1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 27 * Use is subject to license terms. 28 * 29 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 30 */ 31 32 #ifndef _SYS_SYSMACROS_H 33 #define _SYS_SYSMACROS_H 34 35 #include <sys/param.h> 36 37 #ifdef __cplusplus 38 extern "C" { 39 #endif 40 41 /* 42 * Some macros for units conversion 43 */ 44 /* 45 * Disk blocks (sectors) and bytes. 46 */ 47 #define dtob(DD) ((DD) << DEV_BSHIFT) 48 #define btod(BB) (((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 49 #define btodt(BB) ((BB) >> DEV_BSHIFT) 50 #define lbtod(BB) (((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT) 51 52 /* common macros */ 53 #ifndef MIN 54 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 55 #endif 56 #ifndef MAX 57 #define MAX(a, b) ((a) < (b) ? (b) : (a)) 58 #endif 59 #ifndef ABS 60 #define ABS(a) ((a) < 0 ? -(a) : (a)) 61 #endif 62 #ifndef SIGNOF 63 #define SIGNOF(a) ((a) < 0 ? -1 : (a) > 0) 64 #endif 65 66 #ifdef _KERNEL 67 68 /* 69 * Convert a single byte to/from binary-coded decimal (BCD). 70 */ 71 extern unsigned char byte_to_bcd[256]; 72 extern unsigned char bcd_to_byte[256]; 73 74 #define BYTE_TO_BCD(x) byte_to_bcd[(x) & 0xff] 75 #define BCD_TO_BYTE(x) bcd_to_byte[(x) & 0xff] 76 77 #endif /* _KERNEL */ 78 79 /* 80 * WARNING: The device number macros defined here should not be used by device 81 * drivers or user software. Device drivers should use the device functions 82 * defined in the DDI/DKI interface (see also ddi.h). Application software 83 * should make use of the library routines available in makedev(3). A set of 84 * new device macros are provided to operate on the expanded device number 85 * format supported in SVR4. Macro versions of the DDI device functions are 86 * provided for use by kernel proper routines only. Macro routines bmajor(), 87 * major(), minor(), emajor(), eminor(), and makedev() will be removed or 88 * their definitions changed at the next major release following SVR4. 89 */ 90 91 #define O_BITSMAJOR 7 /* # of SVR3 major device bits */ 92 #define O_BITSMINOR 8 /* # of SVR3 minor device bits */ 93 #define O_MAXMAJ 0x7f /* SVR3 max major value */ 94 #define O_MAXMIN 0xff /* SVR3 max minor value */ 95 96 97 #define L_BITSMAJOR32 14 /* # of SVR4 major device bits */ 98 #define L_BITSMINOR32 18 /* # of SVR4 minor device bits */ 99 #define L_MAXMAJ32 0x3fff /* SVR4 max major value */ 100 #define L_MAXMIN32 0x3ffff /* MAX minor for 3b2 software drivers. */ 101 /* For 3b2 hardware devices the minor is */ 102 /* restricted to 256 (0-255) */ 103 104 #ifdef _LP64 105 #define L_BITSMAJOR 32 /* # of major device bits in 64-bit Solaris */ 106 #define L_BITSMINOR 32 /* # of minor device bits in 64-bit Solaris */ 107 #define L_MAXMAJ 0xfffffffful /* max major value */ 108 #define L_MAXMIN 0xfffffffful /* max minor value */ 109 #else 110 #define L_BITSMAJOR L_BITSMAJOR32 111 #define L_BITSMINOR L_BITSMINOR32 112 #define L_MAXMAJ L_MAXMAJ32 113 #define L_MAXMIN L_MAXMIN32 114 #endif 115 116 #ifdef _KERNEL 117 118 /* major part of a device internal to the kernel */ 119 120 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 121 #define bmajor(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 122 123 /* get internal major part of expanded device number */ 124 125 #define getmajor(x) (major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ) 126 127 /* minor part of a device internal to the kernel */ 128 129 #define minor(x) (minor_t)((x) & O_MAXMIN) 130 131 /* get internal minor part of expanded device number */ 132 133 #define getminor(x) (minor_t)((x) & L_MAXMIN) 134 135 #else /* _KERNEL */ 136 137 /* major part of a device external from the kernel (same as emajor below) */ 138 139 #define major(x) (major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ) 140 141 /* minor part of a device external from the kernel (same as eminor below) */ 142 143 #define minor(x) (minor_t)((x) & O_MAXMIN) 144 145 #endif /* _KERNEL */ 146 147 /* create old device number */ 148 149 #define makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN)) 150 151 /* make an new device number */ 152 153 #define makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN)) 154 155 156 /* 157 * emajor() allows kernel/driver code to print external major numbers 158 * eminor() allows kernel/driver code to print external minor numbers 159 */ 160 161 #define emajor(x) \ 162 (major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \ 163 NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ) 164 165 #define eminor(x) \ 166 (minor_t)((x) & O_MAXMIN) 167 168 /* 169 * get external major and minor device 170 * components from expanded device number 171 */ 172 #define getemajor(x) (major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \ 173 NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ)) 174 #define geteminor(x) (minor_t)((x) & L_MAXMIN) 175 176 /* 177 * These are versions of the kernel routines for compressing and 178 * expanding long device numbers that don't return errors. 179 */ 180 #if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR) 181 182 #define DEVCMPL(x) (x) 183 #define DEVEXPL(x) (x) 184 185 #else 186 187 #define DEVCMPL(x) \ 188 (dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \ 189 ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \ 190 ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32))) 191 192 #define DEVEXPL(x) \ 193 (((x) == NODEV32) ? NODEV : \ 194 makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32)) 195 196 #endif /* L_BITSMAJOR32 ... */ 197 198 /* convert to old (SVR3.2) dev format */ 199 200 #define cmpdev(x) \ 201 (o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \ 202 ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \ 203 ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN))) 204 205 /* convert to new (SVR4) dev format */ 206 207 #define expdev(x) \ 208 (dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \ 209 ((x) & O_MAXMIN)) 210 211 /* 212 * Macro for checking power of 2 address alignment. 213 */ 214 #define IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0) 215 216 /* 217 * Macros for counting and rounding. 218 */ 219 #define howmany(x, y) (((x)+((y)-1))/(y)) 220 #define roundup(x, y) ((((x)+((y)-1))/(y))*(y)) 221 222 /* 223 * Macro to determine if value is a power of 2 224 */ 225 #define ISP2(x) (((x) & ((x) - 1)) == 0) 226 227 /* 228 * Macros for various sorts of alignment and rounding. The "align" must 229 * be a power of 2. Often times it is a block, sector, or page. 230 */ 231 232 /* 233 * return x rounded down to an align boundary 234 * eg, P2ALIGN(1200, 1024) == 1024 (1*align) 235 * eg, P2ALIGN(1024, 1024) == 1024 (1*align) 236 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align) 237 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align) 238 */ 239 #define P2ALIGN(x, align) ((x) & -(align)) 240 241 /* 242 * return x % (mod) align 243 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align) 244 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align) 245 */ 246 #define P2PHASE(x, align) ((x) & ((align) - 1)) 247 248 /* 249 * return how much space is left in this block (but if it's perfectly 250 * aligned, return 0). 251 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x) 252 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x) 253 */ 254 #define P2NPHASE(x, align) (-(x) & ((align) - 1)) 255 256 /* 257 * return x rounded up to an align boundary 258 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align) 259 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align) 260 */ 261 #define P2ROUNDUP(x, align) (-(-(x) & -(align))) 262 263 /* 264 * return the ending address of the block that x is in 265 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1) 266 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1) 267 */ 268 #define P2END(x, align) (-(~(x) & -(align))) 269 270 /* 271 * return x rounded up to the next phase (offset) within align. 272 * phase should be < align. 273 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase) 274 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase) 275 */ 276 #define P2PHASEUP(x, align, phase) ((phase) - (((phase) - (x)) & -(align))) 277 278 /* 279 * return TRUE if adding len to off would cause it to cross an align 280 * boundary. 281 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314) 282 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284) 283 */ 284 #define P2BOUNDARY(off, len, align) \ 285 (((off) ^ ((off) + (len) - 1)) > (align) - 1) 286 287 /* 288 * Return TRUE if they have the same highest bit set. 289 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000) 290 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000) 291 */ 292 #define P2SAMEHIGHBIT(x, y) (((x) ^ (y)) < ((x) & (y))) 293 294 /* 295 * Typed version of the P2* macros. These macros should be used to ensure 296 * that the result is correctly calculated based on the data type of (x), 297 * which is passed in as the last argument, regardless of the data 298 * type of the alignment. For example, if (x) is of type uint64_t, 299 * and we want to round it up to a page boundary using "PAGESIZE" as 300 * the alignment, we can do either 301 * P2ROUNDUP(x, (uint64_t)PAGESIZE) 302 * or 303 * P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t) 304 */ 305 #define P2ALIGN_TYPED(x, align, type) \ 306 ((type)(x) & -(type)(align)) 307 #define P2PHASE_TYPED(x, align, type) \ 308 ((type)(x) & ((type)(align) - 1)) 309 #define P2NPHASE_TYPED(x, align, type) \ 310 (-(type)(x) & ((type)(align) - 1)) 311 #define P2ROUNDUP_TYPED(x, align, type) \ 312 (-(-(type)(x) & -(type)(align))) 313 #define P2END_TYPED(x, align, type) \ 314 (-(~(type)(x) & -(type)(align))) 315 #define P2PHASEUP_TYPED(x, align, phase, type) \ 316 ((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align))) 317 #define P2CROSS_TYPED(x, y, align, type) \ 318 (((type)(x) ^ (type)(y)) > (type)(align) - 1) 319 #define P2SAMEHIGHBIT_TYPED(x, y, type) \ 320 (((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y))) 321 322 /* 323 * Macros to atomically increment/decrement a variable. mutex and var 324 * must be pointers. 325 */ 326 #define INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex) 327 #define DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex) 328 329 /* 330 * Macros to declare bitfields - the order in the parameter list is 331 * Low to High - that is, declare bit 0 first. We only support 8-bit bitfields 332 * because if a field crosses a byte boundary it's not likely to be meaningful 333 * without reassembly in its nonnative endianness. 334 */ 335 #if defined(_BIT_FIELDS_LTOH) 336 #define DECL_BITFIELD2(_a, _b) \ 337 uint8_t _a, _b 338 #define DECL_BITFIELD3(_a, _b, _c) \ 339 uint8_t _a, _b, _c 340 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 341 uint8_t _a, _b, _c, _d 342 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 343 uint8_t _a, _b, _c, _d, _e 344 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 345 uint8_t _a, _b, _c, _d, _e, _f 346 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 347 uint8_t _a, _b, _c, _d, _e, _f, _g 348 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 349 uint8_t _a, _b, _c, _d, _e, _f, _g, _h 350 #elif defined(_BIT_FIELDS_HTOL) 351 #define DECL_BITFIELD2(_a, _b) \ 352 uint8_t _b, _a 353 #define DECL_BITFIELD3(_a, _b, _c) \ 354 uint8_t _c, _b, _a 355 #define DECL_BITFIELD4(_a, _b, _c, _d) \ 356 uint8_t _d, _c, _b, _a 357 #define DECL_BITFIELD5(_a, _b, _c, _d, _e) \ 358 uint8_t _e, _d, _c, _b, _a 359 #define DECL_BITFIELD6(_a, _b, _c, _d, _e, _f) \ 360 uint8_t _f, _e, _d, _c, _b, _a 361 #define DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g) \ 362 uint8_t _g, _f, _e, _d, _c, _b, _a 363 #define DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h) \ 364 uint8_t _h, _g, _f, _e, _d, _c, _b, _a 365 #else 366 #error One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined 367 #endif /* _BIT_FIELDS_LTOH */ 368 369 /* avoid any possibility of clashing with <stddef.h> version */ 370 #if (defined(_KERNEL) || defined(_FAKE_KERNEL)) && !defined(_KMEMUSER) 371 372 #if !defined(offsetof) 373 #if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) 374 #define offsetof(s, m) __builtin_offsetof(s, m) 375 #else 376 #define offsetof(s, m) ((size_t)(&(((s *)0)->m))) 377 #endif 378 #endif /* !offsetof */ 379 380 #define container_of(m, s, name) \ 381 (void *)((uintptr_t)(m) - (uintptr_t)offsetof(s, name)) 382 383 #define ARRAY_SIZE(x) (sizeof (x) / sizeof (x[0])) 384 #endif /* _KERNEL, !_KMEMUSER */ 385 386 #ifdef __cplusplus 387 } 388 #endif 389 390 #endif /* _SYS_SYSMACROS_H */