1439                         Capinfo *cip;
1440                         Word    inum;
1441 
1442                         symcaps++;
1443 
1444                         /*
1445                          * Make sure we've discovered a SHT_SUNW_capinfo table.
1446                          */
1447                         if ((cip = capinfo) == NULL) {
1448                                 (void) fprintf(stderr,
1449                                     MSG_INTL(MSG_ERR_INVCAP), file,
1450                                     ccache->c_name, EC_WORD(cshdr->sh_link));
1451                                 return (0);
1452                         }
1453 
1454                         /*
1455                          * Determine what symbols reference this capabilities
1456                          * group.
1457                          */
1458                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1459                         dbg_print(0, MSG_INTL(MSG_CAPINFO_ENTRIES));
1460                         Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
1461 
1462                         for (inum = 1, cip++; inum < capinfonum;
1463                             inum++, cip++) {
1464                                 Word    gndx = (Word)ELF_C_GROUP(*cip);
1465 
1466                                 if (gndx && (gndx == descapndx)) {
1467                                         output_symbol(&state, inum, 0,
1468                                             inum, state.sym + inum);
1469                                 }
1470                         }
1471                         descapndx = -1;
1472                         continue;
1473                 }
1474 
1475                 /*
1476                  * An SF1_SUNW_ADDR32 software capability tag in a 32-bit
1477                  * object is suspicious as it has no effect.
1478                  */
1479                 if ((cap->c_tag == CA_SUNW_SF_1) &&
1480                     (ehdr->e_ident[EI_CLASS] == ELFCLASS32) &&
1481                     (cap->c_un.c_val & SF1_SUNW_ADDR32)) {
1482                         (void) fprintf(stderr, MSG_INTL(MSG_WARN_INADDR32SF1),
1483                             file, ccache->c_name);
1484                 }
1485         }
1486 
1487         /*
1488          * If this is a dynamic object, with symbol capabilities, then a
1489          * .SUNW_capchain section should exist.  This section contains a chain
1490          * of symbol indexes for each capabilities family.  This is the list
1491          * that is searched by ld.so.1 to determine the best capabilities
1492          * candidate.
1493          *
1494          * Note, more than one capabilities lead symbol can point to the same
1495          * family chain.  For example, a weak/global pair of symbols can both
1496          * represent the same family of capabilities symbols.  Therefore, to
1497          * display all possible families we traverse the capabilities
1498          * information section looking for CAPINFO_SUNW_GLOB lead symbols.
1499          * From these we determine the associated capabilities chain to inspect.
1500          */
1501         if (symcaps &&
1502             ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1503                 Capinfo         *cip;
1504                 Capchain        *chain;
1505                 Cache           *chcache;
1506                 Shdr            *chshdr;
1507                 Word            chainnum, inum;
1508 
1509                 /*
1510                  * Validate that the sh_info field of the capabilities
1511                  * information section points to a capabilities chain section.
1512                  */
1513                 if (cishdr->sh_info >= shnum) {
1514                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
1515                             file, cicache->c_name, EC_WORD(cishdr->sh_info));
1516                         return (0);
1517                 }
1518 
1519                 chcache = &cache[cishdr->sh_info];
1520                 chshdr = chcache->c_shdr;
1521 
1522                 if (chshdr->sh_type != SHT_SUNW_capchain) {
1523                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_INVCAPINFO2),
1524                             file, cicache->c_name, EC_WORD(cishdr->sh_info));
1525                         return (0);
1526                 }
1527 
1528                 chainnum = (Word)(chshdr->sh_size / chshdr->sh_entsize);
1529                 chain = (Capchain *)chcache->c_data->d_buf;
1530 
1531                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1532                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_CAPCHAIN), chcache->c_name);
1533 
1534                 /*
1535                  * Traverse the capabilities information section looking for
1536                  * CAPINFO_SUNW_GLOB lead capabilities symbols.
1537                  */
1538                 cip = capinfo;
1539                 for (inum = 1, cip++; inum < capinfonum; inum++, cip++) {
1540                         const char      *name;
1541                         Sym             *sym;
1542                         Word            sndx, cndx;
1543                         Word            gndx = (Word)ELF_C_GROUP(*cip);
1544 
1545                         if ((gndx == 0) || (gndx != CAPINFO_SUNW_GLOB))
1546                                 continue;
1547 
1548                         /*
1549                          * Determine the symbol that is associated with this
1550                          * capability information entry, and use this to
1551                          * identify this capability family.
1552                          */
1553                         sym = (Sym *)(state.sym + inum);
1554                         name = string(cicache, inum, strcache, file,
1555                             sym->st_name);
1556 
1557                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1558                         dbg_print(0, MSG_INTL(MSG_CAPCHAIN_TITLE), name);
1559                         dbg_print(0, MSG_INTL(MSG_CAPCHAIN_ENTRY));
1560 
1561                         cndx = (Word)ELF_C_SYM(*cip);
1562 
1563                         /*
1564                          * Traverse this families chain and identify each
1565                          * family member.
1566                          */
1567                         for (;;) {
1568                                 char    _chain[MAXNDXSIZE], _symndx[MAXNDXSIZE];
1569 
1570                                 if (cndx >= chainnum) {
1571                                         (void) fprintf(stderr,
1572                                             MSG_INTL(MSG_ERR_INVCAPINFO3), file,
1573                                             cicache->c_name, EC_WORD(inum),
1574                                             EC_WORD(cndx));
1575                                         break;
1576                                 }
1577                                 if ((sndx = chain[cndx]) == 0)
1578                                         break;
1579 
1580                                 /*
1581                                  * Determine this entries symbol reference.
1582                                  */
1583                                 if (sndx > state.symn) {
1584                                         (void) fprintf(stderr,
1585                                             MSG_INTL(MSG_ERR_CHBADSYMNDX), file,
1586                                             EC_WORD(sndx), chcache->c_name,
1587                                             EC_WORD(cndx));
1588                                         name = MSG_INTL(MSG_STR_UNKNOWN);
1589                                 } else {
1590                                         sym = (Sym *)(state.sym + sndx);
1591                                         name = string(chcache, sndx,
1592                                             strcache, file, sym->st_name);
1593                                 }
1594 
1595                                 /*
1596                                  * Display the family member.
1597                                  */
1598                                 (void) snprintf(_chain, MAXNDXSIZE,
1599                                     MSG_ORIG(MSG_FMT_INTEGER), cndx);
1600                                 (void) snprintf(_symndx, MAXNDXSIZE,
1601                                     MSG_ORIG(MSG_FMT_INDEX2), EC_WORD(sndx));
1602                                 dbg_print(0, MSG_ORIG(MSG_FMT_CHAIN_INFO),
1603                                     _chain, _symndx, demangle(name, flags));
1604 
1605                                 cndx++;
1606                         }
1607                 }
1608         }
1609         return (objcap);
1610 }
1611 
1612 /*
1613  * Print the capabilities.
1614  *
1615  * A .SUNW_cap section can contain one or more, CA_SUNW_NULL terminated,
1616  * capabilities groups.  The first group defines the object capabilities.
1617  * This group defines the minimum capability requirements of the entire
1618  * object file.  If this is a dynamic object, this group should be associated
1619  * with a PT_SUNWCAP program header.
1620  *
1621  * Additional capabilities groups define the association of individual symbols
1622  * to specific capabilities.
1623  */
1624 static void
1625 cap(const char *file, Cache *cache, Word shnum, Word phnum, Ehdr *ehdr,
1626     uchar_t osabi, Elf *elf, uint_t flags)
1627 {
1628         Word            cnt;
1629         Shdr            *cshdr = NULL;
1630         Cache           *ccache;
1631         Off             cphdr_off = 0;
1632         Xword           cphdr_sz;
1633 
1634         /*
1635          * Determine if a global capabilities header exists.
1636          */
1637         if (phnum) {
1638                 Phdr    *phdr;
1639 
1640                 if ((phdr = elf_getphdr(elf)) == NULL) {
1641                         failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
1642                         return;
1643                 }
1644 
1645                 for (cnt = 0; cnt < phnum; phdr++, cnt++) {
1646                         if (phdr->p_type == PT_SUNWCAP) {
1647                                 cphdr_off = phdr->p_offset;
1648                                 cphdr_sz = phdr->p_filesz;
1649                                 break;
1650                         }
1651                 }
1652         }
1653 
1654         /*
1655          * Determine if a capabilities section exists.
1656          */
1657         for (cnt = 1; cnt < shnum; cnt++) {
1658                 Cache   *_cache = &cache[cnt];
1659                 Shdr    *shdr = _cache->c_shdr;
1660 
1661                 /*
1662                  * Process any capabilities information.
1663                  */
1664                 if (shdr->sh_type == SHT_SUNW_cap) {
1665                         if (cap_section(file, cache, shnum, _cache, osabi,
1666                             ehdr, flags)) {
1667                                 /*
1668                                  * If this section defined an object capability
1669                                  * group, retain the section information for
1670                                  * program header validation.
1671                                  */
1672                                 ccache = _cache;
1673                                 cshdr = shdr;
1674                         }
1675                         continue;
1676                 }
1677         }
1678 
1679         if ((cshdr == NULL) && (cphdr_off == 0))
1680                 return;
1681 
1682         if (cphdr_off && (cshdr == NULL))
1683                 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP1), file);
1684 
1685         /*
1686          * If this object is an executable or shared object, and it provided
1687          * an object capabilities group, then the group should have an
1688          * accompanying PT_SUNWCAP program header.
1689          */
1690         if (cshdr && ((ehdr->e_type == ET_EXEC) || (ehdr->e_type == ET_DYN))) {
1691                 if (cphdr_off == 0) {
1692                         (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP2),
1693                             file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1694                             ccache->c_name);
1695                 } else if ((cphdr_off != cshdr->sh_offset) ||
1696                     (cphdr_sz != cshdr->sh_size)) {
1697                         (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVCAP3),
1698                             file, EC_WORD(elf_ndxscn(ccache->c_scn)),
1699                             ccache->c_name);
1700                 }
1701         }
1702 }
1703 
1704 /*
1705  * Print the interpretor.
1706  */
1707 static void
1708 interp(const char *file, Cache *cache, Word shnum, Word phnum, Elf *elf)
1709 {
1710         static Word phdr_types[] = { PT_INTERP };
1711 
1712 
1713         Word    cnt;
1714         Shdr    *ishdr = NULL;
1715         Cache   *icache;
1716         Off     iphdr_off = 0;
1717         Xword   iphdr_fsz;
1718 
1719         /*
1720          * Determine if an interp header exists.
1721          */
1722         if (phnum) {
1723                 Phdr    *phdr;
1724 
1725                 phdr = getphdr(phnum, phdr_types,
1726                     sizeof (phdr_types) / sizeof (*phdr_types), file, elf);
1727                 if (phdr != NULL) {
1728                         iphdr_off = phdr->p_offset;
1729                         iphdr_fsz = phdr->p_filesz;
1730                 }
1731         }
1732 
1733         if (iphdr_off == 0)
1734                 return;
1735 
1736         /*
1737          * Determine if an interp section exists.
1738          */
1739         for (cnt = 1; cnt < shnum; cnt++) {
1740                 Cache   *_cache = &cache[cnt];
1741                 Shdr    *shdr = _cache->c_shdr;
1742 
1743                 /*
1744                  * Scan sections to find a section which contains the PT_INTERP
1745                  * string.  The target section can't be in a NOBITS section.
1746                  */
1747                 if ((shdr->sh_type == SHT_NOBITS) ||
1748                     (iphdr_off < shdr->sh_offset) ||
1749                     (iphdr_off + iphdr_fsz) > (shdr->sh_offset + shdr->sh_size))
1750                         continue;
1751 
1752                 icache = _cache;
1753                 ishdr = shdr;
1754                 break;
1755         }
1756 
1757         /*
1758          * Print the interpreter string based on the offset defined in the
1759          * program header, as this is the offset used by the kernel.
1760          */
1761         if (ishdr && icache->c_data) {
1762                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1763                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_INTERP), icache->c_name);
1764                 dbg_print(0, MSG_ORIG(MSG_FMT_INDENT),
1765                     (char *)icache->c_data->d_buf +
1766                     (iphdr_off - ishdr->sh_offset));
1767         } else
1768                 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP1), file);
1769 
1770         /*
1771          * If there are any inconsistences between the program header and
1772          * section information, flag them.
1773          */
1774         if (ishdr && ((iphdr_off != ishdr->sh_offset) ||
1775             (iphdr_fsz != ishdr->sh_size))) {
1776                 (void) fprintf(stderr, MSG_INTL(MSG_WARN_INVINTERP2), file,
1777                     icache->c_name);
1778         }
1779 }
1780 
1781 /*
1782  * Print the syminfo section.
1783  */
1784 static void
1785 syminfo(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
1786 {
1787         Shdr            *infoshdr;
1788         Syminfo         *info;
1789         Sym             *syms;
1790         Dyn             *dyns;
1791         Word            infonum, cnt, ndx, symnum, dynnum;
1792         Cache           *infocache = NULL, *dyncache = NULL, *symsec, *strsec;
1793         Boolean         *dynerr;
1794 
1795         for (cnt = 1; cnt < shnum; cnt++) {
1796                 if (cache[cnt].c_shdr->sh_type == SHT_SUNW_syminfo) {
1797                         infocache = &cache[cnt];
1798                         break;
1799                 }
1800         }
1801         if (infocache == NULL)
1802                 return;
1803 
1804         infoshdr = infocache->c_shdr;
1805         if ((infoshdr->sh_entsize == 0) || (infoshdr->sh_size == 0)) {
1806                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1807                     file, infocache->c_name);
1808                 return;
1809         }
1810         if (infocache->c_data == NULL)
1811                 return;
1812 
1813         infonum = (Word)(infoshdr->sh_size / infoshdr->sh_entsize);
1814         info = (Syminfo *)infocache->c_data->d_buf;
1815 
1816         /*
1817          * If there is no associated dynamic section, determine if one
1818          * is needed, and if so issue a warning. If there is an
1819          * associated dynamic section, validate it and get the data buffer
1820          * for it.
1821          */
1822         dyns = NULL;
1823         dynnum = 0;
1824         if (infoshdr->sh_info == 0) {
1825                 Syminfo *_info = info + 1;
1826 
1827                 for (ndx = 1; ndx < infonum; ndx++, _info++) {
1828                         if ((_info->si_flags == 0) && (_info->si_boundto == 0))
1829                                 continue;
1830 
1831                         if (_info->si_boundto < SYMINFO_BT_LOWRESERVE)
1832                                 (void) fprintf(stderr,
1833                                     MSG_INTL(MSG_ERR_BADSHINFO), file,
1834                                     infocache->c_name,
1835                                     EC_WORD(infoshdr->sh_info));
1836                 }
1837         } else if ((infoshdr->sh_info >= shnum) ||
1838             (cache[infoshdr->sh_info].c_shdr->sh_type != SHT_DYNAMIC)) {
1839                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
1840                     file, infocache->c_name, EC_WORD(infoshdr->sh_info));
1841         } else {
1842                 dyncache = &cache[infoshdr->sh_info];
1843                 if ((dyncache->c_data == NULL) ||
1844                     ((dyns = dyncache->c_data->d_buf) == NULL)) {
1845                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
1846                             file, dyncache->c_name);
1847                 }
1848                 if (dyns != NULL) {
1849                         dynnum = dyncache->c_shdr->sh_size /
1850                             dyncache->c_shdr->sh_entsize;
1851 
1852                         /*
1853                          * We validate the type of dynamic elements referenced
1854                          * from the syminfo. This array is used report any
1855                          * bad dynamic entries.
1856                          */
1857                         if ((dynerr = calloc(dynnum, sizeof (*dynerr))) ==
1858                             NULL) {
1859                                 int err = errno;
1860                                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
1861                                     file, strerror(err));
1862                                 return;
1863                         }
1864                 }
1865         }
1866 
1867         /*
1868          * Get the data buffer for the associated symbol table and string table.
1869          */
1870         if (stringtbl(cache, 1, cnt, shnum, file,
1871             &symnum, &symsec, &strsec) == 0)
1872                 return;
1873 
1874         syms = symsec->c_data->d_buf;
1875 
1876         /*
1877          * Loop through the syminfo entries.
1878          */
1879         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
1880         dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMINFO), infocache->c_name);
1881         Elf_syminfo_title(0);
1882 
1883         for (ndx = 1, info++; ndx < infonum; ndx++, info++) {
1884                 Sym             *sym;
1885                 const char      *needed, *name;
1886                 Word            expect_dt;
1887                 Word            boundto = info->si_boundto;
1888 
1889                 if ((info->si_flags == 0) && (boundto == 0))
1890                         continue;
1891 
1892                 sym = &syms[ndx];
1893                 name = string(infocache, ndx, strsec, file, sym->st_name);
1894 
1895                 /* Is si_boundto set to one of the reserved values? */
1896                 if (boundto >= SYMINFO_BT_LOWRESERVE) {
1897                         Elf_syminfo_entry(0, ndx, info, name, NULL);
1898                         continue;
1899                 }
1900 
1901                 /*
1902                  * si_boundto is referencing a dynamic section. If we don't
1903                  * have one, an error was already issued above, so it suffices
1904                  * to display an empty string. If we are out of bounds, then
1905                  * report that and then display an empty string.
1906                  */
1907                 if ((dyns == NULL) || (boundto >= dynnum)) {
1908                         if (dyns != NULL)
1909                                 (void) fprintf(stderr,
1910                                     MSG_INTL(MSG_ERR_BADSIDYNNDX), file,
1911                                     infocache->c_ndx, infocache->c_name,
1912                                     EC_WORD(ndx), EC_WORD(dynnum - 1),
1913                                     EC_WORD(boundto));
1914                         Elf_syminfo_entry(0, ndx, info, name,
1915                             MSG_ORIG(MSG_STR_EMPTY));
1916                         continue;
1917                 }
1918 
1919                 /*
1920                  * The si_boundto reference expects a specific dynamic element
1921                  * type at the given index. The dynamic element is always a
1922                  * string that gives an object name. The specific type depends
1923                  * on the si_flags present. Ensure that we've got the right
1924                  * type.
1925                  */
1926                 if (info->si_flags & SYMINFO_FLG_FILTER)
1927                         expect_dt = DT_SUNW_FILTER;
1928                 else if (info->si_flags & SYMINFO_FLG_AUXILIARY)
1929                         expect_dt = DT_SUNW_AUXILIARY;
1930                 else if (info->si_flags & (SYMINFO_FLG_DIRECT |
1931                     SYMINFO_FLG_LAZYLOAD | SYMINFO_FLG_DIRECTBIND))
1932                         expect_dt = DT_NEEDED;
1933                 else
1934                         expect_dt = DT_NULL;   /* means we ignore the type */
1935 
1936                 if ((dyns[boundto].d_tag != expect_dt) &&
1937                     (expect_dt != DT_NULL)) {
1938                         Conv_inv_buf_t  buf1, buf2;
1939 
1940                         /* Only complain about each dynamic element once */
1941                         if (!dynerr[boundto]) {
1942                                 (void) fprintf(stderr,
1943                                     MSG_INTL(MSG_ERR_BADSIDYNTAG),
1944                                     file, infocache->c_ndx, infocache->c_name,
1945                                     EC_WORD(ndx), dyncache->c_ndx,
1946                                     dyncache->c_name, EC_WORD(boundto),
1947                                     conv_dyn_tag(expect_dt, osabi,
1948                                     ehdr->e_machine, CONV_FMT_ALT_CF, &buf1),
1949                                     conv_dyn_tag(dyns[boundto].d_tag, osabi,
1950                                     ehdr->e_machine, CONV_FMT_ALT_CF, &buf2));
1951                                 dynerr[boundto] = TRUE;
1952                         }
1953                 }
1954 
1955                 /*
1956                  * Whether or not the DT item we're pointing at is
1957                  * of the right type, if it's a type we recognize as
1958                  * providing a string, go ahead and show it. Otherwise
1959                  * an empty string.
1960                  */
1961                 switch (dyns[boundto].d_tag) {
1962                 case DT_NEEDED:
1963                 case DT_SONAME:
1964                 case DT_RPATH:
1965                 case DT_RUNPATH:
1966                 case DT_CONFIG:
1967                 case DT_DEPAUDIT:
1968                 case DT_USED:
1969                 case DT_AUDIT:
1970                 case DT_SUNW_AUXILIARY:
1971                 case DT_SUNW_FILTER:
1972                 case DT_FILTER:
1973                 case DT_AUXILIARY:
1974                         needed = string(infocache, boundto,
1975                             strsec, file, dyns[boundto].d_un.d_val);
1976                         break;
1977                 default:
1978                         needed = MSG_ORIG(MSG_STR_EMPTY);
1979                 }
1980                 Elf_syminfo_entry(0, ndx, info, name, needed);
1981         }
1982         if (dyns != NULL)
1983                 free(dynerr);
1984 }
1985 
1986 /*
1987  * Print version definition section entries.
1988  */
1989 static void
1990 version_def(Verdef *vdf, Word vdf_num, Cache *vcache, Cache *scache,
1991     const char *file)
1992 {
1993         Word    cnt;
1994         char    index[MAXNDXSIZE];
1995 
1996         Elf_ver_def_title(0);
1997 
1998         for (cnt = 1; cnt <= vdf_num; cnt++,
1999             vdf = (Verdef *)((uintptr_t)vdf + vdf->vd_next)) {
2000                 Conv_ver_flags_buf_t    ver_flags_buf;
2001                 const char              *name, *dep;
2002                 Half                    vcnt = vdf->vd_cnt - 1;
2003                 Half                    ndx = vdf->vd_ndx;
2004                 Verdaux *vdap = (Verdaux *)((uintptr_t)vdf + vdf->vd_aux);
2005 
2006                 /*
2007                  * Obtain the name and first dependency (if any).
2008                  */
2009                 name = string(vcache, cnt, scache, file, vdap->vda_name);
2010                 vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2011                 if (vcnt)
2012                         dep = string(vcache, cnt, scache, file, vdap->vda_name);
2013                 else
2014                         dep = MSG_ORIG(MSG_STR_EMPTY);
2015 
2016                 (void) snprintf(index, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX),
2017                     EC_XWORD(ndx));
2018                 Elf_ver_line_1(0, index, name, dep,
2019                     conv_ver_flags(vdf->vd_flags, 0, &ver_flags_buf));
2020 
2021                 /*
2022                  * Print any additional dependencies.
2023                  */
2024                 if (vcnt) {
2025                         vdap = (Verdaux *)((uintptr_t)vdap + vdap->vda_next);
2026                         for (vcnt--; vcnt; vcnt--,
2027                             vdap = (Verdaux *)((uintptr_t)vdap +
2028                             vdap->vda_next)) {
2029                                 dep = string(vcache, cnt, scache, file,
2030                                     vdap->vda_name);
2031                                 Elf_ver_line_2(0, MSG_ORIG(MSG_STR_EMPTY), dep);
2032                         }
2033                 }
2034         }
2035 }
2036 
2037 /*
2038  * Print version needed section entries.
2039  *
2040  * entry:
2041  *      vnd - Address of verneed data
2042  *      vnd_num - # of Verneed entries
2043  *      vcache - Cache of verneed section being processed
2044  *      scache - Cache of associated string table section
2045  *      file - Name of object being processed.
2046  *      versym - Information about versym section
2047  *
2048  * exit:
2049  *      The versions have been printed. If GNU style versioning
2050  *      is in effect, versym->max_verndx has been updated to
2051  *      contain the largest version index seen.
2052  *
2053  * note:
2054  *      The versym section of an object that follows the original
2055  *      Solaris versioning rules only contains indexes into the verdef
2056  *      section. Symbols defined in other objects (UNDEF) are given
2057  *      a version of 0, indicating that they are not defined by
2058  *      this file, and the Verneed entries do not have associated version
2059  *      indexes. For these reasons, we do not display a version index
2060  *      for original-style Verneed sections.
2061  *
2062  *      The GNU versioning extensions alter this: Symbols defined in other
2063  *      objects receive a version index in the range above those defined
2064  *      by the Verdef section, and the vna_other field of the Vernaux
2065  *      structs inside the Verneed section contain the version index for
2066  *      that item. We therefore  display the index when showing the
2067  *      contents of a GNU style Verneed section. You should not
2068  *      necessarily expect these indexes to appear in sorted
2069  *      order --- it seems that the GNU ld assigns the versions as
2070  *      symbols are encountered during linking, and then the results
2071  *      are assembled into the Verneed section afterwards.
2072  */
2073 static void
2074 version_need(Verneed *vnd, Word vnd_num, Cache *vcache, Cache *scache,
2075     const char *file, VERSYM_STATE *versym)
2076 {
2077         Word            cnt;
2078         char            index[MAXNDXSIZE];
2079         const char      *index_str;
2080 
2081         Elf_ver_need_title(0, versym->gnu_needed);
2082 
2083         for (cnt = 1; cnt <= vnd_num; cnt++,
2084             vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2085                 Conv_ver_flags_buf_t    ver_flags_buf;
2086                 const char              *name, *dep;
2087                 Half                    vcnt = vnd->vn_cnt;
2088                 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2089 
2090                 /*
2091                  * Obtain the name of the needed file and the version name
2092                  * within it that we're dependent on.  Note that the count
2093                  * should be at least one, otherwise this is a pretty bogus
2094                  * entry.
2095                  */
2096                 name = string(vcache, cnt, scache, file, vnd->vn_file);
2097                 if (vcnt)
2098                         dep = string(vcache, cnt, scache, file, vnap->vna_name);
2099                 else
2100                         dep = MSG_INTL(MSG_STR_NULL);
2101 
2102                 if (vnap->vna_other == 0) {  /* Traditional form */
2103                         index_str = MSG_ORIG(MSG_STR_EMPTY);
2104                 } else {                        /* GNU form */
2105                         index_str = index;
2106                         /* Format the version index value */
2107                         (void) snprintf(index, MAXNDXSIZE,
2108                             MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(vnap->vna_other));
2109                         if (vnap->vna_other > versym->max_verndx)
2110                                 versym->max_verndx = vnap->vna_other;
2111                 }
2112                 Elf_ver_line_1(0, index_str, name, dep,
2113                     conv_ver_flags(vnap->vna_flags, 0, &ver_flags_buf));
2114 
2115                 /*
2116                  * Print any additional version dependencies.
2117                  */
2118                 if (vcnt) {
2119                         vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2120                         for (vcnt--; vcnt; vcnt--,
2121                             vnap = (Vernaux *)((uintptr_t)vnap +
2122                             vnap->vna_next)) {
2123                                 dep = string(vcache, cnt, scache, file,
2124                                     vnap->vna_name);
2125                                 if (vnap->vna_other > 0) {
2126                                         /* Format the next index value */
2127                                         (void) snprintf(index, MAXNDXSIZE,
2128                                             MSG_ORIG(MSG_FMT_INDEX),
2129                                             EC_XWORD(vnap->vna_other));
2130                                         Elf_ver_line_1(0, index,
2131                                             MSG_ORIG(MSG_STR_EMPTY), dep,
2132                                             conv_ver_flags(vnap->vna_flags,
2133                                             0, &ver_flags_buf));
2134                                         if (vnap->vna_other >
2135                                             versym->max_verndx)
2136                                                 versym->max_verndx =
2137                                                     vnap->vna_other;
2138                                 } else {
2139                                         Elf_ver_line_3(0,
2140                                             MSG_ORIG(MSG_STR_EMPTY), dep,
2141                                             conv_ver_flags(vnap->vna_flags,
2142                                             0, &ver_flags_buf));
2143                                 }
2144                         }
2145                 }
2146         }
2147 }
2148 
2149 /*
2150  * Examine the Verneed section for information related to GNU
2151  * style Versym indexing:
2152  *      - A non-zero vna_other field indicates that Versym indexes can
2153  *              reference Verneed records.
2154  *      - If the object uses GNU style Versym indexing, the
2155  *        maximum index value is needed to detect bad Versym entries.
2156  *
2157  * entry:
2158  *      vnd - Address of verneed data
2159  *      vnd_num - # of Verneed entries
2160  *      versym - Information about versym section
2161  *
2162  * exit:
2163  *      If a non-zero vna_other field is seen, versym->gnu_needed is set.
2164  *
2165  *      versym->max_verndx has been updated to contain the largest
2166  *      version index seen.
2167  */
2168 static void
2169 update_gnu_verndx(Verneed *vnd, Word vnd_num, VERSYM_STATE *versym)
2170 {
2171         Word            cnt;
2172 
2173         for (cnt = 1; cnt <= vnd_num; cnt++,
2174             vnd = (Verneed *)((uintptr_t)vnd + vnd->vn_next)) {
2175                 Half    vcnt = vnd->vn_cnt;
2176                 Vernaux *vnap = (Vernaux *)((uintptr_t)vnd + vnd->vn_aux);
2177 
2178                 /*
2179                  * A non-zero value of vna_other indicates that this
2180                  * object references VERNEED items from the VERSYM
2181                  * array.
2182                  */
2183                 if (vnap->vna_other != 0) {
2184                         versym->gnu_needed = 1;
2185                         if (vnap->vna_other > versym->max_verndx)
2186                                 versym->max_verndx = vnap->vna_other;
2187                 }
2188 
2189                 /*
2190                  * Check any additional version dependencies.
2191                  */
2192                 if (vcnt) {
2193                         vnap = (Vernaux *)((uintptr_t)vnap + vnap->vna_next);
2194                         for (vcnt--; vcnt; vcnt--,
2195                             vnap = (Vernaux *)((uintptr_t)vnap +
2196                             vnap->vna_next)) {
2197                                 if (vnap->vna_other == 0)
2198                                         continue;
2199 
2200                                 versym->gnu_needed = 1;
2201                                 if (vnap->vna_other > versym->max_verndx)
2202                                         versym->max_verndx = vnap->vna_other;
2203                         }
2204                 }
2205         }
2206 }
2207 
2208 /*
2209  * Display version section information if the flags require it.
2210  * Return version information needed by other output.
2211  *
2212  * entry:
2213  *      cache - Cache of all section headers
2214  *      shnum - # of sections in cache
2215  *      file - Name of file
2216  *      flags - Command line option flags
2217  *      versym - VERSYM_STATE block to be filled in.
2218  */
2219 static void
2220 versions(Cache *cache, Word shnum, const char *file, uint_t flags,
2221     VERSYM_STATE *versym)
2222 {
2223         GElf_Word       cnt;
2224         Cache           *verdef_cache = NULL, *verneed_cache = NULL;
2225 
2226 
2227         /* Gather information about the version sections */
2228         bzero(versym, sizeof (*versym));
2229         versym->max_verndx = 1;
2230         for (cnt = 1; cnt < shnum; cnt++) {
2231                 Cache           *_cache = &cache[cnt];
2232                 Shdr            *shdr = _cache->c_shdr;
2233                 Dyn             *dyn;
2234                 ulong_t         numdyn;
2235 
2236                 switch (shdr->sh_type) {
2237                 case SHT_DYNAMIC:
2238                         /*
2239                          * The GNU ld puts a DT_VERSYM entry in the dynamic
2240                          * section so that the runtime linker can use it to
2241                          * implement their versioning rules. They allow multiple
2242                          * incompatible functions with the same name to exist
2243                          * in different versions. The Solaris ld does not
2244                          * support this mechanism, and as such, does not
2245                          * produce DT_VERSYM. We use this fact to determine
2246                          * which ld produced this object, and how to interpret
2247                          * the version values.
2248                          */
2249                         if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0) ||
2250                             (_cache->c_data == NULL))
2251                                 continue;
2252                         numdyn = shdr->sh_size / shdr->sh_entsize;
2253                         dyn = (Dyn *)_cache->c_data->d_buf;
2254                         for (; numdyn-- > 0; dyn++)
2255                                 if (dyn->d_tag == DT_VERSYM) {
2256                                         versym->gnu_full =
2257                                             versym->gnu_needed = 1;
2258                                         break;
2259                                 }
2260                         break;
2261 
2262                 case SHT_SUNW_versym:
2263                         /* Record data address for later symbol processing */
2264                         if (_cache->c_data != NULL) {
2265                                 versym->cache = _cache;
2266                                 versym->data = _cache->c_data->d_buf;
2267                                 continue;
2268                         }
2269                         break;
2270 
2271                 case SHT_SUNW_verdef:
2272                 case SHT_SUNW_verneed:
2273                         /*
2274                          * Ensure the data is non-NULL and the number
2275                          * of items is non-zero. Otherwise, we don't
2276                          * understand the section, and will not use it.
2277                          */
2278                         if ((_cache->c_data == NULL) ||
2279                             (_cache->c_data->d_buf == NULL)) {
2280                                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2281                                     file, _cache->c_name);
2282                                 continue;
2283                         }
2284                         if (shdr->sh_info == 0) {
2285                                 (void) fprintf(stderr,
2286                                     MSG_INTL(MSG_ERR_BADSHINFO),
2287                                     file, _cache->c_name,
2288                                     EC_WORD(shdr->sh_info));
2289                                 continue;
2290                         }
2291 
2292                         /* Make sure the string table index is in range */
2293                         if ((shdr->sh_link == 0) || (shdr->sh_link >= shnum)) {
2294                                 (void) fprintf(stderr,
2295                                     MSG_INTL(MSG_ERR_BADSHLINK), file,
2296                                     _cache->c_name, EC_WORD(shdr->sh_link));
2297                                 continue;
2298                         }
2299 
2300                         /*
2301                          * The section is usable. Save the cache entry.
2302                          */
2303                         if (shdr->sh_type == SHT_SUNW_verdef) {
2304                                 verdef_cache = _cache;
2305                                 /*
2306                                  * Under Solaris rules, if there is a verdef
2307                                  * section, the max versym index is number
2308                                  * of version definitions it supplies.
2309                                  */
2310                                 versym->max_verndx = shdr->sh_info;
2311                         } else {
2312                                 verneed_cache = _cache;
2313                         }
2314                         break;
2315                 }
2316         }
2317 
2318         /*
2319          * If there is a Verneed section, examine it for information
2320          * related to GNU style versioning.
2321          */
2322         if (verneed_cache != NULL)
2323                 update_gnu_verndx((Verneed *)verneed_cache->c_data->d_buf,
2324                     verneed_cache->c_shdr->sh_info, versym);
2325 
2326         /*
2327          * Now that all the information is available, display the
2328          * Verdef and Verneed section contents, if requested.
2329          */
2330         if ((flags & FLG_SHOW_VERSIONS) == 0)
2331                 return;
2332         if (verdef_cache != NULL) {
2333                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2334                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERDEF),
2335                     verdef_cache->c_name);
2336                 version_def((Verdef *)verdef_cache->c_data->d_buf,
2337                     verdef_cache->c_shdr->sh_info, verdef_cache,
2338                     &cache[verdef_cache->c_shdr->sh_link], file);
2339         }
2340         if (verneed_cache != NULL) {
2341                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2342                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_VERNEED),
2343                     verneed_cache->c_name);
2344                 /*
2345                  * If GNU versioning applies to this object, version_need()
2346                  * will update versym->max_verndx, and it is not
2347                  * necessary to call update_gnu_verndx().
2348                  */
2349                 version_need((Verneed *)verneed_cache->c_data->d_buf,
2350                     verneed_cache->c_shdr->sh_info, verneed_cache,
2351                     &cache[verneed_cache->c_shdr->sh_link], file, versym);
2352         }
2353 }
2354 
2355 /*
2356  * Search for and process any symbol tables.
2357  */
2358 void
2359 symbols(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2360     VERSYM_STATE *versym, const char *file, uint_t flags)
2361 {
2362         SYMTBL_STATE state;
2363         Cache *_cache;
2364         Word secndx;
2365 
2366         for (secndx = 1; secndx < shnum; secndx++) {
2367                 Word            symcnt;
2368                 Shdr            *shdr;
2369 
2370                 _cache = &cache[secndx];
2371                 shdr = _cache->c_shdr;
2372 
2373                 if ((shdr->sh_type != SHT_SYMTAB) &&
2374                     (shdr->sh_type != SHT_DYNSYM) &&
2375                     ((shdr->sh_type != SHT_SUNW_LDYNSYM) ||
2376                     (osabi != ELFOSABI_SOLARIS)))
2377                         continue;
2378                 if (!match(MATCH_F_ALL, _cache->c_name, secndx, shdr->sh_type))
2379                         continue;
2380 
2381                 if (!init_symtbl_state(&state, cache, shnum, secndx, ehdr,
2382                     osabi, versym, file, flags))
2383                         continue;
2384                 /*
2385                  * Loop through the symbol tables entries.
2386                  */
2387                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2388                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMTAB), state.secname);
2389                 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2390 
2391                 for (symcnt = 0; symcnt < state.symn; symcnt++)
2392                         output_symbol(&state, symcnt, shdr->sh_info, symcnt,
2393                             state.sym + symcnt);
2394         }
2395 }
2396 
2397 /*
2398  * Search for and process any SHT_SUNW_symsort or SHT_SUNW_tlssort sections.
2399  * These sections are always associated with the .SUNW_ldynsym./.dynsym pair.
2400  */
2401 static void
2402 sunw_sort(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi,
2403     VERSYM_STATE *versym, const char *file, uint_t flags)
2404 {
2405         SYMTBL_STATE    ldynsym_state,  dynsym_state;
2406         Cache           *sortcache,     *symcache;
2407         Shdr            *sortshdr,      *symshdr;
2408         Word            sortsecndx,     symsecndx;
2409         Word            ldynsym_cnt;
2410         Word            *ndx;
2411         Word            ndxn;
2412         int             output_cnt = 0;
2413         Conv_inv_buf_t  inv_buf;
2414 
2415         for (sortsecndx = 1; sortsecndx < shnum; sortsecndx++) {
2416 
2417                 sortcache = &cache[sortsecndx];
2418                 sortshdr = sortcache->c_shdr;
2419 
2420                 if ((sortshdr->sh_type != SHT_SUNW_symsort) &&
2421                     (sortshdr->sh_type != SHT_SUNW_tlssort))
2422                         continue;
2423                 if (!match(MATCH_F_ALL, sortcache->c_name, sortsecndx,
2424                     sortshdr->sh_type))
2425                         continue;
2426 
2427                 /*
2428                  * If the section references a SUNW_ldynsym, then we
2429                  * expect to see the associated .dynsym immediately
2430                  * following. If it references a .dynsym, there is no
2431                  * SUNW_ldynsym. If it is any other type, then we don't
2432                  * know what to do with it.
2433                  */
2434                 if ((sortshdr->sh_link == 0) || (sortshdr->sh_link >= shnum)) {
2435                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
2436                             file, sortcache->c_name,
2437                             EC_WORD(sortshdr->sh_link));
2438                         continue;
2439                 }
2440                 symcache = &cache[sortshdr->sh_link];
2441                 symshdr = symcache->c_shdr;
2442                 symsecndx = sortshdr->sh_link;
2443                 ldynsym_cnt = 0;
2444                 switch (symshdr->sh_type) {
2445                 case SHT_SUNW_LDYNSYM:
2446                         if (!init_symtbl_state(&ldynsym_state, cache, shnum,
2447                             symsecndx, ehdr, osabi, versym, file, flags))
2448                                 continue;
2449                         ldynsym_cnt = ldynsym_state.symn;
2450                         /*
2451                          * We know that the dynsym follows immediately
2452                          * after the SUNW_ldynsym, and so, should be at
2453                          * (sortshdr->sh_link + 1). However, elfdump is a
2454                          * diagnostic tool, so we do the full paranoid
2455                          * search instead.
2456                          */
2457                         for (symsecndx = 1; symsecndx < shnum; symsecndx++) {
2458                                 symcache = &cache[symsecndx];
2459                                 symshdr = symcache->c_shdr;
2460                                 if (symshdr->sh_type == SHT_DYNSYM)
2461                                         break;
2462                         }
2463                         if (symsecndx >= shnum) {    /* Dynsym not found! */
2464                                 (void) fprintf(stderr,
2465                                     MSG_INTL(MSG_ERR_NODYNSYM),
2466                                     file, sortcache->c_name);
2467                                 continue;
2468                         }
2469                         /* Fallthrough to process associated dynsym */
2470                         /* FALLTHROUGH */
2471                 case SHT_DYNSYM:
2472                         if (!init_symtbl_state(&dynsym_state, cache, shnum,
2473                             symsecndx, ehdr, osabi, versym, file, flags))
2474                                 continue;
2475                         break;
2476                 default:
2477                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADNDXSEC),
2478                             file, sortcache->c_name,
2479                             conv_sec_type(osabi, ehdr->e_machine,
2480                             symshdr->sh_type, 0, &inv_buf));
2481                         continue;
2482                 }
2483 
2484                 /*
2485                  * Output header
2486                  */
2487                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2488                 if (ldynsym_cnt > 0) {
2489                         dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT2),
2490                             sortcache->c_name, ldynsym_state.secname,
2491                             dynsym_state.secname);
2492                         /*
2493                          * The data for .SUNW_ldynsym and dynsym sections
2494                          * is supposed to be adjacent with SUNW_ldynsym coming
2495                          * first. Check, and issue a warning if it isn't so.
2496                          */
2497                         if (((ldynsym_state.sym + ldynsym_state.symn)
2498                             != dynsym_state.sym) &&
2499                             ((flags & FLG_CTL_FAKESHDR) == 0))
2500                                 (void) fprintf(stderr,
2501                                     MSG_INTL(MSG_ERR_LDYNNOTADJ), file,
2502                                     ldynsym_state.secname,
2503                                     dynsym_state.secname);
2504                 } else {
2505                         dbg_print(0, MSG_INTL(MSG_ELF_SCN_SYMSORT1),
2506                             sortcache->c_name, dynsym_state.secname);
2507                 }
2508                 Elf_syms_table_title(0, ELF_DBG_ELFDUMP);
2509 
2510                 /* If not first one, insert a line of white space */
2511                 if (output_cnt++ > 0)
2512                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2513 
2514                 /*
2515                  * SUNW_dynsymsort and SUNW_dyntlssort are arrays of
2516                  * symbol indices. Iterate over the array entries,
2517                  * dispaying the referenced symbols.
2518                  */
2519                 ndxn = sortshdr->sh_size / sortshdr->sh_entsize;
2520                 ndx = (Word *)sortcache->c_data->d_buf;
2521                 for (; ndxn-- > 0; ndx++) {
2522                         if (*ndx >= ldynsym_cnt) {
2523                                 Word sec_ndx = *ndx - ldynsym_cnt;
2524 
2525                                 output_symbol(&dynsym_state, sec_ndx, 0,
2526                                     *ndx, dynsym_state.sym + sec_ndx);
2527                         } else {
2528                                 output_symbol(&ldynsym_state, *ndx, 0,
2529                                     *ndx, ldynsym_state.sym + *ndx);
2530                         }
2531                 }
2532         }
2533 }
2534 
2535 /*
2536  * Search for and process any relocation sections.
2537  */
2538 static void
2539 reloc(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
2540 {
2541         Word    cnt;
2542 
2543         for (cnt = 1; cnt < shnum; cnt++) {
2544                 Word            type, symnum;
2545                 Xword           relndx, relnum, relsize;
2546                 void            *rels;
2547                 Sym             *syms;
2548                 Cache           *symsec, *strsec;
2549                 Cache           *_cache = &cache[cnt];
2550                 Shdr            *shdr = _cache->c_shdr;
2551                 char            *relname = _cache->c_name;
2552                 Conv_inv_buf_t  inv_buf;
2553 
2554                 if (((type = shdr->sh_type) != SHT_RELA) &&
2555                     (type != SHT_REL))
2556                         continue;
2557                 if (!match(MATCH_F_ALL, relname, cnt, type))
2558                         continue;
2559 
2560                 /*
2561                  * Decide entry size.
2562                  */
2563                 if (((relsize = shdr->sh_entsize) == 0) ||
2564                     (relsize > shdr->sh_size)) {
2565                         if (type == SHT_RELA)
2566                                 relsize = sizeof (Rela);
2567                         else
2568                                 relsize = sizeof (Rel);
2569                 }
2570 
2571                 /*
2572                  * Determine the number of relocations available.
2573                  */
2574                 if (shdr->sh_size == 0) {
2575                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
2576                             file, relname);
2577                         continue;
2578                 }
2579                 if (_cache->c_data == NULL)
2580                         continue;
2581 
2582                 rels = _cache->c_data->d_buf;
2583                 relnum = shdr->sh_size / relsize;
2584 
2585                 /*
2586                  * Get the data buffer for the associated symbol table and
2587                  * string table.
2588                  */
2589                 if (stringtbl(cache, 1, cnt, shnum, file,
2590                     &symnum, &symsec, &strsec) == 0)
2591                         continue;
2592 
2593                 syms = symsec->c_data->d_buf;
2594 
2595                 /*
2596                  * Loop through the relocation entries.
2597                  */
2598                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
2599                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_RELOC), _cache->c_name);
2600                 Elf_reloc_title(0, ELF_DBG_ELFDUMP, type);
2601 
2602                 for (relndx = 0; relndx < relnum; relndx++,
2603                     rels = (void *)((char *)rels + relsize)) {
2604                         Half            mach = ehdr->e_machine;
2605                         char            section[BUFSIZ];
2606                         const char      *symname;
2607                         Word            symndx, reltype;
2608                         Rela            *rela;
2609                         Rel             *rel;
2610 
2611                         /*
2612                          * Unravel the relocation and determine the symbol with
2613                          * which this relocation is associated.
2614                          */
2615                         if (type == SHT_RELA) {
2616                                 rela = (Rela *)rels;
2617                                 symndx = ELF_R_SYM(rela->r_info);
2618                                 reltype = ELF_R_TYPE(rela->r_info, mach);
2619                         } else {
2620                                 rel = (Rel *)rels;
2621                                 symndx = ELF_R_SYM(rel->r_info);
2622                                 reltype = ELF_R_TYPE(rel->r_info, mach);
2623                         }
2624 
2625                         symname = relsymname(cache, _cache, strsec, symndx,
2626                             symnum, relndx, syms, section, BUFSIZ, file);
2627 
2628                         /*
2629                          * A zero symbol index is only valid for a few
2630                          * relocations.
2631                          */
2632                         if (symndx == 0) {
2633                                 int     badrel = 0;
2634 
2635                                 if ((mach == EM_SPARC) ||
2636                                     (mach == EM_SPARC32PLUS) ||
2637                                     (mach == EM_SPARCV9)) {
2638                                         if ((reltype != R_SPARC_NONE) &&
2639                                             (reltype != R_SPARC_REGISTER) &&
2640                                             (reltype != R_SPARC_RELATIVE))
2641                                                 badrel++;
2642                                 } else if (mach == EM_386) {
2643                                         if ((reltype != R_386_NONE) &&
2644                                             (reltype != R_386_RELATIVE))
2645                                                 badrel++;
2646                                 } else if (mach == EM_AMD64) {
2647                                         if ((reltype != R_AMD64_NONE) &&
2648                                             (reltype != R_AMD64_RELATIVE))
2649                                                 badrel++;
2650                                 }
2651 
2652                                 if (badrel) {
2653                                         (void) fprintf(stderr,
2654                                             MSG_INTL(MSG_ERR_BADREL1), file,
2655                                             conv_reloc_type(mach, reltype,
2656                                             0, &inv_buf));
2657                                 }
2658                         }
2659 
2660                         Elf_reloc_entry_1(0, ELF_DBG_ELFDUMP,
2661                             MSG_ORIG(MSG_STR_EMPTY), ehdr->e_machine, type,
2662                             rels, relname, symname, 0);
2663                 }
2664         }
2665 }
2666 
2667 
2668 /*
2669  * This value controls which test dyn_test() performs.
2670  */
2671 typedef enum { DYN_TEST_ADDR, DYN_TEST_SIZE, DYN_TEST_ENTSIZE } dyn_test_t;
2672 
2673 /*
2674  * Used by dynamic() to compare the value of a dynamic element against
2675  * the starting address of the section it references.
2676  *
2677  * entry:
2678  *      test_type - Specify which dyn item is being tested.
2679  *      sh_type - SHT_* type value for required section.
2680  *      sec_cache - Cache entry for section, or NULL if the object lacks
2681  *              a section of this type.
2682  *      dyn - Dyn entry to be tested
2683  *      dynsec_cnt - # of dynamic section being examined. The first
2684  *              dynamic section is 1, the next is 2, and so on...
2685  *      ehdr - ELF header for file
2686  *      file - Name of file
2687  */
2688 static void
2689 dyn_test(dyn_test_t test_type, Word sh_type, Cache *sec_cache, Dyn *dyn,
2690     Word dynsec_cnt, Ehdr *ehdr, uchar_t osabi, const char *file)
2691 {
2692         Conv_inv_buf_t  buf1, buf2;
2693 
2694         /*
2695          * These tests are based around the implicit assumption that
2696          * there is only one dynamic section in an object, and also only
2697          * one of the sections it references. We have therefore gathered
2698          * all of the necessary information to test this in a single pass
2699          * over the section headers, which is very efficient. We are not
2700          * aware of any case where more than one dynamic section would
2701          * be meaningful in an ELF object, so this is a reasonable solution.
2702          *
2703          * To test multiple dynamic sections correctly would be more
2704          * expensive in code and time. We would have to build a data structure
2705          * containing all the dynamic elements. Then, we would use the address
2706          * to locate the section it references and ensure the section is of
2707          * the right type and that the address in the dynamic element is
2708          * to the start of the section. Then, we could check the size and
2709          * entsize values against those same sections. This is O(n^2), and
2710          * also complicated.
2711          *
2712          * In the highly unlikely case that there is more than one dynamic
2713          * section, we only test the first one, and simply allow the values
2714          * of the subsequent one to be displayed unchallenged.
2715          */
2716         if (dynsec_cnt != 1)
2717                 return;
2718 
2719         /*
2720          * A DT_ item that references a section address should always find
2721          * the section in the file.
2722          */
2723         if (sec_cache == NULL) {
2724                 const char *name;
2725 
2726                 /*
2727                  * Supply section names instead of section types for
2728                  * things that reference progbits so that the error
2729                  * message will make more sense.
2730                  */
2731                 switch (dyn->d_tag) {
2732                 case DT_INIT:
2733                         name = MSG_ORIG(MSG_ELF_INIT);
2734                         break;
2735                 case DT_FINI:
2736                         name = MSG_ORIG(MSG_ELF_FINI);
2737                         break;
2738                 default:
2739                         name = conv_sec_type(osabi, ehdr->e_machine,
2740                             sh_type, 0, &buf1);
2741                         break;
2742                 }
2743                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNNOBCKSEC), file,
2744                     name, conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2745                     CONV_FMT_ALT_CF, &buf2));
2746                 return;
2747         }
2748 
2749 
2750         switch (test_type) {
2751         case DYN_TEST_ADDR:
2752                 /* The section address should match the DT_ item value */
2753                 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_addr)
2754                         (void) fprintf(stderr,
2755                             MSG_INTL(MSG_ERR_DYNBADADDR), file,
2756                             conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2757                             CONV_FMT_ALT_CF, &buf1), EC_ADDR(dyn->d_un.d_val),
2758                             sec_cache->c_ndx, sec_cache->c_name,
2759                             EC_ADDR(sec_cache->c_shdr->sh_addr));
2760                 break;
2761 
2762         case DYN_TEST_SIZE:
2763                 /* The section size should match the DT_ item value */
2764                 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_size)
2765                         (void) fprintf(stderr,
2766                             MSG_INTL(MSG_ERR_DYNBADSIZE), file,
2767                             conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2768                             CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2769                             sec_cache->c_ndx, sec_cache->c_name,
2770                             EC_XWORD(sec_cache->c_shdr->sh_size));
2771                 break;
2772 
2773         case DYN_TEST_ENTSIZE:
2774                 /* The sh_entsize value should match the DT_ item value */
2775                 if (dyn->d_un.d_val != sec_cache->c_shdr->sh_entsize)
2776                         (void) fprintf(stderr,
2777                             MSG_INTL(MSG_ERR_DYNBADENTSIZE), file,
2778                             conv_dyn_tag(dyn->d_tag, osabi, ehdr->e_machine,
2779                             CONV_FMT_ALT_CF, &buf1), EC_XWORD(dyn->d_un.d_val),
2780                             sec_cache->c_ndx, sec_cache->c_name,
2781                             EC_XWORD(sec_cache->c_shdr->sh_entsize));
2782                 break;
2783         }
2784 }
2785 
2786 /*
2787  * There are some DT_ entries that have corresponding symbols
2788  * (e.g. DT_INIT and _init). It is expected that these items will
2789  * both have the same value if both are present. This routine
2790  * examines the well known symbol tables for such symbols and
2791  * issues warnings for any that don't match.
2792  *
2793  * entry:
2794  *      dyn - Dyn entry to be tested
2795  *      symname - Name of symbol that corresponds to dyn
2796  *      symtab_cache, dynsym_cache, ldynsym_cache - Symbol tables to check
2797  *      target_cache - Section the symname section is expected to be
2798  *              associated with.
2799  *      cache - Cache of all section headers
2800  *      shnum - # of sections in cache
2801  *      ehdr - ELF header for file
2802  *      osabi - OSABI to apply when interpreting object
2803  *      file - Name of file
2804  */
2805 static void
2806 dyn_symtest(Dyn *dyn, const char *symname, Cache *symtab_cache,
2807     Cache *dynsym_cache, Cache *ldynsym_cache, Cache *target_cache,
2808     Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2809 {
2810         Conv_inv_buf_t  buf;
2811         int             i;
2812         Sym             *sym;
2813         Cache           *_cache;
2814 
2815         for (i = 0; i < 3; i++) {
2816                 switch (i) {
2817                 case 0:
2818                         _cache = symtab_cache;
2819                         break;
2820                 case 1:
2821                         _cache = dynsym_cache;
2822                         break;
2823                 case 2:
2824                         _cache = ldynsym_cache;
2825                         break;
2826                 }
2827 
2828                 if ((_cache != NULL) &&
2829                     symlookup(symname, cache, shnum, &sym, target_cache,
2830                     _cache, file) && (sym->st_value != dyn->d_un.d_val))
2831                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_DYNSYMVAL),
2832                             file, _cache->c_name, conv_dyn_tag(dyn->d_tag,
2833                             osabi, ehdr->e_machine, CONV_FMT_ALT_CF, &buf),
2834                             symname, EC_ADDR(sym->st_value));
2835         }
2836 }
2837 
2838 /*
2839  * Search for and process a .dynamic section.
2840  */
2841 static void
2842 dynamic(Cache *cache, Word shnum, Ehdr *ehdr, uchar_t osabi, const char *file)
2843 {
2844         struct {
2845                 Cache   *symtab;
2846                 Cache   *dynstr;
2847                 Cache   *dynsym;
2848                 Cache   *hash;
2849                 Cache   *fini;
2850                 Cache   *fini_array;
2851                 Cache   *init;
2852                 Cache   *init_array;
2853                 Cache   *preinit_array;
2854                 Cache   *rel;
2855                 Cache   *rela;
2856                 Cache   *sunw_cap;
2857                 Cache   *sunw_capinfo;
2858                 Cache   *sunw_capchain;
2859                 Cache   *sunw_ldynsym;
2860                 Cache   *sunw_move;
2861                 Cache   *sunw_syminfo;
2862                 Cache   *sunw_symsort;
2863                 Cache   *sunw_tlssort;
2864                 Cache   *sunw_verdef;
2865                 Cache   *sunw_verneed;
2866                 Cache   *sunw_versym;
2867         } sec;
2868         Word    dynsec_ndx;
2869         Word    dynsec_num;
2870         int     dynsec_cnt;
2871         Word    cnt;
2872         int     osabi_solaris = osabi == ELFOSABI_SOLARIS;
2873 
2874         /*
2875          * Make a pass over all the sections, gathering section information
2876          * we'll need below.
2877          */
2878         dynsec_num = 0;
2879         bzero(&sec, sizeof (sec));
2880         for (cnt = 1; cnt < shnum; cnt++) {
2881                 Cache   *_cache = &cache[cnt];
2882 
2883                 switch (_cache->c_shdr->sh_type) {
2884                 case SHT_DYNAMIC:
2885                         if (dynsec_num == 0) {
2886                                 dynsec_ndx = cnt;
2887 
2888                                 /* Does it have a valid string table? */
2889                                 (void) stringtbl(cache, 0, cnt, shnum, file,
2890                                     0, 0, &sec.dynstr);
2891                         }
2892                         dynsec_num++;
2893                         break;
2894 
2895 
2896                 case SHT_PROGBITS:
2897                         /*
2898                          * We want to detect the .init and .fini sections,
2899                          * if present. These are SHT_PROGBITS, so all we
2900                          * have to go on is the section name. Normally comparing
2901                          * names is a bad idea, but there are some special
2902                          * names (i.e. .init/.fini/.interp) that are very
2903                          * difficult to use in any other context, and for
2904                          * these symbols, we do the heuristic match.
2905                          */
2906                         if (strcmp(_cache->c_name,
2907                             MSG_ORIG(MSG_ELF_INIT)) == 0) {
2908                                 if (sec.init == NULL)
2909                                         sec.init = _cache;
2910                         } else if (strcmp(_cache->c_name,
2911                             MSG_ORIG(MSG_ELF_FINI)) == 0) {
2912                                 if (sec.fini == NULL)
2913                                         sec.fini = _cache;
2914                         }
2915                         break;
2916 
2917                 case SHT_REL:
2918                         /*
2919                          * We want the SHT_REL section with the lowest
2920                          * offset. The linker gathers them together,
2921                          * and puts the address of the first one
2922                          * into the DT_REL dynamic element.
2923                          */
2924                         if ((sec.rel == NULL) ||
2925                             (_cache->c_shdr->sh_offset <
2926                             sec.rel->c_shdr->sh_offset))
2927                                 sec.rel = _cache;
2928                         break;
2929 
2930                 case SHT_RELA:
2931                         /* RELA is handled just like RELA above */
2932                         if ((sec.rela == NULL) ||
2933                             (_cache->c_shdr->sh_offset <
2934                             sec.rela->c_shdr->sh_offset))
2935                                 sec.rela = _cache;
2936                         break;
2937 
2938                 /*
2939                  * The GRAB macro is used for the simple case in which
2940                  * we simply grab the first section of the desired type.
2941                  */
2942 #define GRAB(_sec_type, _sec_field) \
2943                 case _sec_type: \
2944                         if (sec._sec_field == NULL) \
2945                                 sec._sec_field = _cache; \
2946                                 break
2947                 GRAB(SHT_SYMTAB,        symtab);
2948                 GRAB(SHT_DYNSYM,        dynsym);
2949                 GRAB(SHT_FINI_ARRAY,    fini_array);
2950                 GRAB(SHT_HASH,          hash);
2951                 GRAB(SHT_INIT_ARRAY,    init_array);
2952                 GRAB(SHT_SUNW_move,     sunw_move);
2953                 GRAB(SHT_PREINIT_ARRAY, preinit_array);
2954                 GRAB(SHT_SUNW_cap,      sunw_cap);
2955                 GRAB(SHT_SUNW_capinfo,  sunw_capinfo);
2956                 GRAB(SHT_SUNW_capchain, sunw_capchain);
2957                 GRAB(SHT_SUNW_LDYNSYM,  sunw_ldynsym);
2958                 GRAB(SHT_SUNW_syminfo,  sunw_syminfo);
2959                 GRAB(SHT_SUNW_symsort,  sunw_symsort);
2960                 GRAB(SHT_SUNW_tlssort,  sunw_tlssort);
2961                 GRAB(SHT_SUNW_verdef,   sunw_verdef);
2962                 GRAB(SHT_SUNW_verneed,  sunw_verneed);
2963                 GRAB(SHT_SUNW_versym,   sunw_versym);
2964 #undef GRAB
2965                 }
2966         }
2967 
2968         /*
2969          * If no dynamic section, return immediately. If more than one
2970          * dynamic section, then something odd is going on and an error
2971          * is in order, but then continue on and display them all.
2972          */
2973         if (dynsec_num == 0)
2974                 return;
2975         if (dynsec_num > 1)
2976                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MULTDYN),
2977                     file, EC_WORD(dynsec_num));
2978 
2979 
2980         dynsec_cnt = 0;
2981         for (cnt = dynsec_ndx; (cnt < shnum) && (dynsec_cnt < dynsec_num);
2982             cnt++) {
2983                 Dyn     *dyn;
2984                 ulong_t numdyn;
2985                 int     ndx, end_ndx;
2986                 Cache   *_cache = &cache[cnt], *strsec;
2987                 Shdr    *shdr = _cache->c_shdr;
2988                 int     dumped = 0;
2989 
2990                 if (shdr->sh_type != SHT_DYNAMIC)
2991                         continue;
2992                 dynsec_cnt++;
2993 
2994                 /*
2995                  * Verify the associated string table section.
2996                  */
2997                 if (stringtbl(cache, 0, cnt, shnum, file, 0, 0, &strsec) == 0)
2998                         continue;
2999 
3000                 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3001                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3002                             file, _cache->c_name);
3003                         continue;
3004                 }
3005                 if (_cache->c_data == NULL)
3006                         continue;
3007 
3008                 numdyn = shdr->sh_size / shdr->sh_entsize;
3009                 dyn = (Dyn *)_cache->c_data->d_buf;
3010 
3011                 /*
3012                  * We expect the REL/RELA entries to reference the reloc
3013                  * section with the lowest address. However, this is
3014                  * not true for dumped objects. Detect if this object has
3015                  * been dumped so that we can skip the reloc address test
3016                  * in that case.
3017                  */
3018                 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3019                         if (dyn->d_tag == DT_FLAGS_1) {
3020                                 dumped = (dyn->d_un.d_val & DF_1_CONFALT) != 0;
3021                                 break;
3022                         }
3023                 }
3024                 dyn = (Dyn *)_cache->c_data->d_buf;
3025 
3026                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3027                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_DYNAMIC), _cache->c_name);
3028 
3029                 Elf_dyn_title(0);
3030 
3031                 for (ndx = 0; ndx < numdyn; dyn++, ndx++) {
3032                         union {
3033                                 Conv_inv_buf_t          inv;
3034                                 Conv_dyn_flag_buf_t     flag;
3035                                 Conv_dyn_flag1_buf_t    flag1;
3036                                 Conv_dyn_posflag1_buf_t posflag1;
3037                                 Conv_dyn_feature1_buf_t feature1;
3038                         } c_buf;
3039                         const char      *name = NULL;
3040 
3041                         /*
3042                          * Print the information numerically, and if possible
3043                          * as a string. If a string is available, name is
3044                          * set to reference it.
3045                          *
3046                          * Also, take this opportunity to sanity check
3047                          * the values of DT elements. In the code above,
3048                          * we gathered information on sections that are
3049                          * referenced by the dynamic section. Here, we
3050                          * compare the attributes of those sections to
3051                          * the DT_ items that reference them and report
3052                          * on inconsistencies.
3053                          *
3054                          * Things not currently tested that could be improved
3055                          * in later revisions include:
3056                          *      - We don't check PLT or GOT related items
3057                          *      - We don't handle computing the lengths of
3058                          *              relocation arrays. To handle this
3059                          *              requires examining data that spans
3060                          *              across sections, in a contiguous span
3061                          *              within a single segment.
3062                          *      - DT_VERDEFNUM and DT_VERNEEDNUM can't be
3063                          *              verified without parsing the sections.
3064                          *      - We don't handle DT_SUNW_SYMSZ, which would
3065                          *              be the sum of the lengths of .dynsym and
3066                          *              .SUNW_ldynsym
3067                          *      - DT_SUNW_STRPAD can't be verified other than
3068                          *              to check that it's not larger than
3069                          *              the string table.
3070                          *      - Some items come in "all or none" clusters
3071                          *              that give an address, element size,
3072                          *              and data length in bytes. We don't
3073                          *              verify that there are no missing items
3074                          *              in such groups.
3075                          */
3076                         switch (dyn->d_tag) {
3077                         case DT_NULL:
3078                                 /*
3079                                  * Special case: DT_NULLs can come in groups
3080                                  * that we prefer to reduce to a single line.
3081                                  */
3082                                 end_ndx = ndx;
3083                                 while ((end_ndx < (numdyn - 1)) &&
3084                                     ((dyn + 1)->d_tag == DT_NULL)) {
3085                                         dyn++;
3086                                         end_ndx++;
3087                                 }
3088                                 Elf_dyn_null_entry(0, dyn, ndx, end_ndx);
3089                                 ndx = end_ndx;
3090                                 continue;
3091 
3092                         /*
3093                          * String items all reference the dynstr. The string()
3094                          * function does the necessary sanity checking.
3095                          */
3096                         case DT_NEEDED:
3097                         case DT_SONAME:
3098                         case DT_FILTER:
3099                         case DT_AUXILIARY:
3100                         case DT_CONFIG:
3101                         case DT_RPATH:
3102                         case DT_RUNPATH:
3103                         case DT_USED:
3104                         case DT_DEPAUDIT:
3105                         case DT_AUDIT:
3106                                 name = string(_cache, ndx, strsec,
3107                                     file, dyn->d_un.d_ptr);
3108                                 break;
3109 
3110                         case DT_SUNW_AUXILIARY:
3111                         case DT_SUNW_FILTER:
3112                                 if (osabi_solaris)
3113                                         name = string(_cache, ndx, strsec,
3114                                             file, dyn->d_un.d_ptr);
3115                                 break;
3116 
3117                         case DT_FLAGS:
3118                                 name = conv_dyn_flag(dyn->d_un.d_val,
3119                                     0, &c_buf.flag);
3120                                 break;
3121                         case DT_FLAGS_1:
3122                                 name = conv_dyn_flag1(dyn->d_un.d_val, 0,
3123                                     &c_buf.flag1);
3124                                 break;
3125                         case DT_POSFLAG_1:
3126                                 name = conv_dyn_posflag1(dyn->d_un.d_val, 0,
3127                                     &c_buf.posflag1);
3128                                 break;
3129                         case DT_FEATURE_1:
3130                                 name = conv_dyn_feature1(dyn->d_un.d_val, 0,
3131                                     &c_buf.feature1);
3132                                 break;
3133                         case DT_DEPRECATED_SPARC_REGISTER:
3134                                 name = MSG_INTL(MSG_STR_DEPRECATED);
3135                                 break;
3136 
3137                         case DT_SUNW_LDMACH:
3138                                 if (!osabi_solaris)
3139                                         break;
3140                                 name = conv_ehdr_mach((Half)dyn->d_un.d_val,
3141                                     0, &c_buf.inv);
3142                                 break;
3143 
3144                         /*
3145                          * Cases below this point are strictly sanity checking,
3146                          * and do not generate a name string. The TEST_ macros
3147                          * are used to hide the boiler plate arguments neeeded
3148                          * by dyn_test().
3149                          */
3150 #define TEST_ADDR(_sh_type, _sec_field) \
3151                                 dyn_test(DYN_TEST_ADDR, _sh_type, \
3152                                     sec._sec_field, dyn, dynsec_cnt, ehdr, \
3153                                     osabi, file)
3154 #define TEST_SIZE(_sh_type, _sec_field) \
3155                                 dyn_test(DYN_TEST_SIZE, _sh_type, \
3156                                     sec._sec_field, dyn, dynsec_cnt, ehdr, \
3157                                     osabi, file)
3158 #define TEST_ENTSIZE(_sh_type, _sec_field) \
3159                                 dyn_test(DYN_TEST_ENTSIZE, _sh_type, \
3160                                     sec._sec_field, dyn, dynsec_cnt, ehdr, \
3161                                     osabi, file)
3162 
3163                         case DT_FINI:
3164                                 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_FINI),
3165                                     sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3166                                     sec.fini, cache, shnum, ehdr, osabi, file);
3167                                 TEST_ADDR(SHT_PROGBITS, fini);
3168                                 break;
3169 
3170                         case DT_FINI_ARRAY:
3171                                 TEST_ADDR(SHT_FINI_ARRAY, fini_array);
3172                                 break;
3173 
3174                         case DT_FINI_ARRAYSZ:
3175                                 TEST_SIZE(SHT_FINI_ARRAY, fini_array);
3176                                 break;
3177 
3178                         case DT_HASH:
3179                                 TEST_ADDR(SHT_HASH, hash);
3180                                 break;
3181 
3182                         case DT_INIT:
3183                                 dyn_symtest(dyn, MSG_ORIG(MSG_SYM_INIT),
3184                                     sec.symtab, sec.dynsym, sec.sunw_ldynsym,
3185                                     sec.init, cache, shnum, ehdr, osabi, file);
3186                                 TEST_ADDR(SHT_PROGBITS, init);
3187                                 break;
3188 
3189                         case DT_INIT_ARRAY:
3190                                 TEST_ADDR(SHT_INIT_ARRAY, init_array);
3191                                 break;
3192 
3193                         case DT_INIT_ARRAYSZ:
3194                                 TEST_SIZE(SHT_INIT_ARRAY, init_array);
3195                                 break;
3196 
3197                         case DT_MOVEENT:
3198                                 TEST_ENTSIZE(SHT_SUNW_move, sunw_move);
3199                                 break;
3200 
3201                         case DT_MOVESZ:
3202                                 TEST_SIZE(SHT_SUNW_move, sunw_move);
3203                                 break;
3204 
3205                         case DT_MOVETAB:
3206                                 TEST_ADDR(SHT_SUNW_move, sunw_move);
3207                                 break;
3208 
3209                         case DT_PREINIT_ARRAY:
3210                                 TEST_ADDR(SHT_PREINIT_ARRAY, preinit_array);
3211                                 break;
3212 
3213                         case DT_PREINIT_ARRAYSZ:
3214                                 TEST_SIZE(SHT_PREINIT_ARRAY, preinit_array);
3215                                 break;
3216 
3217                         case DT_REL:
3218                                 if (!dumped)
3219                                         TEST_ADDR(SHT_REL, rel);
3220                                 break;
3221 
3222                         case DT_RELENT:
3223                                 TEST_ENTSIZE(SHT_REL, rel);
3224                                 break;
3225 
3226                         case DT_RELA:
3227                                 if (!dumped)
3228                                         TEST_ADDR(SHT_RELA, rela);
3229                                 break;
3230 
3231                         case DT_RELAENT:
3232                                 TEST_ENTSIZE(SHT_RELA, rela);
3233                                 break;
3234 
3235                         case DT_STRTAB:
3236                                 TEST_ADDR(SHT_STRTAB, dynstr);
3237                                 break;
3238 
3239                         case DT_STRSZ:
3240                                 TEST_SIZE(SHT_STRTAB, dynstr);
3241                                 break;
3242 
3243                         case DT_SUNW_CAP:
3244                                 if (osabi_solaris)
3245                                         TEST_ADDR(SHT_SUNW_cap, sunw_cap);
3246                                 break;
3247 
3248                         case DT_SUNW_CAPINFO:
3249                                 if (osabi_solaris)
3250                                         TEST_ADDR(SHT_SUNW_capinfo,
3251                                             sunw_capinfo);
3252                                 break;
3253 
3254                         case DT_SUNW_CAPCHAIN:
3255                                 if (osabi_solaris)
3256                                         TEST_ADDR(SHT_SUNW_capchain,
3257                                             sunw_capchain);
3258                                 break;
3259 
3260                         case DT_SUNW_SYMTAB:
3261                                 TEST_ADDR(SHT_SUNW_LDYNSYM, sunw_ldynsym);
3262                                 break;
3263 
3264                         case DT_SYMENT:
3265                                 TEST_ENTSIZE(SHT_DYNSYM, dynsym);
3266                                 break;
3267 
3268                         case DT_SYMINENT:
3269                                 TEST_ENTSIZE(SHT_SUNW_syminfo, sunw_syminfo);
3270                                 break;
3271 
3272                         case DT_SYMINFO:
3273                                 TEST_ADDR(SHT_SUNW_syminfo, sunw_syminfo);
3274                                 break;
3275 
3276                         case DT_SYMINSZ:
3277                                 TEST_SIZE(SHT_SUNW_syminfo, sunw_syminfo);
3278                                 break;
3279 
3280                         case DT_SYMTAB:
3281                                 TEST_ADDR(SHT_DYNSYM, dynsym);
3282                                 break;
3283 
3284                         case DT_SUNW_SORTENT:
3285                                 /*
3286                                  * This entry is related to both the symsort and
3287                                  * tlssort sections.
3288                                  */
3289                                 if (osabi_solaris) {
3290                                         int test_tls =
3291                                             (sec.sunw_tlssort != NULL);
3292                                         int test_sym =
3293                                             (sec.sunw_symsort != NULL) ||
3294                                             !test_tls;
3295                                         if (test_sym)
3296                                                 TEST_ENTSIZE(SHT_SUNW_symsort,
3297                                                     sunw_symsort);
3298                                         if (test_tls)
3299                                                 TEST_ENTSIZE(SHT_SUNW_tlssort,
3300                                                     sunw_tlssort);
3301                                 }
3302                                 break;
3303 
3304 
3305                         case DT_SUNW_SYMSORT:
3306                                 if (osabi_solaris)
3307                                         TEST_ADDR(SHT_SUNW_symsort,
3308                                             sunw_symsort);
3309                                 break;
3310 
3311                         case DT_SUNW_SYMSORTSZ:
3312                                 if (osabi_solaris)
3313                                         TEST_SIZE(SHT_SUNW_symsort,
3314                                             sunw_symsort);
3315                                 break;
3316 
3317                         case DT_SUNW_TLSSORT:
3318                                 if (osabi_solaris)
3319                                         TEST_ADDR(SHT_SUNW_tlssort,
3320                                             sunw_tlssort);
3321                                 break;
3322 
3323                         case DT_SUNW_TLSSORTSZ:
3324                                 if (osabi_solaris)
3325                                         TEST_SIZE(SHT_SUNW_tlssort,
3326                                             sunw_tlssort);
3327                                 break;
3328 
3329                         case DT_VERDEF:
3330                                 TEST_ADDR(SHT_SUNW_verdef, sunw_verdef);
3331                                 break;
3332 
3333                         case DT_VERNEED:
3334                                 TEST_ADDR(SHT_SUNW_verneed, sunw_verneed);
3335                                 break;
3336 
3337                         case DT_VERSYM:
3338                                 TEST_ADDR(SHT_SUNW_versym, sunw_versym);
3339                                 break;
3340 #undef TEST_ADDR
3341 #undef TEST_SIZE
3342 #undef TEST_ENTSIZE
3343                         }
3344 
3345                         if (name == NULL)
3346                                 name = MSG_ORIG(MSG_STR_EMPTY);
3347                         Elf_dyn_entry(0, dyn, ndx, name,
3348                             osabi, ehdr->e_machine);
3349                 }
3350         }
3351 }
3352 
3353 /*
3354  * Search for and process a MOVE section.
3355  */
3356 static void
3357 move(Cache *cache, Word shnum, const char *file, uint_t flags)
3358 {
3359         Word            cnt;
3360         const char      *fmt = NULL;
3361 
3362         for (cnt = 1; cnt < shnum; cnt++) {
3363                 Word    movenum, symnum, ndx;
3364                 Sym     *syms;
3365                 Cache   *_cache = &cache[cnt];
3366                 Shdr    *shdr = _cache->c_shdr;
3367                 Cache   *symsec, *strsec;
3368                 Move    *move;
3369 
3370                 if (shdr->sh_type != SHT_SUNW_move)
3371                         continue;
3372                 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3373                         continue;
3374 
3375                 /*
3376                  * Determine the move data and number.
3377                  */
3378                 if ((shdr->sh_entsize == 0) || (shdr->sh_size == 0)) {
3379                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3380                             file, _cache->c_name);
3381                         continue;
3382                 }
3383                 if (_cache->c_data == NULL)
3384                         continue;
3385 
3386                 move = (Move *)_cache->c_data->d_buf;
3387                 movenum = shdr->sh_size / shdr->sh_entsize;
3388 
3389                 /*
3390                  * Get the data buffer for the associated symbol table and
3391                  * string table.
3392                  */
3393                 if (stringtbl(cache, 1, cnt, shnum, file,
3394                     &symnum, &symsec, &strsec) == 0)
3395                         return;
3396 
3397                 syms = (Sym *)symsec->c_data->d_buf;
3398 
3399                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3400                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_MOVE), _cache->c_name);
3401                 dbg_print(0, MSG_INTL(MSG_MOVE_TITLE));
3402 
3403                 if (fmt == NULL)
3404                         fmt = MSG_INTL(MSG_MOVE_ENTRY);
3405 
3406                 for (ndx = 0; ndx < movenum; move++, ndx++) {
3407                         const char      *symname;
3408                         char            index[MAXNDXSIZE], section[BUFSIZ];
3409                         Word            symndx, shndx;
3410                         Sym             *sym;
3411 
3412                         /*
3413                          * Check for null entries
3414                          */
3415                         if ((move->m_info == 0) && (move->m_value == 0) &&
3416                             (move->m_poffset == 0) && (move->m_repeat == 0) &&
3417                             (move->m_stride == 0)) {
3418                                 dbg_print(0, fmt, MSG_ORIG(MSG_STR_EMPTY),
3419                                     EC_XWORD(move->m_poffset), 0, 0, 0,
3420                                     EC_LWORD(0), MSG_ORIG(MSG_STR_EMPTY));
3421                                 continue;
3422                         }
3423                         if (((symndx = ELF_M_SYM(move->m_info)) == 0) ||
3424                             (symndx >= symnum)) {
3425                                 (void) fprintf(stderr,
3426                                     MSG_INTL(MSG_ERR_BADMINFO), file,
3427                                     _cache->c_name, EC_XWORD(move->m_info));
3428 
3429                                 (void) snprintf(index, MAXNDXSIZE,
3430                                     MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3431                                 dbg_print(0, fmt, index,
3432                                     EC_XWORD(move->m_poffset),
3433                                     ELF_M_SIZE(move->m_info), move->m_repeat,
3434                                     move->m_stride, move->m_value,
3435                                     MSG_INTL(MSG_STR_UNKNOWN));
3436                                 continue;
3437                         }
3438 
3439                         symname = relsymname(cache, _cache, strsec,
3440                             symndx, symnum, ndx, syms, section, BUFSIZ, file);
3441                         sym = (Sym *)(syms + symndx);
3442 
3443                         /*
3444                          * Additional sanity check.
3445                          */
3446                         shndx = sym->st_shndx;
3447                         if (!((shndx == SHN_COMMON) ||
3448                             (((shndx >= 1) && (shndx <= shnum)) &&
3449                             (cache[shndx].c_shdr)->sh_type == SHT_NOBITS))) {
3450                                 (void) fprintf(stderr,
3451                                     MSG_INTL(MSG_ERR_BADSYM2), file,
3452                                     _cache->c_name, EC_WORD(symndx),
3453                                     demangle(symname, flags));
3454                         }
3455 
3456                         (void) snprintf(index, MAXNDXSIZE,
3457                             MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(symndx));
3458                         dbg_print(0, fmt, index, EC_XWORD(move->m_poffset),
3459                             ELF_M_SIZE(move->m_info), move->m_repeat,
3460                             move->m_stride, move->m_value,
3461                             demangle(symname, flags));
3462                 }
3463         }
3464 }
3465 
3466 /*
3467  * parse_note_t is used to track the state used by parse_note_entry()
3468  * between calls, and also to return the results of each call.
3469  */
3470 typedef struct {
3471         /* pns_ fields track progress through the data */
3472         const char      *pns_file;      /* File name */
3473         Cache           *pns_cache;     /* Note section cache entry */
3474         size_t          pns_size;       /* # unprocessed data bytes */
3475         Word            *pns_data;      /* # to next unused data byte */
3476 
3477         /* pn_ fields return the results for a single call */
3478         Word            pn_namesz;      /* Value of note namesz field */
3479         Word            pn_descsz;      /* Value of note descsz field */
3480         Word            pn_type;        /* Value of note type field */
3481         const char      *pn_name;       /* if (namesz > 0) ptr to name bytes */
3482         const char      *pn_desc;       /* if (descsx > 0) ptr to data bytes */
3483 } parse_note_t;
3484 
3485 /*
3486  * Extract the various sub-parts of a note entry, and advance the
3487  * data pointer past it.
3488  *
3489  * entry:
3490  *      The state pns_ fields contain current values for the Note section
3491  *
3492  * exit:
3493  *      On success, True (1) is returned, the state pns_ fields have been
3494  *      advanced to point at the start of the next entry, and the information
3495  *      for the recovered note entry is found in the state pn_ fields.
3496  *
3497  *      On failure, False (0) is returned. The values contained in state
3498  *      are undefined.
3499  */
3500 static int
3501 parse_note_entry(parse_note_t *state)
3502 {
3503         size_t  pad, noteoff;
3504 
3505         noteoff = (Word)state->pns_cache->c_data->d_size - state->pns_size;
3506         /*
3507          * Make sure we can at least reference the 3 initial entries
3508          * (4-byte words) of the note information block.
3509          */
3510         if (state->pns_size >= (sizeof (Word) * 3)) {
3511                 state->pns_size -= (sizeof (Word) * 3);
3512         } else {
3513                 (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDATASZ),
3514                     state->pns_file, state->pns_cache->c_name,
3515                     EC_WORD(noteoff));
3516                 return (0);
3517         }
3518 
3519         /*
3520          * Make sure any specified name string can be referenced.
3521          */
3522         if ((state->pn_namesz = *state->pns_data++) != 0) {
3523                 if (state->pns_size >= state->pn_namesz) {
3524                         state->pns_size -= state->pn_namesz;
3525                 } else {
3526                         (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADNMSZ),
3527                             state->pns_file, state->pns_cache->c_name,
3528                             EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3529                         return (0);
3530                 }
3531         }
3532 
3533         /*
3534          * Make sure any specified descriptor can be referenced.
3535          */
3536         if ((state->pn_descsz = *state->pns_data++) != 0) {
3537                 /*
3538                  * If namesz isn't a 4-byte multiple, account for any
3539                  * padding that must exist before the descriptor.
3540                  */
3541                 if ((pad = (state->pn_namesz & (sizeof (Word) - 1))) != 0) {
3542                         pad = sizeof (Word) - pad;
3543                         state->pns_size -= pad;
3544                 }
3545                 if (state->pns_size >= state->pn_descsz) {
3546                         state->pns_size -= state->pn_descsz;
3547                 } else {
3548                         (void) fprintf(stderr, MSG_INTL(MSG_NOTE_BADDESZ),
3549                             state->pns_file, state->pns_cache->c_name,
3550                             EC_WORD(noteoff), EC_WORD(state->pn_namesz));
3551                         return (0);
3552                 }
3553         }
3554 
3555         state->pn_type = *state->pns_data++;
3556 
3557         /* Name */
3558         if (state->pn_namesz) {
3559                 state->pn_name = (char *)state->pns_data;
3560                 pad = (state->pn_namesz +
3561                     (sizeof (Word) - 1)) & ~(sizeof (Word) - 1);
3562                 /* LINTED */
3563                 state->pns_data = (Word *)(state->pn_name + pad);
3564         }
3565 
3566         /*
3567          * If multiple information blocks exist within a .note section
3568          * account for any padding that must exist before the next
3569          * information block.
3570          */
3571         if ((pad = (state->pn_descsz & (sizeof (Word) - 1))) != 0) {
3572                 pad = sizeof (Word) - pad;
3573                 if (state->pns_size > pad)
3574                         state->pns_size -= pad;
3575         }
3576 
3577         /* Data */
3578         if (state->pn_descsz) {
3579                 state->pn_desc = (const char *)state->pns_data;
3580                 /* LINTED */
3581                 state->pns_data = (Word *)(state->pn_desc +
3582                     state->pn_descsz + pad);
3583         }
3584 
3585         return (1);
3586 }
3587 
3588 /*
3589  * Callback function for use with conv_str_to_c_literal() below.
3590  */
3591 /*ARGSUSED2*/
3592 static void
3593 c_literal_cb(const void *ptr, size_t size, void *uvalue)
3594 {
3595         (void) fwrite(ptr, size, 1, stdout);
3596 }
3597 
3598 /*
3599  * Traverse a note section analyzing each note information block.
3600  * The data buffers size is used to validate references before they are made,
3601  * and is decremented as each element is processed.
3602  */
3603 void
3604 note_entry(Cache *cache, Word *data, size_t size, Ehdr *ehdr, const char *file)
3605 {
3606         int             cnt = 0;
3607         int             is_corenote;
3608         int             do_swap;
3609         Conv_inv_buf_t  inv_buf;
3610         parse_note_t    pnstate;
3611 
3612         pnstate.pns_file = file;
3613         pnstate.pns_cache = cache;
3614         pnstate.pns_size = size;
3615         pnstate.pns_data = data;
3616         do_swap = _elf_sys_encoding() != ehdr->e_ident[EI_DATA];
3617 
3618         /*
3619          * Print out a single `note' information block.
3620          */
3621         while (pnstate.pns_size > 0) {
3622 
3623                 if (parse_note_entry(&pnstate) == 0)
3624                         return;
3625 
3626                 /*
3627                  * Is this a Solaris core note? Such notes all have
3628                  * the name "CORE".
3629                  */
3630                 is_corenote = (ehdr->e_type == ET_CORE) &&
3631                     (pnstate.pn_namesz == (MSG_STR_CORE_SIZE + 1)) &&
3632                     (strncmp(MSG_ORIG(MSG_STR_CORE), pnstate.pn_name,
3633                     MSG_STR_CORE_SIZE + 1) == 0);
3634 
3635                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3636                 dbg_print(0, MSG_INTL(MSG_FMT_NOTEENTNDX), EC_WORD(cnt));
3637                 cnt++;
3638                 dbg_print(0, MSG_ORIG(MSG_NOTE_NAMESZ),
3639                     EC_WORD(pnstate.pn_namesz));
3640                 dbg_print(0, MSG_ORIG(MSG_NOTE_DESCSZ),
3641                     EC_WORD(pnstate.pn_descsz));
3642 
3643                 if (is_corenote)
3644                         dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE_STR),
3645                             conv_cnote_type(pnstate.pn_type, 0, &inv_buf));
3646                 else
3647                         dbg_print(0, MSG_ORIG(MSG_NOTE_TYPE),
3648                             EC_WORD(pnstate.pn_type));
3649                 if (pnstate.pn_namesz) {
3650                         dbg_print(0, MSG_ORIG(MSG_NOTE_NAME));
3651                         /*
3652                          * The name string can contain embedded 'null'
3653                          * bytes and/or unprintable characters. Also,
3654                          * the final NULL is documented in the ELF ABI
3655                          * as being included in the namesz. So, display
3656                          * the name using C literal string notation, and
3657                          * include the terminating NULL in the output.
3658                          * We don't show surrounding double quotes, as
3659                          * that implies the termination that we are showing
3660                          * explicitly.
3661                          */
3662                         (void) fwrite(MSG_ORIG(MSG_STR_8SP),
3663                             MSG_STR_8SP_SIZE, 1, stdout);
3664                         conv_str_to_c_literal(pnstate.pn_name,
3665                             pnstate.pn_namesz, c_literal_cb, NULL);
3666                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3667                 }
3668 
3669                 if (pnstate.pn_descsz) {
3670                         int             hexdump = 1;
3671 
3672                         /*
3673                          * If this is a core note, let the corenote()
3674                          * function handle it.
3675                          */
3676                         if (is_corenote) {
3677                                 /* We only issue the bad arch error once */
3678                                 static int      badnote_done = 0;
3679                                 corenote_ret_t  corenote_ret;
3680 
3681                                 corenote_ret = corenote(ehdr->e_machine,
3682                                     do_swap, pnstate.pn_type, pnstate.pn_desc,
3683                                     pnstate.pn_descsz);
3684                                 switch (corenote_ret) {
3685                                 case CORENOTE_R_OK:
3686                                         hexdump = 0;
3687                                         break;
3688                                 case CORENOTE_R_BADDATA:
3689                                         (void) fprintf(stderr,
3690                                             MSG_INTL(MSG_NOTE_BADCOREDATA),
3691                                             file);
3692                                         break;
3693                                 case CORENOTE_R_BADARCH:
3694                                         if (badnote_done)
3695                                                 break;
3696                                         (void) fprintf(stderr,
3697                                             MSG_INTL(MSG_NOTE_BADCOREARCH),
3698                                             file,
3699                                             conv_ehdr_mach(ehdr->e_machine,
3700                                             0, &inv_buf));
3701                                         break;
3702                                 }
3703                         }
3704 
3705                         /*
3706                          * The default thing when we don't understand
3707                          * the note data is to display it as hex bytes.
3708                          */
3709                         if (hexdump) {
3710                                 dbg_print(0, MSG_ORIG(MSG_NOTE_DESC));
3711                                 dump_hex_bytes(pnstate.pn_desc,
3712                                     pnstate.pn_descsz, 8, 4, 4);
3713                         }
3714                 }
3715         }
3716 }
3717 
3718 /*
3719  * Search for and process .note sections.
3720  *
3721  * Returns the number of note sections seen.
3722  */
3723 static Word
3724 note(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
3725 {
3726         Word    cnt, note_cnt = 0;
3727 
3728         /*
3729          * Otherwise look for any .note sections.
3730          */
3731         for (cnt = 1; cnt < shnum; cnt++) {
3732                 Cache   *_cache = &cache[cnt];
3733                 Shdr    *shdr = _cache->c_shdr;
3734 
3735                 if (shdr->sh_type != SHT_NOTE)
3736                         continue;
3737                 note_cnt++;
3738                 if (!match(MATCH_F_ALL, _cache->c_name, cnt, shdr->sh_type))
3739                         continue;
3740 
3741                 /*
3742                  * As these sections are often hand rolled, make sure they're
3743                  * properly aligned before proceeding, and issue an error
3744                  * as necessary.
3745                  *
3746                  * Note that we will continue on to display the note even
3747                  * if it has bad alignment. We can do this safely, because
3748                  * libelf knows the alignment required for SHT_NOTE, and
3749                  * takes steps to deliver a properly aligned buffer to us
3750                  * even if the actual file is misaligned.
3751                  */
3752                 if (shdr->sh_offset & (sizeof (Word) - 1))
3753                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADALIGN),
3754                             file, _cache->c_name);
3755 
3756                 if (_cache->c_data == NULL)
3757                         continue;
3758 
3759                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3760                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_NOTE), _cache->c_name);
3761                 note_entry(_cache, (Word *)_cache->c_data->d_buf,
3762                 /* LINTED */
3763                     (Word)_cache->c_data->d_size, ehdr, file);
3764         }
3765 
3766         return (note_cnt);
3767 }
3768 
3769 /*
3770  * The Linux Standard Base defines a special note named .note.ABI-tag
3771  * that is used to maintain Linux ABI information. Presence of this section
3772  * is a strong indication that the object should be considered to be
3773  * ELFOSABI_LINUX.
3774  *
3775  * This function returns True (1) if such a note is seen, and False (0)
3776  * otherwise.
3777  */
3778 static int
3779 has_linux_abi_note(Cache *cache, Word shnum, const char *file)
3780 {
3781         Word    cnt;
3782 
3783         for (cnt = 1; cnt < shnum; cnt++) {
3784                 parse_note_t    pnstate;
3785                 Cache           *_cache = &cache[cnt];
3786                 Shdr            *shdr = _cache->c_shdr;
3787 
3788                 /*
3789                  * Section must be SHT_NOTE, must have the name
3790                  * .note.ABI-tag, and must have data.
3791                  */
3792                 if ((shdr->sh_type != SHT_NOTE) ||
3793                     (strcmp(MSG_ORIG(MSG_STR_NOTEABITAG),
3794                     _cache->c_name) != 0) || (_cache->c_data == NULL))
3795                         continue;
3796 
3797                 pnstate.pns_file = file;
3798                 pnstate.pns_cache = _cache;
3799                 pnstate.pns_size = _cache->c_data->d_size;
3800                 pnstate.pns_data = (Word *)_cache->c_data->d_buf;
3801 
3802                 while (pnstate.pns_size > 0) {
3803                         Word *w;
3804 
3805                         if (parse_note_entry(&pnstate) == 0)
3806                                 break;
3807 
3808                         /*
3809                          * The type must be 1, and the name must be "GNU".
3810                          * The descsz must be at least 16 bytes.
3811                          */
3812                         if ((pnstate.pn_type != 1) ||
3813                             (pnstate.pn_namesz != (MSG_STR_GNU_SIZE + 1)) ||
3814                             (strncmp(MSG_ORIG(MSG_STR_GNU), pnstate.pn_name,
3815                             MSG_STR_CORE_SIZE + 1) != 0) ||
3816                             (pnstate.pn_descsz < 16))
3817                                 continue;
3818 
3819                         /*
3820                          * desc contains 4 32-bit fields. Field 0 must be 0,
3821                          * indicating Linux. The second, third, and fourth
3822                          * fields represent the earliest Linux kernel
3823                          * version compatible with this object.
3824                          */
3825                         /*LINTED*/
3826                         w = (Word *) pnstate.pn_desc;
3827                         if (*w == 0)
3828                                 return (1);
3829                 }
3830         }
3831 
3832         return (0);
3833 }
3834 
3835 /*
3836  * Determine an individual hash entry.  This may be the initial hash entry,
3837  * or an associated chain entry.
3838  */
3839 static void
3840 hash_entry(Cache *refsec, Cache *strsec, const char *hsecname, Word hashndx,
3841     Word symndx, Word symn, Sym *syms, const char *file, ulong_t bkts,
3842     uint_t flags, int chain)
3843 {
3844         Sym             *sym;
3845         const char      *symname, *str;
3846         char            _bucket[MAXNDXSIZE], _symndx[MAXNDXSIZE];
3847         ulong_t         nbkt, nhash;
3848 
3849         if (symndx > symn) {
3850                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_HSBADSYMNDX), file,
3851                     EC_WORD(symndx), EC_WORD(hashndx));
3852                 symname = MSG_INTL(MSG_STR_UNKNOWN);
3853         } else {
3854                 sym = (Sym *)(syms + symndx);
3855                 symname = string(refsec, symndx, strsec, file, sym->st_name);
3856         }
3857 
3858         if (chain == 0) {
3859                 (void) snprintf(_bucket, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
3860                     hashndx);
3861                 str = (const char *)_bucket;
3862         } else
3863                 str = MSG_ORIG(MSG_STR_EMPTY);
3864 
3865         (void) snprintf(_symndx, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INDEX2),
3866             EC_WORD(symndx));
3867         dbg_print(0, MSG_ORIG(MSG_FMT_HASH_INFO), str, _symndx,
3868             demangle(symname, flags));
3869 
3870         /*
3871          * Determine if this string is in the correct bucket.
3872          */
3873         nhash = elf_hash(symname);
3874         nbkt = nhash % bkts;
3875 
3876         if (nbkt != hashndx) {
3877                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADHASH), file,
3878                     hsecname, symname, EC_WORD(hashndx), nbkt);
3879         }
3880 }
3881 
3882 #define MAXCOUNT        500
3883 
3884 static void
3885 hash(Cache *cache, Word shnum, const char *file, uint_t flags)
3886 {
3887         static int      count[MAXCOUNT];
3888         Word            cnt;
3889         ulong_t         ndx, bkts;
3890         char            number[MAXNDXSIZE];
3891 
3892         for (cnt = 1; cnt < shnum; cnt++) {
3893                 uint_t          *hash, *chain;
3894                 Cache           *_cache = &cache[cnt];
3895                 Shdr            *sshdr, *hshdr = _cache->c_shdr;
3896                 char            *ssecname, *hsecname = _cache->c_name;
3897                 Sym             *syms;
3898                 Word            symn;
3899 
3900                 if (hshdr->sh_type != SHT_HASH)
3901                         continue;
3902 
3903                 /*
3904                  * Determine the hash table data and size.
3905                  */
3906                 if ((hshdr->sh_entsize == 0) || (hshdr->sh_size == 0)) {
3907                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3908                             file, hsecname);
3909                         continue;
3910                 }
3911                 if (_cache->c_data == NULL)
3912                         continue;
3913 
3914                 hash = (uint_t *)_cache->c_data->d_buf;
3915                 bkts = *hash;
3916                 chain = hash + 2 + bkts;
3917                 hash += 2;
3918 
3919                 /*
3920                  * Get the data buffer for the associated symbol table.
3921                  */
3922                 if ((hshdr->sh_link == 0) || (hshdr->sh_link >= shnum)) {
3923                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3924                             file, hsecname, EC_WORD(hshdr->sh_link));
3925                         continue;
3926                 }
3927 
3928                 _cache = &cache[hshdr->sh_link];
3929                 ssecname = _cache->c_name;
3930 
3931                 if (_cache->c_data == NULL)
3932                         continue;
3933 
3934                 if ((syms = (Sym *)_cache->c_data->d_buf) == NULL) {
3935                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
3936                             file, ssecname);
3937                         continue;
3938                 }
3939 
3940                 sshdr = _cache->c_shdr;
3941                 /* LINTED */
3942                 symn = (Word)(sshdr->sh_size / sshdr->sh_entsize);
3943 
3944                 /*
3945                  * Get the associated string table section.
3946                  */
3947                 if ((sshdr->sh_link == 0) || (sshdr->sh_link >= shnum)) {
3948                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHLINK),
3949                             file, ssecname, EC_WORD(sshdr->sh_link));
3950                         continue;
3951                 }
3952 
3953                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
3954                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_HASH), hsecname);
3955                 dbg_print(0, MSG_INTL(MSG_ELF_HASH_INFO));
3956 
3957                 /*
3958                  * Loop through the hash buckets, printing the appropriate
3959                  * symbols.
3960                  */
3961                 for (ndx = 0; ndx < bkts; ndx++, hash++) {
3962                         Word    _ndx, _cnt;
3963 
3964                         if (*hash == 0) {
3965                                 count[0]++;
3966                                 continue;
3967                         }
3968 
3969                         hash_entry(_cache, &cache[sshdr->sh_link], hsecname,
3970                             ndx, *hash, symn, syms, file, bkts, flags, 0);
3971 
3972                         /*
3973                          * Determine if any other symbols are chained to this
3974                          * bucket.
3975                          */
3976                         _ndx = chain[*hash];
3977                         _cnt = 1;
3978                         while (_ndx) {
3979                                 hash_entry(_cache, &cache[sshdr->sh_link],
3980                                     hsecname, ndx, _ndx, symn, syms, file,
3981                                     bkts, flags, 1);
3982                                 _ndx = chain[_ndx];
3983                                 _cnt++;
3984                         }
3985 
3986                         if (_cnt >= MAXCOUNT) {
3987                                 (void) fprintf(stderr,
3988                                     MSG_INTL(MSG_HASH_OVERFLW), file,
3989                                     _cache->c_name, EC_WORD(ndx),
3990                                     EC_WORD(_cnt));
3991                         } else
3992                                 count[_cnt]++;
3993                 }
3994                 break;
3995         }
3996 
3997         /*
3998          * Print out the count information.
3999          */
4000         bkts = cnt = 0;
4001         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4002 
4003         for (ndx = 0; ndx < MAXCOUNT; ndx++) {
4004                 Word    _cnt;
4005 
4006                 if ((_cnt = count[ndx]) == 0)
4007                         continue;
4008 
4009                 (void) snprintf(number, MAXNDXSIZE,
4010                     MSG_ORIG(MSG_FMT_INTEGER), _cnt);
4011                 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS1), number,
4012                     EC_WORD(ndx));
4013                 bkts += _cnt;
4014                 cnt += (Word)(ndx * _cnt);
4015         }
4016         if (cnt) {
4017                 (void) snprintf(number, MAXNDXSIZE, MSG_ORIG(MSG_FMT_INTEGER),
4018                     bkts);
4019                 dbg_print(0, MSG_INTL(MSG_ELF_HASH_BKTS2), number,
4020                     EC_WORD(cnt));
4021         }
4022 }
4023 
4024 static void
4025 group(Cache *cache, Word shnum, const char *file, uint_t flags)
4026 {
4027         Word    scnt;
4028 
4029         for (scnt = 1; scnt < shnum; scnt++) {
4030                 Cache           *_cache = &cache[scnt];
4031                 Shdr            *shdr = _cache->c_shdr;
4032                 Word            *grpdata, gcnt, grpcnt, symnum, unknown;
4033                 Cache           *symsec, *strsec;
4034                 Sym             *syms, *sym;
4035                 char            flgstrbuf[MSG_GRP_COMDAT_SIZE + 10];
4036                 const char      *grpnam;
4037 
4038                 if (shdr->sh_type != SHT_GROUP)
4039                         continue;
4040                 if (!match(MATCH_F_ALL, _cache->c_name, scnt, shdr->sh_type))
4041                         continue;
4042                 if ((_cache->c_data == NULL) ||
4043                     ((grpdata = (Word *)_cache->c_data->d_buf) == NULL))
4044                         continue;
4045                 grpcnt = shdr->sh_size / sizeof (Word);
4046 
4047                 /*
4048                  * Get the data buffer for the associated symbol table and
4049                  * string table.
4050                  */
4051                 if (stringtbl(cache, 1, scnt, shnum, file,
4052                     &symnum, &symsec, &strsec) == 0)
4053                         return;
4054 
4055                 syms = symsec->c_data->d_buf;
4056 
4057                 dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4058                 dbg_print(0, MSG_INTL(MSG_ELF_SCN_GRP), _cache->c_name);
4059                 dbg_print(0, MSG_INTL(MSG_GRP_TITLE));
4060 
4061                 /*
4062                  * The first element of the group defines the group.  The
4063                  * associated symbol is defined by the sh_link field.
4064                  */
4065                 if ((shdr->sh_info == SHN_UNDEF) || (shdr->sh_info > symnum)) {
4066                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHINFO),
4067                             file, _cache->c_name, EC_WORD(shdr->sh_info));
4068                         return;
4069                 }
4070 
4071                 (void) strcpy(flgstrbuf, MSG_ORIG(MSG_STR_OSQBRKT));
4072                 if (grpdata[0] & GRP_COMDAT) {
4073                         (void) strcat(flgstrbuf, MSG_ORIG(MSG_GRP_COMDAT));
4074                 }
4075                 if ((unknown = (grpdata[0] & ~GRP_COMDAT)) != 0) {
4076                         size_t  len = strlen(flgstrbuf);
4077 
4078                         (void) snprintf(&flgstrbuf[len],
4079                             (MSG_GRP_COMDAT_SIZE + 10 - len),
4080                             MSG_ORIG(MSG_GRP_UNKNOWN), unknown);
4081                 }
4082                 (void) strcat(flgstrbuf, MSG_ORIG(MSG_STR_CSQBRKT));
4083                 sym = (Sym *)(syms + shdr->sh_info);
4084 
4085                 /*
4086                  * The GNU assembler can use section symbols as the signature
4087                  * symbol as described by this comment in the gold linker
4088                  * (found via google):
4089                  *
4090                  *      It seems that some versions of gas will create a
4091                  *      section group associated with a section symbol, and
4092                  *      then fail to give a name to the section symbol.  In
4093                  *      such a case, use the name of the section.
4094                  *
4095                  * In order to support such objects, we do the same.
4096                  */
4097                 grpnam = string(_cache, 0, strsec, file, sym->st_name);
4098                 if (((sym->st_name == 0) || (*grpnam == '\0')) &&
4099                     (ELF_ST_TYPE(sym->st_info) == STT_SECTION))
4100                         grpnam = cache[sym->st_shndx].c_name;
4101 
4102                 dbg_print(0, MSG_INTL(MSG_GRP_SIGNATURE), flgstrbuf,
4103                     demangle(grpnam, flags));
4104 
4105                 for (gcnt = 1; gcnt < grpcnt; gcnt++) {
4106                         char            index[MAXNDXSIZE];
4107                         const char      *name;
4108 
4109                         (void) snprintf(index, MAXNDXSIZE,
4110                             MSG_ORIG(MSG_FMT_INDEX), EC_XWORD(gcnt));
4111 
4112                         if (grpdata[gcnt] >= shnum)
4113                                 name = MSG_INTL(MSG_GRP_INVALSCN);
4114                         else
4115                                 name = cache[grpdata[gcnt]].c_name;
4116 
4117                         (void) printf(MSG_ORIG(MSG_GRP_ENTRY), index, name,
4118                             EC_XWORD(grpdata[gcnt]));
4119                 }
4120         }
4121 }
4122 
4123 static void
4124 got(Cache *cache, Word shnum, Ehdr *ehdr, const char *file)
4125 {
4126         Cache           *gotcache = NULL, *symtab = NULL;
4127         Addr            gotbgn, gotend;
4128         Shdr            *gotshdr;
4129         Word            cnt, gotents, gotndx;
4130         size_t          gentsize;
4131         Got_info        *gottable;
4132         char            *gotdata;
4133         Sym             *gotsym;
4134         Xword           gotsymaddr;
4135         uint_t          sys_encoding;
4136 
4137         /*
4138          * First, find the got.
4139          */
4140         for (cnt = 1; cnt < shnum; cnt++) {
4141                 if (strncmp(cache[cnt].c_name, MSG_ORIG(MSG_ELF_GOT),
4142                     MSG_ELF_GOT_SIZE) == 0) {
4143                         gotcache = &cache[cnt];
4144                         break;
4145                 }
4146         }
4147         if (gotcache == NULL)
4148                 return;
4149 
4150         /*
4151          * A got section within a relocatable object is suspicious.
4152          */
4153         if (ehdr->e_type == ET_REL) {
4154                 (void) fprintf(stderr, MSG_INTL(MSG_GOT_UNEXPECTED), file,
4155                     gotcache->c_name);
4156         }
4157 
4158         gotshdr = gotcache->c_shdr;
4159         if (gotshdr->sh_size == 0) {
4160                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4161                     file, gotcache->c_name);
4162                 return;
4163         }
4164 
4165         gotbgn = gotshdr->sh_addr;
4166         gotend = gotbgn + gotshdr->sh_size;
4167 
4168         /*
4169          * Some architectures don't properly set the sh_entsize for the GOT
4170          * table.  If it's not set, default to a size of a pointer.
4171          */
4172         if ((gentsize = gotshdr->sh_entsize) == 0)
4173                 gentsize = sizeof (Xword);
4174 
4175         if (gotcache->c_data == NULL)
4176                 return;
4177 
4178         /* LINTED */
4179         gotents = (Word)(gotshdr->sh_size / gentsize);
4180         gotdata = gotcache->c_data->d_buf;
4181 
4182         if ((gottable = calloc(gotents, sizeof (Got_info))) == 0) {
4183                 int err = errno;
4184                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC), file,
4185                     strerror(err));
4186                 return;
4187         }
4188 
4189         /*
4190          * Now we scan through all the sections looking for any relocations
4191          * that may be against the GOT.  Since these may not be isolated to a
4192          * .rel[a].got section we check them all.
4193          * While scanning sections save the symbol table entry (a symtab
4194          * overriding a dynsym) so that we can lookup _GLOBAL_OFFSET_TABLE_.
4195          */
4196         for (cnt = 1; cnt < shnum; cnt++) {
4197                 Word            type, symnum;
4198                 Xword           relndx, relnum, relsize;
4199                 void            *rels;
4200                 Sym             *syms;
4201                 Cache           *symsec, *strsec;
4202                 Cache           *_cache = &cache[cnt];
4203                 Shdr            *shdr;
4204 
4205                 shdr = _cache->c_shdr;
4206                 type = shdr->sh_type;
4207 
4208                 if ((symtab == 0) && (type == SHT_DYNSYM)) {
4209                         symtab = _cache;
4210                         continue;
4211                 }
4212                 if (type == SHT_SYMTAB) {
4213                         symtab = _cache;
4214                         continue;
4215                 }
4216                 if ((type != SHT_RELA) && (type != SHT_REL))
4217                         continue;
4218 
4219                 /*
4220                  * Decide entry size.
4221                  */
4222                 if (((relsize = shdr->sh_entsize) == 0) ||
4223                     (relsize > shdr->sh_size)) {
4224                         if (type == SHT_RELA)
4225                                 relsize = sizeof (Rela);
4226                         else
4227                                 relsize = sizeof (Rel);
4228                 }
4229 
4230                 /*
4231                  * Determine the number of relocations available.
4232                  */
4233                 if (shdr->sh_size == 0) {
4234                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSZ),
4235                             file, _cache->c_name);
4236                         continue;
4237                 }
4238                 if (_cache->c_data == NULL)
4239                         continue;
4240 
4241                 rels = _cache->c_data->d_buf;
4242                 relnum = shdr->sh_size / relsize;
4243 
4244                 /*
4245                  * Get the data buffer for the associated symbol table and
4246                  * string table.
4247                  */
4248                 if (stringtbl(cache, 1, cnt, shnum, file,
4249                     &symnum, &symsec, &strsec) == 0)
4250                         continue;
4251 
4252                 syms = symsec->c_data->d_buf;
4253 
4254                 /*
4255                  * Loop through the relocation entries.
4256                  */
4257                 for (relndx = 0; relndx < relnum; relndx++,
4258                     rels = (void *)((char *)rels + relsize)) {
4259                         char            section[BUFSIZ];
4260                         Addr            offset;
4261                         Got_info        *gip;
4262                         Word            symndx, reltype;
4263                         Rela            *rela;
4264                         Rel             *rel;
4265 
4266                         /*
4267                          * Unravel the relocation.
4268                          */
4269                         if (type == SHT_RELA) {
4270                                 rela = (Rela *)rels;
4271                                 symndx = ELF_R_SYM(rela->r_info);
4272                                 reltype = ELF_R_TYPE(rela->r_info,
4273                                     ehdr->e_machine);
4274                                 offset = rela->r_offset;
4275                         } else {
4276                                 rel = (Rel *)rels;
4277                                 symndx = ELF_R_SYM(rel->r_info);
4278                                 reltype = ELF_R_TYPE(rel->r_info,
4279                                     ehdr->e_machine);
4280                                 offset = rel->r_offset;
4281                         }
4282 
4283                         /*
4284                          * Only pay attention to relocations against the GOT.
4285                          */
4286                         if ((offset < gotbgn) || (offset >= gotend))
4287                                 continue;
4288 
4289                         /* LINTED */
4290                         gotndx = (Word)((offset - gotbgn) /
4291                             gotshdr->sh_entsize);
4292                         gip = &gottable[gotndx];
4293 
4294                         if (gip->g_reltype != 0) {
4295                                 (void) fprintf(stderr,
4296                                     MSG_INTL(MSG_GOT_MULTIPLE), file,
4297                                     EC_WORD(gotndx), EC_ADDR(offset));
4298                                 continue;
4299                         }
4300 
4301                         if (symndx)
4302                                 gip->g_symname = relsymname(cache, _cache,
4303                                     strsec, symndx, symnum, relndx, syms,
4304                                     section, BUFSIZ, file);
4305                         gip->g_reltype = reltype;
4306                         gip->g_rel = rels;
4307                 }
4308         }
4309 
4310         if (symlookup(MSG_ORIG(MSG_SYM_GOT), cache, shnum, &gotsym, NULL,
4311             symtab, file))
4312                 gotsymaddr = gotsym->st_value;
4313         else
4314                 gotsymaddr = gotbgn;
4315 
4316         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4317         dbg_print(0, MSG_INTL(MSG_ELF_SCN_GOT), gotcache->c_name);
4318         Elf_got_title(0);
4319 
4320         sys_encoding = _elf_sys_encoding();
4321         for (gotndx = 0; gotndx < gotents; gotndx++) {
4322                 Got_info        *gip;
4323                 Sword           gindex;
4324                 Addr            gaddr;
4325                 Xword           gotentry;
4326 
4327                 gip = &gottable[gotndx];
4328 
4329                 gaddr = gotbgn + (gotndx * gentsize);
4330                 gindex = (Sword)(gaddr - gotsymaddr) / (Sword)gentsize;
4331 
4332                 if (gentsize == sizeof (Word))
4333                         /* LINTED */
4334                         gotentry = (Xword)(*((Word *)(gotdata) + gotndx));
4335                 else
4336                         /* LINTED */
4337                         gotentry = *((Xword *)(gotdata) + gotndx);
4338 
4339                 Elf_got_entry(0, gindex, gaddr, gotentry, ehdr->e_machine,
4340                     ehdr->e_ident[EI_DATA], sys_encoding,
4341                     gip->g_reltype, gip->g_rel, gip->g_symname);
4342         }
4343         free(gottable);
4344 }
4345 
4346 void
4347 checksum(Elf *elf)
4348 {
4349         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4350         dbg_print(0, MSG_INTL(MSG_STR_CHECKSUM), elf_checksum(elf));
4351 }
4352 
4353 /*
4354  * This variable is used by regular() to communicate the address of
4355  * the section header cache to sort_shdr_ndx_arr(). Unfortunately,
4356  * the qsort() interface does not include a userdata argument by which
4357  * such arbitrary data can be passed, so we are stuck using global data.
4358  */
4359 static Cache *sort_shdr_ndx_arr_cache;
4360 
4361 
4362 /*
4363  * Used with qsort() to sort the section indices so that they can be
4364  * used to access the section headers in order of increasing data offset.
4365  *
4366  * entry:
4367  *      sort_shdr_ndx_arr_cache - Contains address of
4368  *              section header cache.
4369  *      v1, v2 - Point at elements of sort_shdr_bits array to be compared.
4370  *
4371  * exit:
4372  *      Returns -1 (less than), 0 (equal) or 1 (greater than).
4373  */
4374 static int
4375 sort_shdr_ndx_arr(const void *v1, const void *v2)
4376 {
4377         Cache   *cache1 = sort_shdr_ndx_arr_cache + *((size_t *)v1);
4378         Cache   *cache2 = sort_shdr_ndx_arr_cache + *((size_t *)v2);
4379 
4380         if (cache1->c_shdr->sh_offset < cache2->c_shdr->sh_offset)
4381                 return (-1);
4382 
4383         if (cache1->c_shdr->sh_offset > cache2->c_shdr->sh_offset)
4384                 return (1);
4385 
4386         return (0);
4387 }
4388 
4389 
4390 static int
4391 shdr_cache(const char *file, Elf *elf, Ehdr *ehdr, size_t shstrndx,
4392     size_t shnum, Cache **cache_ret, Word flags)
4393 {
4394         Elf_Scn         *scn;
4395         Elf_Data        *data;
4396         size_t          ndx;
4397         Shdr            *nameshdr;
4398         char            *names = NULL;
4399         Cache           *cache, *_cache;
4400         size_t          *shdr_ndx_arr, shdr_ndx_arr_cnt;
4401 
4402 
4403         /*
4404          * Obtain the .shstrtab data buffer to provide the required section
4405          * name strings.
4406          */
4407         if (shstrndx == SHN_UNDEF) {
4408                 /*
4409                  * It is rare, but legal, for an object to lack a
4410                  * header string table section.
4411                  */
4412                 names = NULL;
4413                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHSTRSEC), file);
4414         } else if ((scn = elf_getscn(elf, shstrndx)) == NULL) {
4415                 failure(file, MSG_ORIG(MSG_ELF_GETSCN));
4416                 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SHDR),
4417                     EC_XWORD(shstrndx));
4418 
4419         } else if ((data = elf_getdata(scn, NULL)) == NULL) {
4420                 failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4421                 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_DATA),
4422                     EC_XWORD(shstrndx));
4423 
4424         } else if ((nameshdr = elf_getshdr(scn)) == NULL) {
4425                 failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4426                 (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4427                     EC_WORD(elf_ndxscn(scn)));
4428 
4429         } else if ((names = data->d_buf) == NULL)
4430                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_SHSTRNULL), file);
4431 
4432         /*
4433          * Allocate a cache to maintain a descriptor for each section.
4434          */
4435         if ((*cache_ret = cache = malloc(shnum * sizeof (Cache))) == NULL) {
4436                 int err = errno;
4437                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4438                     file, strerror(err));
4439                 return (0);
4440         }
4441 
4442         *cache = cache_init;
4443         _cache = cache;
4444         _cache++;
4445 
4446         /*
4447          * Allocate an array that will hold the section index for
4448          * each section that has data in the ELF file:
4449          *
4450          *      - Is not a NOBITS section
4451          *      - Data has non-zero length
4452          *
4453          * Note that shnum is an upper bound on the size required. It
4454          * is likely that we won't use a few of these array elements.
4455          * Allocating a modest amount of extra memory in this case means
4456          * that we can avoid an extra loop to count the number of needed
4457          * items, and can fill this array immediately in the first loop
4458          * below.
4459          */
4460         if ((shdr_ndx_arr = malloc(shnum * sizeof (*shdr_ndx_arr))) == NULL) {
4461                 int err = errno;
4462                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4463                     file, strerror(err));
4464                 return (0);
4465         }
4466         shdr_ndx_arr_cnt = 0;
4467 
4468         /*
4469          * Traverse the sections of the file.  This gathering of data is
4470          * carried out in two passes.  First, the section headers are captured
4471          * and the section header names are evaluated.  A verification pass is
4472          * then carried out over the section information.  Files have been
4473          * known to exhibit overlapping (and hence erroneous) section header
4474          * information.
4475          *
4476          * Finally, the data for each section is obtained.  This processing is
4477          * carried out after section verification because should any section
4478          * header overlap occur, and a file needs translating (ie. xlate'ing
4479          * information from a non-native architecture file), then the process
4480          * of translation can corrupt the section header information.  Of
4481          * course, if there is any section overlap, the data related to the
4482          * sections is going to be compromised.  However, it is the translation
4483          * of this data that has caused problems with elfdump()'s ability to
4484          * extract the data.
4485          */
4486         for (ndx = 1, scn = NULL; scn = elf_nextscn(elf, scn);
4487             ndx++, _cache++) {
4488                 char    scnndxnm[100];
4489 
4490                 _cache->c_ndx = ndx;
4491                 _cache->c_scn = scn;
4492 
4493                 if ((_cache->c_shdr = elf_getshdr(scn)) == NULL) {
4494                         failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4495                         (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN),
4496                             EC_WORD(elf_ndxscn(scn)));
4497                 }
4498 
4499                 /*
4500                  * If this section has data in the file, include it in
4501                  * the array of sections to check for address overlap.
4502                  */
4503                 if ((_cache->c_shdr->sh_size != 0) &&
4504                     (_cache->c_shdr->sh_type != SHT_NOBITS))
4505                         shdr_ndx_arr[shdr_ndx_arr_cnt++] = ndx;
4506 
4507                 /*
4508                  * If a shstrtab exists, assign the section name.
4509                  */
4510                 if (names && _cache->c_shdr) {
4511                         if (_cache->c_shdr->sh_name &&
4512                             /* LINTED */
4513                             (nameshdr->sh_size > _cache->c_shdr->sh_name)) {
4514                                 const char      *symname;
4515                                 char            *secname;
4516 
4517                                 secname = names + _cache->c_shdr->sh_name;
4518 
4519                                 /*
4520                                  * A SUN naming convention employs a "%" within
4521                                  * a section name to indicate a section/symbol
4522                                  * name.  This originated from the compilers
4523                                  * -xF option, that places functions into their
4524                                  * own sections.  This convention (which has no
4525                                  * formal standard) has also been followed for
4526                                  * COMDAT sections.  To demangle the symbol
4527                                  * name, the name must be separated from the
4528                                  * section name.
4529                                  */
4530                                 if (((flags & FLG_CTL_DEMANGLE) == 0) ||
4531                                     ((symname = strchr(secname, '%')) == NULL))
4532                                         _cache->c_name = secname;
4533                                 else {
4534                                         size_t  secsz = ++symname - secname;
4535                                         size_t  strsz;
4536 
4537                                         symname = demangle(symname, flags);
4538                                         strsz = secsz + strlen(symname) + 1;
4539 
4540                                         if ((_cache->c_name =
4541                                             malloc(strsz)) == NULL) {
4542                                                 int err = errno;
4543                                                 (void) fprintf(stderr,
4544                                                     MSG_INTL(MSG_ERR_MALLOC),
4545                                                     file, strerror(err));
4546                                                 return (0);
4547                                         }
4548                                         (void) snprintf(_cache->c_name, strsz,
4549                                             MSG_ORIG(MSG_FMT_SECSYM),
4550                                             EC_WORD(secsz), secname, symname);
4551                                 }
4552 
4553                                 continue;
4554                         }
4555 
4556                         /*
4557                          * Generate an error if the section name index is zero
4558                          * or exceeds the shstrtab data.  Fall through to
4559                          * fabricate a section name.
4560                          */
4561                         if ((_cache->c_shdr->sh_name == 0) ||
4562                             /* LINTED */
4563                             (nameshdr->sh_size <= _cache->c_shdr->sh_name)) {
4564                                 (void) fprintf(stderr,
4565                                     MSG_INTL(MSG_ERR_BADSHNAME), file,
4566                                     EC_WORD(ndx),
4567                                     EC_XWORD(_cache->c_shdr->sh_name));
4568                         }
4569                 }
4570 
4571                 /*
4572                  * If there exists no shstrtab data, or a section header has no
4573                  * name (an invalid index of 0), then compose a name for the
4574                  * section.
4575                  */
4576                 (void) snprintf(scnndxnm, sizeof (scnndxnm),
4577                     MSG_INTL(MSG_FMT_SCNNDX), ndx);
4578 
4579                 if ((_cache->c_name = malloc(strlen(scnndxnm) + 1)) == NULL) {
4580                         int err = errno;
4581                         (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALLOC),
4582                             file, strerror(err));
4583                         return (0);
4584                 }
4585                 (void) strcpy(_cache->c_name, scnndxnm);
4586         }
4587 
4588         /*
4589          * Having collected all the sections, validate their address range.
4590          * Cases have existed where the section information has been invalid.
4591          * This can lead to all sorts of other, hard to diagnose errors, as
4592          * each section is processed individually (ie. with elf_getdata()).
4593          * Here, we carry out some address comparisons to catch a family of
4594          * overlapping memory issues we have observed (likely, there are others
4595          * that we have yet to discover).
4596          *
4597          * Note, should any memory overlap occur, obtaining any additional
4598          * data from the file is questionable.  However, it might still be
4599          * possible to inspect the ELF header, Programs headers, or individual
4600          * sections, so rather than bailing on an error condition, continue
4601          * processing to see if any data can be salvaged.
4602          */
4603         if (shdr_ndx_arr_cnt > 1) {
4604                 sort_shdr_ndx_arr_cache = cache;
4605                 qsort(shdr_ndx_arr, shdr_ndx_arr_cnt,
4606                     sizeof (*shdr_ndx_arr), sort_shdr_ndx_arr);
4607         }
4608         for (ndx = 0; ndx < shdr_ndx_arr_cnt; ndx++) {
4609                 Cache   *_cache = cache + shdr_ndx_arr[ndx];
4610                 Shdr    *shdr = _cache->c_shdr;
4611                 Off     bgn1, bgn = shdr->sh_offset;
4612                 Off     end1, end = shdr->sh_offset + shdr->sh_size;
4613                 size_t  ndx1;
4614 
4615                 /*
4616                  * Check the section against all following ones, reporting
4617                  * any overlaps. Since we've sorted the sections by offset,
4618                  * we can stop after the first comparison that fails. There
4619                  * are no overlaps in a properly formed ELF file, in which
4620                  * case this algorithm runs in O(n) time. This will degenerate
4621                  * to O(n^2) for a completely broken file. Such a file is
4622                  * (1) highly unlikely, and (2) unusable, so it is reasonable
4623                  * for the analysis to take longer.
4624                  */
4625                 for (ndx1 = ndx + 1; ndx1 < shdr_ndx_arr_cnt; ndx1++) {
4626                         Cache   *_cache1 = cache + shdr_ndx_arr[ndx1];
4627                         Shdr    *shdr1 = _cache1->c_shdr;
4628 
4629                         bgn1 = shdr1->sh_offset;
4630                         end1 = shdr1->sh_offset + shdr1->sh_size;
4631 
4632                         if (((bgn1 <= bgn) && (end1 > bgn)) ||
4633                             ((bgn1 < end) && (end1 >= end))) {
4634                                 (void) fprintf(stderr,
4635                                     MSG_INTL(MSG_ERR_SECMEMOVER), file,
4636                                     EC_WORD(elf_ndxscn(_cache->c_scn)),
4637                                     _cache->c_name, EC_OFF(bgn), EC_OFF(end),
4638                                     EC_WORD(elf_ndxscn(_cache1->c_scn)),
4639                                     _cache1->c_name, EC_OFF(bgn1),
4640                                     EC_OFF(end1));
4641                         } else {        /* No overlap, so can stop */
4642                                 break;
4643                         }
4644                 }
4645 
4646                 /*
4647                  * In addition to checking for sections overlapping
4648                  * each other (done above), we should also make sure
4649                  * the section doesn't overlap the section header array.
4650                  */
4651                 bgn1 = ehdr->e_shoff;
4652                 end1 = ehdr->e_shoff + (ehdr->e_shentsize * ehdr->e_shnum);
4653 
4654                 if (((bgn1 <= bgn) && (end1 > bgn)) ||
4655                     ((bgn1 < end) && (end1 >= end))) {
4656                         (void) fprintf(stderr,
4657                             MSG_INTL(MSG_ERR_SHDRMEMOVER), file, EC_OFF(bgn1),
4658                             EC_OFF(end1),
4659                             EC_WORD(elf_ndxscn(_cache->c_scn)),
4660                             _cache->c_name, EC_OFF(bgn), EC_OFF(end));
4661                 }
4662         }
4663 
4664         /*
4665          * Obtain the data for each section.
4666          */
4667         for (ndx = 1; ndx < shnum; ndx++) {
4668                 Cache   *_cache = &cache[ndx];
4669                 Elf_Scn *scn = _cache->c_scn;
4670 
4671                 if ((_cache->c_data = elf_getdata(scn, NULL)) == NULL) {
4672                         failure(file, MSG_ORIG(MSG_ELF_GETDATA));
4673                         (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCNDATA),
4674                             EC_WORD(elf_ndxscn(scn)));
4675                 }
4676 
4677                 /*
4678                  * If a string table, verify that it has NULL first and
4679                  * final bytes.
4680                  */
4681                 if ((_cache->c_shdr->sh_type == SHT_STRTAB) &&
4682                     (_cache->c_data->d_buf != NULL) &&
4683                     (_cache->c_data->d_size > 0)) {
4684                         const char *s = _cache->c_data->d_buf;
4685 
4686                         if ((*s != '\0') ||
4687                             (*(s + _cache->c_data->d_size - 1) != '\0'))
4688                                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_MALSTR),
4689                                     file, _cache->c_name);
4690                 }
4691         }
4692 
4693         return (1);
4694 }
4695 
4696 
4697 
4698 /*
4699  * Generate a cache of section headers and related information
4700  * for use by the rest of elfdump. If requested (or the file
4701  * contains no section headers), we generate a fake set of
4702  * headers from the information accessible from the program headers.
4703  * Otherwise, we use the real section headers contained in the file.
4704  */
4705 static int
4706 create_cache(const char *file, int fd, Elf *elf, Ehdr *ehdr, Cache **cache,
4707     size_t shstrndx, size_t *shnum, uint_t *flags)
4708 {
4709         /*
4710          * If there are no section headers, then resort to synthesizing
4711          * section headers from the program headers. This is normally
4712          * only done by explicit request, but in this case there's no
4713          * reason not to go ahead, since the alternative is simply to quit.
4714          */
4715         if ((*shnum <= 1) && ((*flags & FLG_CTL_FAKESHDR) == 0)) {
4716                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_NOSHDR), file);
4717                 *flags |= FLG_CTL_FAKESHDR;
4718         }
4719 
4720         if (*flags & FLG_CTL_FAKESHDR) {
4721                 if (fake_shdr_cache(file, fd, elf, ehdr, cache, shnum) == 0)
4722                         return (0);
4723         } else {
4724                 if (shdr_cache(file, elf, ehdr, shstrndx, *shnum,
4725                     cache, *flags) == 0)
4726                         return (0);
4727         }
4728 
4729         return (1);
4730 }
4731 
4732 int
4733 regular(const char *file, int fd, Elf *elf, uint_t flags,
4734     const char *wname, int wfd, uchar_t osabi)
4735 {
4736         enum { CACHE_NEEDED, CACHE_OK, CACHE_FAIL} cache_state = CACHE_NEEDED;
4737         Elf_Scn         *scn;
4738         Ehdr            *ehdr;
4739         size_t          ndx, shstrndx, shnum, phnum;
4740         Shdr            *shdr;
4741         Cache           *cache;
4742         VERSYM_STATE    versym;
4743         int             ret = 0;
4744         int             addr_align;
4745 
4746         if ((ehdr = elf_getehdr(elf)) == NULL) {
4747                 failure(file, MSG_ORIG(MSG_ELF_GETEHDR));
4748                 return (ret);
4749         }
4750 
4751         if (elf_getshdrnum(elf, &shnum) == -1) {
4752                 failure(file, MSG_ORIG(MSG_ELF_GETSHDRNUM));
4753                 return (ret);
4754         }
4755 
4756         if (elf_getshdrstrndx(elf, &shstrndx) == -1) {
4757                 failure(file, MSG_ORIG(MSG_ELF_GETSHDRSTRNDX));
4758                 return (ret);
4759         }
4760 
4761         if (elf_getphdrnum(elf, &phnum) == -1) {
4762                 failure(file, MSG_ORIG(MSG_ELF_GETPHDRNUM));
4763                 return (ret);
4764         }
4765         /*
4766          * If the user requested section headers derived from the
4767          * program headers (-P option) and this file doesn't have
4768          * any program headers (i.e. ET_REL), then we can't do it.
4769          */
4770         if ((phnum == 0) && (flags & FLG_CTL_FAKESHDR)) {
4771                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_PNEEDSPH), file);
4772                 return (ret);
4773         }
4774 
4775 
4776         if ((scn = elf_getscn(elf, 0)) != NULL) {
4777                 if ((shdr = elf_getshdr(scn)) == NULL) {
4778                         failure(file, MSG_ORIG(MSG_ELF_GETSHDR));
4779                         (void) fprintf(stderr, MSG_INTL(MSG_ELF_ERR_SCN), 0);
4780                         return (ret);
4781                 }
4782         } else
4783                 shdr = NULL;
4784 
4785         /*
4786          * Print the elf header.
4787          */
4788         if (flags & FLG_SHOW_EHDR)
4789                 Elf_ehdr(0, ehdr, shdr);
4790 
4791         /*
4792          * If the section headers or program headers have inadequate
4793          * alignment for the class of object, print a warning. libelf
4794          * can handle such files, but programs that use them can crash
4795          * when they dereference unaligned items.
4796          *
4797          * Note that the AMD64 ABI, although it is a 64-bit architecture,
4798          * allows access to data types smaller than 128-bits to be on
4799          * word alignment.
4800          */
4801         if (ehdr->e_machine == EM_AMD64)
4802                 addr_align = sizeof (Word);
4803         else
4804                 addr_align = sizeof (Addr);
4805 
4806         if (ehdr->e_phoff & (addr_align - 1))
4807                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADPHDRALIGN), file);
4808         if (ehdr->e_shoff & (addr_align - 1))
4809                 (void) fprintf(stderr, MSG_INTL(MSG_ERR_BADSHDRALIGN), file);
4810 
4811 
4812         /*
4813          * Determine the Operating System ABI (osabi) we will use to
4814          * interpret the object.
4815          */
4816         if (flags & FLG_CTL_OSABI) {
4817                 /*
4818                  * If the user explicitly specifies '-O none', we need
4819                  * to display a completely generic view of the file.
4820                  * However, libconv is written to assume that ELFOSABI_NONE
4821                  * is equivalent to ELFOSABI_SOLARIS. To get the desired
4822                  * effect, we use an osabi that libconv has no knowledge of.
4823                  */
4824                 if (osabi == ELFOSABI_NONE)
4825                         osabi = ELFOSABI_UNKNOWN4;
4826         } else {
4827                 /* Determine osabi from file */
4828                 osabi = ehdr->e_ident[EI_OSABI];
4829                 if (osabi == ELFOSABI_NONE) {
4830                         /*
4831                          * Chicken/Egg scenario:
4832                          *
4833                          * Ideally, we wait to create the section header cache
4834                          * until after the program headers are printed. If we
4835                          * only output program headers, we can skip building
4836                          * the cache entirely.
4837                          *
4838                          * Proper interpretation of program headers requires
4839                          * the osabi, which is supposed to be in the ELF header.
4840                          * However, many systems (Solaris and Linux included)
4841                          * have a history of setting the osabi to the generic
4842                          * SysV ABI (ELFOSABI_NONE). We assume ELFOSABI_SOLARIS
4843                          * in such cases, but would like to check the object
4844                          * to see if it has a Linux .note.ABI-tag section,
4845                          * which implies ELFOSABI_LINUX. This requires a
4846                          * section header cache.
4847                          *
4848                          * To break the cycle, we create section headers now
4849                          * if osabi is ELFOSABI_NONE, and later otherwise.
4850                          * If it succeeds, we use them, if not, we defer
4851                          * exiting until after the program headers are out.
4852                          */
4853                         if (create_cache(file, fd, elf, ehdr, &cache,
4854                             shstrndx, &shnum, &flags) == 0) {
4855                                 cache_state = CACHE_FAIL;
4856                         } else {
4857                                 cache_state = CACHE_OK;
4858                                 if (has_linux_abi_note(cache, shnum, file)) {
4859                                         Conv_inv_buf_t  ibuf1, ibuf2;
4860 
4861                                         (void) fprintf(stderr,
4862                                             MSG_INTL(MSG_INFO_LINUXOSABI), file,
4863                                             conv_ehdr_osabi(osabi, 0, &ibuf1),
4864                                             conv_ehdr_osabi(ELFOSABI_LINUX,
4865                                             0, &ibuf2));
4866                                         osabi = ELFOSABI_LINUX;
4867                                 }
4868                         }
4869                 }
4870                 /*
4871                  * We treat ELFOSABI_NONE identically to ELFOSABI_SOLARIS.
4872                  * Mapping NONE to SOLARIS simplifies the required test.
4873                  */
4874                 if (osabi == ELFOSABI_NONE)
4875                         osabi = ELFOSABI_SOLARIS;
4876         }
4877 
4878         /*
4879          * Print the program headers.
4880          */
4881         if ((flags & FLG_SHOW_PHDR) && (phnum != 0)) {
4882                 Phdr    *phdr;
4883 
4884                 if ((phdr = elf_getphdr(elf)) == NULL) {
4885                         failure(file, MSG_ORIG(MSG_ELF_GETPHDR));
4886                         return (ret);
4887                 }
4888 
4889                 for (ndx = 0; ndx < phnum; phdr++, ndx++) {
4890                         if (!match(MATCH_F_PHDR| MATCH_F_NDX | MATCH_F_TYPE,
4891                             NULL, ndx, phdr->p_type))
4892                                 continue;
4893 
4894                         dbg_print(0, MSG_ORIG(MSG_STR_EMPTY));
4895                         dbg_print(0, MSG_INTL(MSG_ELF_PHDR), EC_WORD(ndx));
4896                         Elf_phdr(0, osabi, ehdr->e_machine, phdr);
4897                 }
4898         }
4899 
4900         /*
4901          * If we have flag bits set that explicitly require a show or calc
4902          * operation, but none of them require the section headers, then
4903          * we are done and can return now.
4904          */
4905         if (((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) != 0) &&
4906             ((flags & (FLG_MASK_SHOW_SHDR | FLG_MASK_CALC_SHDR)) == 0))
4907                 return (ret);
4908 
4909         /*
4910          * Everything from this point on requires section headers.
4911          * If we have no section headers, there is no reason to continue.
4912          *
4913          * If we tried above to create the section header cache and failed,
4914          * it is time to exit. Otherwise, create it if needed.
4915          */
4916         switch (cache_state) {
4917         case CACHE_NEEDED:
4918                 if (create_cache(file, fd, elf, ehdr, &cache, shstrndx,
4919                     &shnum, &flags) == 0)
4920                         return (ret);
4921                 break;
4922         case CACHE_FAIL:
4923                 return (ret);
4924         }
4925         if (shnum <= 1)
4926                 goto done;
4927 
4928         /*
4929          * If -w was specified, find and write out the section(s) data.
4930          */
4931         if (wfd) {
4932                 for (ndx = 1; ndx < shnum; ndx++) {
4933                         Cache   *_cache = &cache[ndx];
4934 
4935                         if (match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4936                             ndx, _cache->c_shdr->sh_type) &&
4937                             _cache->c_data && _cache->c_data->d_buf) {
4938                                 if (write(wfd, _cache->c_data->d_buf,
4939                                     _cache->c_data->d_size) !=
4940                                     _cache->c_data->d_size) {
4941                                         int err = errno;
4942                                         (void) fprintf(stderr,
4943                                             MSG_INTL(MSG_ERR_WRITE), wname,
4944                                             strerror(err));
4945                                         /*
4946                                          * Return an exit status of 1, because
4947                                          * the failure is not related to the
4948                                          * ELF file, but by system resources.
4949                                          */
4950                                         ret = 1;
4951                                         goto done;
4952                                 }
4953                         }
4954                 }
4955         }
4956 
4957         /*
4958          * If we have no flag bits set that explicitly require a show or calc
4959          * operation, but match options (-I, -N, -T) were used, then run
4960          * through the section headers and see if we can't deduce show flags
4961          * from the match options given.
4962          *
4963          * We don't do this if -w was specified, because (-I, -N, -T) used
4964          * with -w in lieu of some other option is supposed to be quiet.
4965          */
4966         if ((wfd == 0) && (flags & FLG_CTL_MATCH) &&
4967             ((flags & (FLG_MASK_SHOW | FLG_MASK_CALC)) == 0)) {
4968                 for (ndx = 1; ndx < shnum; ndx++) {
4969                         Cache   *_cache = &cache[ndx];
4970 
4971                         if (!match(MATCH_F_STRICT | MATCH_F_ALL, _cache->c_name,
4972                             ndx, _cache->c_shdr->sh_type))
4973                                 continue;
4974 
4975                         switch (_cache->c_shdr->sh_type) {
4976                         case SHT_PROGBITS:
4977                                 /*
4978                                  * Heuristic time: It is usually bad form
4979                                  * to assume the meaning/format of a PROGBITS
4980                                  * section based on its name. However, there
4981                                  * are ABI mandated exceptions. Check for
4982                                  * these special names.
4983                                  */
4984 
4985                                 /* The ELF ABI specifies .interp and .got */
4986                                 if (strcmp(_cache->c_name,
4987                                     MSG_ORIG(MSG_ELF_INTERP)) == 0) {
4988                                         flags |= FLG_SHOW_INTERP;
4989                                         break;
4990                                 }
4991                                 if (strcmp(_cache->c_name,
4992                                     MSG_ORIG(MSG_ELF_GOT)) == 0) {
4993                                         flags |= FLG_SHOW_GOT;
4994                                         break;
4995                                 }
4996                                 /*
4997                                  * The GNU compilers, and amd64 ABI, define
4998                                  * .eh_frame and .eh_frame_hdr. The Sun
4999                                  * C++ ABI defines .exception_ranges.
5000                                  */
5001                                 if ((strncmp(_cache->c_name,
5002                                     MSG_ORIG(MSG_SCN_FRM),
5003                                     MSG_SCN_FRM_SIZE) == 0) ||
5004                                     (strncmp(_cache->c_name,
5005                                     MSG_ORIG(MSG_SCN_EXRANGE),
5006                                     MSG_SCN_EXRANGE_SIZE) == 0)) {
5007                                         flags |= FLG_SHOW_UNWIND;
5008                                         break;
5009                                 }
5010                                 break;
5011 
5012                         case SHT_SYMTAB:
5013                         case SHT_DYNSYM:
5014                         case SHT_SUNW_LDYNSYM:
5015                         case SHT_SUNW_versym:
5016                         case SHT_SYMTAB_SHNDX:
5017                                 flags |= FLG_SHOW_SYMBOLS;
5018                                 break;
5019 
5020                         case SHT_RELA:
5021                         case SHT_REL:
5022                                 flags |= FLG_SHOW_RELOC;
5023                                 break;
5024 
5025                         case SHT_HASH:
5026                                 flags |= FLG_SHOW_HASH;
5027                                 break;
5028 
5029                         case SHT_DYNAMIC:
5030                                 flags |= FLG_SHOW_DYNAMIC;
5031                                 break;
5032 
5033                         case SHT_NOTE:
5034                                 flags |= FLG_SHOW_NOTE;
5035                                 break;
5036 
5037                         case SHT_GROUP:
5038                                 flags |= FLG_SHOW_GROUP;
5039                                 break;
5040 
5041                         case SHT_SUNW_symsort:
5042                         case SHT_SUNW_tlssort:
5043                                 flags |= FLG_SHOW_SORT;
5044                                 break;
5045 
5046                         case SHT_SUNW_cap:
5047                                 flags |= FLG_SHOW_CAP;
5048                                 break;
5049 
5050                         case SHT_SUNW_move:
5051                                 flags |= FLG_SHOW_MOVE;
5052                                 break;
5053 
5054                         case SHT_SUNW_syminfo:
5055                                 flags |= FLG_SHOW_SYMINFO;
5056                                 break;
5057 
5058                         case SHT_SUNW_verdef:
5059                         case SHT_SUNW_verneed:
5060                                 flags |= FLG_SHOW_VERSIONS;
5061                                 break;
5062 
5063                         case SHT_AMD64_UNWIND:
5064                                 flags |= FLG_SHOW_UNWIND;
5065                                 break;
5066                         }
5067                 }
5068         }
5069 
5070 
5071         if (flags & FLG_SHOW_SHDR)
5072                 sections(file, cache, shnum, ehdr, osabi);
5073 
5074         if (flags & FLG_SHOW_INTERP)
5075                 interp(file, cache, shnum, phnum, elf);
5076 
5077         if ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX))
5078                 versions(cache, shnum, file, flags, &versym);
5079 
5080         if (flags & FLG_SHOW_SYMBOLS)
5081                 symbols(cache, shnum, ehdr, osabi, &versym, file, flags);
5082 
5083         if ((flags & FLG_SHOW_SORT) && (osabi == ELFOSABI_SOLARIS))
5084                 sunw_sort(cache, shnum, ehdr, osabi, &versym, file, flags);
5085 
5086         if (flags & FLG_SHOW_HASH)
5087                 hash(cache, shnum, file, flags);
5088 
5089         if (flags & FLG_SHOW_GOT)
5090                 got(cache, shnum, ehdr, file);
5091 
5092         if (flags & FLG_SHOW_GROUP)
5093                 group(cache, shnum, file, flags);
5094 
5095         if (flags & FLG_SHOW_SYMINFO)
5096                 syminfo(cache, shnum, ehdr, osabi, file);
5097 
5098         if (flags & FLG_SHOW_RELOC)
5099                 reloc(cache, shnum, ehdr, file);
5100 
5101         if (flags & FLG_SHOW_DYNAMIC)
5102                 dynamic(cache, shnum, ehdr, osabi, file);
5103 
5104         if (flags & FLG_SHOW_NOTE) {
5105                 Word    note_cnt;
5106                 size_t  note_shnum;
5107                 Cache   *note_cache;
5108 
5109                 note_cnt = note(cache, shnum, ehdr, file);
5110 
5111                 /*
5112                  * Solaris core files have section headers, but these
5113                  * headers do not include SHT_NOTE sections that reference
5114                  * the core note sections. This means that note() won't
5115                  * find the core notes. Fake section headers (-P option)
5116                  * recover these sections, but it is inconvenient to require
5117                  * users to specify -P in this situation. If the following
5118                  * are all true:
5119                  *
5120                  *      - No note sections were found
5121                  *      - This is a core file
5122                  *      - We are not already using fake section headers
5123                  *
5124                  * then we will automatically generate fake section headers
5125                  * and then process them in a second call to note().
5126                  */
5127                 if ((note_cnt == 0) && (ehdr->e_type == ET_CORE) &&
5128                     !(flags & FLG_CTL_FAKESHDR) &&
5129                     (fake_shdr_cache(file, fd, elf, ehdr,
5130                     &note_cache, &note_shnum) != 0)) {
5131                         (void) note(note_cache, note_shnum, ehdr, file);
5132                         fake_shdr_cache_free(note_cache, note_shnum);
5133                 }
5134         }
5135 
5136         if ((flags & FLG_SHOW_MOVE) && (osabi == ELFOSABI_SOLARIS))
5137                 move(cache, shnum, file, flags);
5138 
5139         if (flags & FLG_CALC_CHECKSUM)
5140                 checksum(elf);
5141 
5142         if ((flags & FLG_SHOW_CAP) && (osabi == ELFOSABI_SOLARIS))
5143                 cap(file, cache, shnum, phnum, ehdr, osabi, elf, flags);
5144 
5145         if ((flags & FLG_SHOW_UNWIND) &&
5146             ((osabi == ELFOSABI_SOLARIS) || (osabi == ELFOSABI_LINUX)))
5147                 unwind(cache, shnum, phnum, ehdr, osabi, file, elf, flags);
5148 
5149 
5150         /* Release the memory used to cache section headers */
5151 done:
5152         if (flags & FLG_CTL_FAKESHDR)
5153                 fake_shdr_cache_free(cache, shnum);
5154         else
5155                 free(cache);
5156 
5157         return (ret);
5158 }