1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 #include <sys/stropts.h>
  27 #include <sys/debug.h>
  28 #include <sys/isa_defs.h>
  29 #include <sys/int_limits.h>
  30 #include <sys/nvpair.h>
  31 #include <sys/nvpair_impl.h>
  32 #include <rpc/types.h>
  33 #include <rpc/xdr.h>
  34 
  35 #if defined(_KERNEL) && !defined(_BOOT)
  36 #include <sys/varargs.h>
  37 #include <sys/ddi.h>
  38 #include <sys/sunddi.h>
  39 #include <sys/sysmacros.h>
  40 #else
  41 #include <stdarg.h>
  42 #include <stdlib.h>
  43 #include <string.h>
  44 #include <strings.h>
  45 #include <stddef.h>
  46 #endif
  47 
  48 #define skip_whitespace(p)      while ((*(p) == ' ') || (*(p) == '\t')) p++
  49 
  50 /*
  51  * nvpair.c - Provides kernel & userland interfaces for manipulating
  52  *      name-value pairs.
  53  *
  54  * Overview Diagram
  55  *
  56  *  +--------------+
  57  *  |  nvlist_t    |
  58  *  |--------------|
  59  *  | nvl_version  |
  60  *  | nvl_nvflag   |
  61  *  | nvl_priv    -+-+
  62  *  | nvl_flag     | |
  63  *  | nvl_pad      | |
  64  *  +--------------+ |
  65  *                   V
  66  *      +--------------+      last i_nvp in list
  67  *      | nvpriv_t     |  +--------------------->
  68  *      |--------------|  |
  69  *   +--+- nvp_list    |  |   +------------+
  70  *   |  |  nvp_last   -+--+   + nv_alloc_t |
  71  *   |  |  nvp_curr    |      |------------|
  72  *   |  |  nvp_nva    -+----> | nva_ops    |
  73  *   |  |  nvp_stat    |      | nva_arg    |
  74  *   |  +--------------+      +------------+
  75  *   |
  76  *   +-------+
  77  *           V
  78  *   +---------------------+      +-------------------+
  79  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
  80  *   |---------------------|  |   |-------------------|  |
  81  *   | nvi_next           -+--+   | nvi_next         -+--+
  82  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
  83  *   | . . . . . . . . . . |      | . . . . . . . . . |
  84  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
  85  *   |  - nvp_size         |      |  - nvp_size       |
  86  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
  87  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
  88  *   |  - nvp_type         |      |  - nvp_type       |
  89  *   |  - data ...         |      |  - data ...       |
  90  *   +---------------------+      +-------------------+
  91  *
  92  *
  93  *
  94  *   +---------------------+              +---------------------+
  95  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
  96  *   |---------------------|  |       |   |---------------------|
  97  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
  98  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
  99  *   | . . . . . . . . .   |              | . . . . . . . . .   |
 100  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
 101  *   |  - nvp_size         |              |  - nvp_size         |
 102  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
 103  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
 104  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
 105  *   |  - data (embedded)  |              |  - data ...         |
 106  *   |    nvlist name      |              +---------------------+
 107  *   |  +--------------+   |
 108  *   |  |  nvlist_t    |   |
 109  *   |  |--------------|   |
 110  *   |  | nvl_version  |   |
 111  *   |  | nvl_nvflag   |   |
 112  *   |  | nvl_priv   --+---+---->
 113  *   |  | nvl_flag     |   |
 114  *   |  | nvl_pad      |   |
 115  *   |  +--------------+   |
 116  *   +---------------------+
 117  *
 118  *
 119  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
 120  * allow value to be aligned on 8 byte boundary
 121  *
 122  * name_len is the length of the name string including the null terminator
 123  * so it must be >= 1
 124  */
 125 #define NVP_SIZE_CALC(name_len, data_len) \
 126         (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
 127 
 128 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
 129 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
 130     uint_t nelem, const void *data);
 131 
 132 #define NV_STAT_EMBEDDED        0x1
 133 #define EMBEDDED_NVL(nvp)       ((nvlist_t *)(void *)NVP_VALUE(nvp))
 134 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
 135 
 136 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
 137 #define NVPAIR2I_NVP(nvp) \
 138         ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
 139 
 140 
 141 int
 142 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
 143 {
 144         va_list valist;
 145         int err = 0;
 146 
 147         nva->nva_ops = nvo;
 148         nva->nva_arg = NULL;
 149 
 150         va_start(valist, nvo);
 151         if (nva->nva_ops->nv_ao_init != NULL)
 152                 err = nva->nva_ops->nv_ao_init(nva, valist);
 153         va_end(valist);
 154 
 155         return (err);
 156 }
 157 
 158 void
 159 nv_alloc_reset(nv_alloc_t *nva)
 160 {
 161         if (nva->nva_ops->nv_ao_reset != NULL)
 162                 nva->nva_ops->nv_ao_reset(nva);
 163 }
 164 
 165 void
 166 nv_alloc_fini(nv_alloc_t *nva)
 167 {
 168         if (nva->nva_ops->nv_ao_fini != NULL)
 169                 nva->nva_ops->nv_ao_fini(nva);
 170 }
 171 
 172 nv_alloc_t *
 173 nvlist_lookup_nv_alloc(nvlist_t *nvl)
 174 {
 175         nvpriv_t *priv;
 176 
 177         if (nvl == NULL ||
 178             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 179                 return (NULL);
 180 
 181         return (priv->nvp_nva);
 182 }
 183 
 184 static void *
 185 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
 186 {
 187         nv_alloc_t *nva = nvp->nvp_nva;
 188         void *buf;
 189 
 190         if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
 191                 bzero(buf, size);
 192 
 193         return (buf);
 194 }
 195 
 196 static void
 197 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
 198 {
 199         nv_alloc_t *nva = nvp->nvp_nva;
 200 
 201         nva->nva_ops->nv_ao_free(nva, buf, size);
 202 }
 203 
 204 static void
 205 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
 206 {
 207         bzero(priv, sizeof (nvpriv_t));
 208 
 209         priv->nvp_nva = nva;
 210         priv->nvp_stat = stat;
 211 }
 212 
 213 static nvpriv_t *
 214 nv_priv_alloc(nv_alloc_t *nva)
 215 {
 216         nvpriv_t *priv;
 217 
 218         /*
 219          * nv_mem_alloc() cannot called here because it needs the priv
 220          * argument.
 221          */
 222         if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
 223                 return (NULL);
 224 
 225         nv_priv_init(priv, nva, 0);
 226 
 227         return (priv);
 228 }
 229 
 230 /*
 231  * Embedded lists need their own nvpriv_t's.  We create a new
 232  * nvpriv_t using the parameters and allocator from the parent
 233  * list's nvpriv_t.
 234  */
 235 static nvpriv_t *
 236 nv_priv_alloc_embedded(nvpriv_t *priv)
 237 {
 238         nvpriv_t *emb_priv;
 239 
 240         if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
 241                 return (NULL);
 242 
 243         nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
 244 
 245         return (emb_priv);
 246 }
 247 
 248 static void
 249 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
 250 {
 251         nvl->nvl_version = NV_VERSION;
 252         nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
 253         nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
 254         nvl->nvl_flag = 0;
 255         nvl->nvl_pad = 0;
 256 }
 257 
 258 uint_t
 259 nvlist_nvflag(nvlist_t *nvl)
 260 {
 261         return (nvl->nvl_nvflag);
 262 }
 263 
 264 /*
 265  * nvlist_alloc - Allocate nvlist.
 266  */
 267 /*ARGSUSED1*/
 268 int
 269 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
 270 {
 271 #if defined(_KERNEL) && !defined(_BOOT)
 272         return (nvlist_xalloc(nvlp, nvflag,
 273             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 274 #else
 275         return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
 276 #endif
 277 }
 278 
 279 int
 280 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
 281 {
 282         nvpriv_t *priv;
 283 
 284         if (nvlp == NULL || nva == NULL)
 285                 return (EINVAL);
 286 
 287         if ((priv = nv_priv_alloc(nva)) == NULL)
 288                 return (ENOMEM);
 289 
 290         if ((*nvlp = nv_mem_zalloc(priv,
 291             NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
 292                 nv_mem_free(priv, priv, sizeof (nvpriv_t));
 293                 return (ENOMEM);
 294         }
 295 
 296         nvlist_init(*nvlp, nvflag, priv);
 297 
 298         return (0);
 299 }
 300 
 301 /*
 302  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
 303  */
 304 static nvpair_t *
 305 nvp_buf_alloc(nvlist_t *nvl, size_t len)
 306 {
 307         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 308         i_nvp_t *buf;
 309         nvpair_t *nvp;
 310         size_t nvsize;
 311 
 312         /*
 313          * Allocate the buffer
 314          */
 315         nvsize = len + offsetof(i_nvp_t, nvi_nvp);
 316 
 317         if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
 318                 return (NULL);
 319 
 320         nvp = &buf->nvi_nvp;
 321         nvp->nvp_size = len;
 322 
 323         return (nvp);
 324 }
 325 
 326 /*
 327  * nvp_buf_free - de-Allocate an i_nvp_t.
 328  */
 329 static void
 330 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
 331 {
 332         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 333         size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
 334 
 335         nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
 336 }
 337 
 338 /*
 339  * nvp_buf_link - link a new nv pair into the nvlist.
 340  */
 341 static void
 342 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
 343 {
 344         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 345         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 346 
 347         /* Put element at end of nvlist */
 348         if (priv->nvp_list == NULL) {
 349                 priv->nvp_list = priv->nvp_last = curr;
 350         } else {
 351                 curr->nvi_prev = priv->nvp_last;
 352                 priv->nvp_last->nvi_next = curr;
 353                 priv->nvp_last = curr;
 354         }
 355 }
 356 
 357 /*
 358  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
 359  */
 360 static void
 361 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
 362 {
 363         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 364         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 365 
 366         /*
 367          * protect nvlist_next_nvpair() against walking on freed memory.
 368          */
 369         if (priv->nvp_curr == curr)
 370                 priv->nvp_curr = curr->nvi_next;
 371 
 372         if (curr == priv->nvp_list)
 373                 priv->nvp_list = curr->nvi_next;
 374         else
 375                 curr->nvi_prev->nvi_next = curr->nvi_next;
 376 
 377         if (curr == priv->nvp_last)
 378                 priv->nvp_last = curr->nvi_prev;
 379         else
 380                 curr->nvi_next->nvi_prev = curr->nvi_prev;
 381 }
 382 
 383 /*
 384  * take a nvpair type and number of elements and make sure the are valid
 385  */
 386 static int
 387 i_validate_type_nelem(data_type_t type, uint_t nelem)
 388 {
 389         switch (type) {
 390         case DATA_TYPE_BOOLEAN:
 391                 if (nelem != 0)
 392                         return (EINVAL);
 393                 break;
 394         case DATA_TYPE_BOOLEAN_VALUE:
 395         case DATA_TYPE_BYTE:
 396         case DATA_TYPE_INT8:
 397         case DATA_TYPE_UINT8:
 398         case DATA_TYPE_INT16:
 399         case DATA_TYPE_UINT16:
 400         case DATA_TYPE_INT32:
 401         case DATA_TYPE_UINT32:
 402         case DATA_TYPE_INT64:
 403         case DATA_TYPE_UINT64:
 404         case DATA_TYPE_STRING:
 405         case DATA_TYPE_HRTIME:
 406         case DATA_TYPE_NVLIST:
 407 #if !defined(_KERNEL)
 408         case DATA_TYPE_DOUBLE:
 409 #endif
 410                 if (nelem != 1)
 411                         return (EINVAL);
 412                 break;
 413         case DATA_TYPE_BOOLEAN_ARRAY:
 414         case DATA_TYPE_BYTE_ARRAY:
 415         case DATA_TYPE_INT8_ARRAY:
 416         case DATA_TYPE_UINT8_ARRAY:
 417         case DATA_TYPE_INT16_ARRAY:
 418         case DATA_TYPE_UINT16_ARRAY:
 419         case DATA_TYPE_INT32_ARRAY:
 420         case DATA_TYPE_UINT32_ARRAY:
 421         case DATA_TYPE_INT64_ARRAY:
 422         case DATA_TYPE_UINT64_ARRAY:
 423         case DATA_TYPE_STRING_ARRAY:
 424         case DATA_TYPE_NVLIST_ARRAY:
 425                 /* we allow arrays with 0 elements */
 426                 break;
 427         default:
 428                 return (EINVAL);
 429         }
 430         return (0);
 431 }
 432 
 433 /*
 434  * Verify nvp_name_sz and check the name string length.
 435  */
 436 static int
 437 i_validate_nvpair_name(nvpair_t *nvp)
 438 {
 439         if ((nvp->nvp_name_sz <= 0) ||
 440             (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
 441                 return (EFAULT);
 442 
 443         /* verify the name string, make sure its terminated */
 444         if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
 445                 return (EFAULT);
 446 
 447         return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
 448 }
 449 
 450 static int
 451 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
 452 {
 453         switch (type) {
 454         case DATA_TYPE_BOOLEAN_VALUE:
 455                 if (*(boolean_t *)data != B_TRUE &&
 456                     *(boolean_t *)data != B_FALSE)
 457                         return (EINVAL);
 458                 break;
 459         case DATA_TYPE_BOOLEAN_ARRAY: {
 460                 int i;
 461 
 462                 for (i = 0; i < nelem; i++)
 463                         if (((boolean_t *)data)[i] != B_TRUE &&
 464                             ((boolean_t *)data)[i] != B_FALSE)
 465                                 return (EINVAL);
 466                 break;
 467         }
 468         default:
 469                 break;
 470         }
 471 
 472         return (0);
 473 }
 474 
 475 /*
 476  * This function takes a pointer to what should be a nvpair and it's size
 477  * and then verifies that all the nvpair fields make sense and can be
 478  * trusted.  This function is used when decoding packed nvpairs.
 479  */
 480 static int
 481 i_validate_nvpair(nvpair_t *nvp)
 482 {
 483         data_type_t type = NVP_TYPE(nvp);
 484         int size1, size2;
 485 
 486         /* verify nvp_name_sz, check the name string length */
 487         if (i_validate_nvpair_name(nvp) != 0)
 488                 return (EFAULT);
 489 
 490         if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
 491                 return (EFAULT);
 492 
 493         /*
 494          * verify nvp_type, nvp_value_elem, and also possibly
 495          * verify string values and get the value size.
 496          */
 497         size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
 498         size1 = nvp->nvp_size - NVP_VALOFF(nvp);
 499         if (size2 < 0 || size1 != NV_ALIGN(size2))
 500                 return (EFAULT);
 501 
 502         return (0);
 503 }
 504 
 505 static int
 506 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
 507 {
 508         nvpriv_t *priv;
 509         i_nvp_t *curr;
 510 
 511         if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
 512                 return (EINVAL);
 513 
 514         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
 515                 nvpair_t *nvp = &curr->nvi_nvp;
 516                 int err;
 517 
 518                 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
 519                     NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
 520                         return (err);
 521         }
 522 
 523         return (0);
 524 }
 525 
 526 /*
 527  * Frees all memory allocated for an nvpair (like embedded lists) with
 528  * the exception of the nvpair buffer itself.
 529  */
 530 static void
 531 nvpair_free(nvpair_t *nvp)
 532 {
 533         switch (NVP_TYPE(nvp)) {
 534         case DATA_TYPE_NVLIST:
 535                 nvlist_free(EMBEDDED_NVL(nvp));
 536                 break;
 537         case DATA_TYPE_NVLIST_ARRAY: {
 538                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 539                 int i;
 540 
 541                 for (i = 0; i < NVP_NELEM(nvp); i++)
 542                         if (nvlp[i] != NULL)
 543                                 nvlist_free(nvlp[i]);
 544                 break;
 545         }
 546         default:
 547                 break;
 548         }
 549 }
 550 
 551 /*
 552  * nvlist_free - free an unpacked nvlist
 553  */
 554 void
 555 nvlist_free(nvlist_t *nvl)
 556 {
 557         nvpriv_t *priv;
 558         i_nvp_t *curr;
 559 
 560         if (nvl == NULL ||
 561             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 562                 return;
 563 
 564         /*
 565          * Unpacked nvlist are linked through i_nvp_t
 566          */
 567         curr = priv->nvp_list;
 568         while (curr != NULL) {
 569                 nvpair_t *nvp = &curr->nvi_nvp;
 570                 curr = curr->nvi_next;
 571 
 572                 nvpair_free(nvp);
 573                 nvp_buf_free(nvl, nvp);
 574         }
 575 
 576         if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
 577                 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
 578         else
 579                 nvl->nvl_priv = 0;
 580 
 581         nv_mem_free(priv, priv, sizeof (nvpriv_t));
 582 }
 583 
 584 static int
 585 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
 586 {
 587         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 588         i_nvp_t *curr;
 589 
 590         if (nvp == NULL)
 591                 return (0);
 592 
 593         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
 594                 if (&curr->nvi_nvp == nvp)
 595                         return (1);
 596 
 597         return (0);
 598 }
 599 
 600 /*
 601  * Make a copy of nvlist
 602  */
 603 /*ARGSUSED1*/
 604 int
 605 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
 606 {
 607 #if defined(_KERNEL) && !defined(_BOOT)
 608         return (nvlist_xdup(nvl, nvlp,
 609             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 610 #else
 611         return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
 612 #endif
 613 }
 614 
 615 int
 616 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
 617 {
 618         int err;
 619         nvlist_t *ret;
 620 
 621         if (nvl == NULL || nvlp == NULL)
 622                 return (EINVAL);
 623 
 624         if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
 625                 return (err);
 626 
 627         if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
 628                 nvlist_free(ret);
 629         else
 630                 *nvlp = ret;
 631 
 632         return (err);
 633 }
 634 
 635 /*
 636  * Remove all with matching name
 637  */
 638 int
 639 nvlist_remove_all(nvlist_t *nvl, const char *name)
 640 {
 641         nvpriv_t *priv;
 642         i_nvp_t *curr;
 643         int error = ENOENT;
 644 
 645         if (nvl == NULL || name == NULL ||
 646             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 647                 return (EINVAL);
 648 
 649         curr = priv->nvp_list;
 650         while (curr != NULL) {
 651                 nvpair_t *nvp = &curr->nvi_nvp;
 652 
 653                 curr = curr->nvi_next;
 654                 if (strcmp(name, NVP_NAME(nvp)) != 0)
 655                         continue;
 656 
 657                 nvp_buf_unlink(nvl, nvp);
 658                 nvpair_free(nvp);
 659                 nvp_buf_free(nvl, nvp);
 660 
 661                 error = 0;
 662         }
 663 
 664         return (error);
 665 }
 666 
 667 /*
 668  * Remove first one with matching name and type
 669  */
 670 int
 671 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
 672 {
 673         nvpriv_t *priv;
 674         i_nvp_t *curr;
 675 
 676         if (nvl == NULL || name == NULL ||
 677             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 678                 return (EINVAL);
 679 
 680         curr = priv->nvp_list;
 681         while (curr != NULL) {
 682                 nvpair_t *nvp = &curr->nvi_nvp;
 683 
 684                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
 685                         nvp_buf_unlink(nvl, nvp);
 686                         nvpair_free(nvp);
 687                         nvp_buf_free(nvl, nvp);
 688 
 689                         return (0);
 690                 }
 691                 curr = curr->nvi_next;
 692         }
 693 
 694         return (ENOENT);
 695 }
 696 
 697 int
 698 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
 699 {
 700         if (nvl == NULL || nvp == NULL)
 701                 return (EINVAL);
 702 
 703         nvp_buf_unlink(nvl, nvp);
 704         nvpair_free(nvp);
 705         nvp_buf_free(nvl, nvp);
 706         return (0);
 707 }
 708 
 709 /*
 710  * This function calculates the size of an nvpair value.
 711  *
 712  * The data argument controls the behavior in case of the data types
 713  *      DATA_TYPE_STRING        and
 714  *      DATA_TYPE_STRING_ARRAY
 715  * Is data == NULL then the size of the string(s) is excluded.
 716  */
 717 static int
 718 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
 719 {
 720         uint64_t value_sz;
 721 
 722         if (i_validate_type_nelem(type, nelem) != 0)
 723                 return (-1);
 724 
 725         /* Calculate required size for holding value */
 726         switch (type) {
 727         case DATA_TYPE_BOOLEAN:
 728                 value_sz = 0;
 729                 break;
 730         case DATA_TYPE_BOOLEAN_VALUE:
 731                 value_sz = sizeof (boolean_t);
 732                 break;
 733         case DATA_TYPE_BYTE:
 734                 value_sz = sizeof (uchar_t);
 735                 break;
 736         case DATA_TYPE_INT8:
 737                 value_sz = sizeof (int8_t);
 738                 break;
 739         case DATA_TYPE_UINT8:
 740                 value_sz = sizeof (uint8_t);
 741                 break;
 742         case DATA_TYPE_INT16:
 743                 value_sz = sizeof (int16_t);
 744                 break;
 745         case DATA_TYPE_UINT16:
 746                 value_sz = sizeof (uint16_t);
 747                 break;
 748         case DATA_TYPE_INT32:
 749                 value_sz = sizeof (int32_t);
 750                 break;
 751         case DATA_TYPE_UINT32:
 752                 value_sz = sizeof (uint32_t);
 753                 break;
 754         case DATA_TYPE_INT64:
 755                 value_sz = sizeof (int64_t);
 756                 break;
 757         case DATA_TYPE_UINT64:
 758                 value_sz = sizeof (uint64_t);
 759                 break;
 760 #if !defined(_KERNEL)
 761         case DATA_TYPE_DOUBLE:
 762                 value_sz = sizeof (double);
 763                 break;
 764 #endif
 765         case DATA_TYPE_STRING:
 766                 if (data == NULL)
 767                         value_sz = 0;
 768                 else
 769                         value_sz = strlen(data) + 1;
 770                 break;
 771         case DATA_TYPE_BOOLEAN_ARRAY:
 772                 value_sz = (uint64_t)nelem * sizeof (boolean_t);
 773                 break;
 774         case DATA_TYPE_BYTE_ARRAY:
 775                 value_sz = (uint64_t)nelem * sizeof (uchar_t);
 776                 break;
 777         case DATA_TYPE_INT8_ARRAY:
 778                 value_sz = (uint64_t)nelem * sizeof (int8_t);
 779                 break;
 780         case DATA_TYPE_UINT8_ARRAY:
 781                 value_sz = (uint64_t)nelem * sizeof (uint8_t);
 782                 break;
 783         case DATA_TYPE_INT16_ARRAY:
 784                 value_sz = (uint64_t)nelem * sizeof (int16_t);
 785                 break;
 786         case DATA_TYPE_UINT16_ARRAY:
 787                 value_sz = (uint64_t)nelem * sizeof (uint16_t);
 788                 break;
 789         case DATA_TYPE_INT32_ARRAY:
 790                 value_sz = (uint64_t)nelem * sizeof (int32_t);
 791                 break;
 792         case DATA_TYPE_UINT32_ARRAY:
 793                 value_sz = (uint64_t)nelem * sizeof (uint32_t);
 794                 break;
 795         case DATA_TYPE_INT64_ARRAY:
 796                 value_sz = (uint64_t)nelem * sizeof (int64_t);
 797                 break;
 798         case DATA_TYPE_UINT64_ARRAY:
 799                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 800                 break;
 801         case DATA_TYPE_STRING_ARRAY:
 802                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 803 
 804                 if (data != NULL) {
 805                         char *const *strs = data;
 806                         uint_t i;
 807 
 808                         /* no alignment requirement for strings */
 809                         for (i = 0; i < nelem; i++) {
 810                                 if (strs[i] == NULL)
 811                                         return (-1);
 812                                 value_sz += strlen(strs[i]) + 1;
 813                         }
 814                 }
 815                 break;
 816         case DATA_TYPE_HRTIME:
 817                 value_sz = sizeof (hrtime_t);
 818                 break;
 819         case DATA_TYPE_NVLIST:
 820                 value_sz = NV_ALIGN(sizeof (nvlist_t));
 821                 break;
 822         case DATA_TYPE_NVLIST_ARRAY:
 823                 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
 824                     (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
 825                 break;
 826         default:
 827                 return (-1);
 828         }
 829 
 830         return (value_sz > INT32_MAX ? -1 : (int)value_sz);
 831 }
 832 
 833 static int
 834 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
 835 {
 836         nvpriv_t *priv;
 837         int err;
 838 
 839         if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
 840             nvl->nvl_priv)) == NULL)
 841                 return (ENOMEM);
 842 
 843         nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
 844 
 845         if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
 846                 nvlist_free(emb_nvl);
 847                 emb_nvl->nvl_priv = 0;
 848         }
 849 
 850         return (err);
 851 }
 852 
 853 /*
 854  * nvlist_add_common - Add new <name,value> pair to nvlist
 855  */
 856 static int
 857 nvlist_add_common(nvlist_t *nvl, const char *name,
 858     data_type_t type, uint_t nelem, const void *data)
 859 {
 860         nvpair_t *nvp;
 861         uint_t i;
 862 
 863         int nvp_sz, name_sz, value_sz;
 864         int err = 0;
 865 
 866         if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
 867                 return (EINVAL);
 868 
 869         if (nelem != 0 && data == NULL)
 870                 return (EINVAL);
 871 
 872         /*
 873          * Verify type and nelem and get the value size.
 874          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
 875          * is the size of the string(s) included.
 876          */
 877         if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
 878                 return (EINVAL);
 879 
 880         if (i_validate_nvpair_value(type, nelem, data) != 0)
 881                 return (EINVAL);
 882 
 883         /*
 884          * If we're adding an nvlist or nvlist array, ensure that we are not
 885          * adding the input nvlist to itself, which would cause recursion,
 886          * and ensure that no NULL nvlist pointers are present.
 887          */
 888         switch (type) {
 889         case DATA_TYPE_NVLIST:
 890                 if (data == nvl || data == NULL)
 891                         return (EINVAL);
 892                 break;
 893         case DATA_TYPE_NVLIST_ARRAY: {
 894                 nvlist_t **onvlp = (nvlist_t **)data;
 895                 for (i = 0; i < nelem; i++) {
 896                         if (onvlp[i] == nvl || onvlp[i] == NULL)
 897                                 return (EINVAL);
 898                 }
 899                 break;
 900         }
 901         default:
 902                 break;
 903         }
 904 
 905         /* calculate sizes of the nvpair elements and the nvpair itself */
 906         name_sz = strlen(name) + 1;
 907 
 908         nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
 909 
 910         if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
 911                 return (ENOMEM);
 912 
 913         ASSERT(nvp->nvp_size == nvp_sz);
 914         nvp->nvp_name_sz = name_sz;
 915         nvp->nvp_value_elem = nelem;
 916         nvp->nvp_type = type;
 917         bcopy(name, NVP_NAME(nvp), name_sz);
 918 
 919         switch (type) {
 920         case DATA_TYPE_BOOLEAN:
 921                 break;
 922         case DATA_TYPE_STRING_ARRAY: {
 923                 char *const *strs = data;
 924                 char *buf = NVP_VALUE(nvp);
 925                 char **cstrs = (void *)buf;
 926 
 927                 /* skip pre-allocated space for pointer array */
 928                 buf += nelem * sizeof (uint64_t);
 929                 for (i = 0; i < nelem; i++) {
 930                         int slen = strlen(strs[i]) + 1;
 931                         bcopy(strs[i], buf, slen);
 932                         cstrs[i] = buf;
 933                         buf += slen;
 934                 }
 935                 break;
 936         }
 937         case DATA_TYPE_NVLIST: {
 938                 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
 939                 nvlist_t *onvl = (nvlist_t *)data;
 940 
 941                 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
 942                         nvp_buf_free(nvl, nvp);
 943                         return (err);
 944                 }
 945                 break;
 946         }
 947         case DATA_TYPE_NVLIST_ARRAY: {
 948                 nvlist_t **onvlp = (nvlist_t **)data;
 949                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 950                 nvlist_t *embedded = (nvlist_t *)
 951                     ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
 952 
 953                 for (i = 0; i < nelem; i++) {
 954                         if ((err = nvlist_copy_embedded(nvl,
 955                             onvlp[i], embedded)) != 0) {
 956                                 /*
 957                                  * Free any successfully created lists
 958                                  */
 959                                 nvpair_free(nvp);
 960                                 nvp_buf_free(nvl, nvp);
 961                                 return (err);
 962                         }
 963 
 964                         nvlp[i] = embedded++;
 965                 }
 966                 break;
 967         }
 968         default:
 969                 bcopy(data, NVP_VALUE(nvp), value_sz);
 970         }
 971 
 972         /* if unique name, remove before add */
 973         if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
 974                 (void) nvlist_remove_all(nvl, name);
 975         else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
 976                 (void) nvlist_remove(nvl, name, type);
 977 
 978         nvp_buf_link(nvl, nvp);
 979 
 980         return (0);
 981 }
 982 
 983 int
 984 nvlist_add_boolean(nvlist_t *nvl, const char *name)
 985 {
 986         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
 987 }
 988 
 989 int
 990 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
 991 {
 992         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
 993 }
 994 
 995 int
 996 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
 997 {
 998         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
 999 }
1000 
1001 int
1002 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1003 {
1004         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1005 }
1006 
1007 int
1008 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1009 {
1010         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1011 }
1012 
1013 int
1014 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1015 {
1016         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1017 }
1018 
1019 int
1020 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1021 {
1022         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1023 }
1024 
1025 int
1026 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1027 {
1028         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1029 }
1030 
1031 int
1032 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1033 {
1034         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1035 }
1036 
1037 int
1038 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1039 {
1040         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1041 }
1042 
1043 int
1044 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1045 {
1046         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1047 }
1048 
1049 #if !defined(_KERNEL)
1050 int
1051 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1052 {
1053         return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1054 }
1055 #endif
1056 
1057 int
1058 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1059 {
1060         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1061 }
1062 
1063 int
1064 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1065     boolean_t *a, uint_t n)
1066 {
1067         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1068 }
1069 
1070 int
1071 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1072 {
1073         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1074 }
1075 
1076 int
1077 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1078 {
1079         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1080 }
1081 
1082 int
1083 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1084 {
1085         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1086 }
1087 
1088 int
1089 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1090 {
1091         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1092 }
1093 
1094 int
1095 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1096 {
1097         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1098 }
1099 
1100 int
1101 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1102 {
1103         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1104 }
1105 
1106 int
1107 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1108 {
1109         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1110 }
1111 
1112 int
1113 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1114 {
1115         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1116 }
1117 
1118 int
1119 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1120 {
1121         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1122 }
1123 
1124 int
1125 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1126     char *const *a, uint_t n)
1127 {
1128         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1129 }
1130 
1131 int
1132 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1133 {
1134         return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1135 }
1136 
1137 int
1138 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1139 {
1140         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1141 }
1142 
1143 int
1144 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1145 {
1146         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1147 }
1148 
1149 /* reading name-value pairs */
1150 nvpair_t *
1151 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1152 {
1153         nvpriv_t *priv;
1154         i_nvp_t *curr;
1155 
1156         if (nvl == NULL ||
1157             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1158                 return (NULL);
1159 
1160         curr = NVPAIR2I_NVP(nvp);
1161 
1162         /*
1163          * Ensure that nvp is a valid nvpair on this nvlist.
1164          * NB: nvp_curr is used only as a hint so that we don't always
1165          * have to walk the list to determine if nvp is still on the list.
1166          */
1167         if (nvp == NULL)
1168                 curr = priv->nvp_list;
1169         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1170                 curr = curr->nvi_next;
1171         else
1172                 curr = NULL;
1173 
1174         priv->nvp_curr = curr;
1175 
1176         return (curr != NULL ? &curr->nvi_nvp : NULL);
1177 }
1178 
1179 nvpair_t *
1180 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1181 {
1182         nvpriv_t *priv;
1183         i_nvp_t *curr;
1184 
1185         if (nvl == NULL ||
1186             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1187                 return (NULL);
1188 
1189         curr = NVPAIR2I_NVP(nvp);
1190 
1191         if (nvp == NULL)
1192                 curr = priv->nvp_last;
1193         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1194                 curr = curr->nvi_prev;
1195         else
1196                 curr = NULL;
1197 
1198         priv->nvp_curr = curr;
1199 
1200         return (curr != NULL ? &curr->nvi_nvp : NULL);
1201 }
1202 
1203 boolean_t
1204 nvlist_empty(nvlist_t *nvl)
1205 {
1206         nvpriv_t *priv;
1207 
1208         if (nvl == NULL ||
1209             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1210                 return (B_TRUE);
1211 
1212         return (priv->nvp_list == NULL);
1213 }
1214 
1215 char *
1216 nvpair_name(nvpair_t *nvp)
1217 {
1218         return (NVP_NAME(nvp));
1219 }
1220 
1221 data_type_t
1222 nvpair_type(nvpair_t *nvp)
1223 {
1224         return (NVP_TYPE(nvp));
1225 }
1226 
1227 int
1228 nvpair_type_is_array(nvpair_t *nvp)
1229 {
1230         data_type_t type = NVP_TYPE(nvp);
1231 
1232         if ((type == DATA_TYPE_BYTE_ARRAY) ||
1233             (type == DATA_TYPE_INT8_ARRAY) ||
1234             (type == DATA_TYPE_UINT8_ARRAY) ||
1235             (type == DATA_TYPE_INT16_ARRAY) ||
1236             (type == DATA_TYPE_UINT16_ARRAY) ||
1237             (type == DATA_TYPE_INT32_ARRAY) ||
1238             (type == DATA_TYPE_UINT32_ARRAY) ||
1239             (type == DATA_TYPE_INT64_ARRAY) ||
1240             (type == DATA_TYPE_UINT64_ARRAY) ||
1241             (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1242             (type == DATA_TYPE_STRING_ARRAY) ||
1243             (type == DATA_TYPE_NVLIST_ARRAY))
1244                 return (1);
1245         return (0);
1246 
1247 }
1248 
1249 static int
1250 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1251 {
1252         if (nvp == NULL || nvpair_type(nvp) != type)
1253                 return (EINVAL);
1254 
1255         /*
1256          * For non-array types, we copy the data.
1257          * For array types (including string), we set a pointer.
1258          */
1259         switch (type) {
1260         case DATA_TYPE_BOOLEAN:
1261                 if (nelem != NULL)
1262                         *nelem = 0;
1263                 break;
1264 
1265         case DATA_TYPE_BOOLEAN_VALUE:
1266         case DATA_TYPE_BYTE:
1267         case DATA_TYPE_INT8:
1268         case DATA_TYPE_UINT8:
1269         case DATA_TYPE_INT16:
1270         case DATA_TYPE_UINT16:
1271         case DATA_TYPE_INT32:
1272         case DATA_TYPE_UINT32:
1273         case DATA_TYPE_INT64:
1274         case DATA_TYPE_UINT64:
1275         case DATA_TYPE_HRTIME:
1276 #if !defined(_KERNEL)
1277         case DATA_TYPE_DOUBLE:
1278 #endif
1279                 if (data == NULL)
1280                         return (EINVAL);
1281                 bcopy(NVP_VALUE(nvp), data,
1282                     (size_t)i_get_value_size(type, NULL, 1));
1283                 if (nelem != NULL)
1284                         *nelem = 1;
1285                 break;
1286 
1287         case DATA_TYPE_NVLIST:
1288         case DATA_TYPE_STRING:
1289                 if (data == NULL)
1290                         return (EINVAL);
1291                 *(void **)data = (void *)NVP_VALUE(nvp);
1292                 if (nelem != NULL)
1293                         *nelem = 1;
1294                 break;
1295 
1296         case DATA_TYPE_BOOLEAN_ARRAY:
1297         case DATA_TYPE_BYTE_ARRAY:
1298         case DATA_TYPE_INT8_ARRAY:
1299         case DATA_TYPE_UINT8_ARRAY:
1300         case DATA_TYPE_INT16_ARRAY:
1301         case DATA_TYPE_UINT16_ARRAY:
1302         case DATA_TYPE_INT32_ARRAY:
1303         case DATA_TYPE_UINT32_ARRAY:
1304         case DATA_TYPE_INT64_ARRAY:
1305         case DATA_TYPE_UINT64_ARRAY:
1306         case DATA_TYPE_STRING_ARRAY:
1307         case DATA_TYPE_NVLIST_ARRAY:
1308                 if (nelem == NULL || data == NULL)
1309                         return (EINVAL);
1310                 if ((*nelem = NVP_NELEM(nvp)) != 0)
1311                         *(void **)data = (void *)NVP_VALUE(nvp);
1312                 else
1313                         *(void **)data = NULL;
1314                 break;
1315 
1316         default:
1317                 return (ENOTSUP);
1318         }
1319 
1320         return (0);
1321 }
1322 
1323 static int
1324 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1325     uint_t *nelem, void *data)
1326 {
1327         nvpriv_t *priv;
1328         nvpair_t *nvp;
1329         i_nvp_t *curr;
1330 
1331         if (name == NULL || nvl == NULL ||
1332             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1333                 return (EINVAL);
1334 
1335         if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1336                 return (ENOTSUP);
1337 
1338         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1339                 nvp = &curr->nvi_nvp;
1340 
1341                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1342                         return (nvpair_value_common(nvp, type, nelem, data));
1343         }
1344 
1345         return (ENOENT);
1346 }
1347 
1348 int
1349 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1350 {
1351         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1352 }
1353 
1354 int
1355 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1356 {
1357         return (nvlist_lookup_common(nvl, name,
1358             DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1359 }
1360 
1361 int
1362 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1363 {
1364         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1365 }
1366 
1367 int
1368 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1369 {
1370         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1371 }
1372 
1373 int
1374 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1375 {
1376         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1377 }
1378 
1379 int
1380 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1381 {
1382         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1383 }
1384 
1385 int
1386 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1387 {
1388         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1389 }
1390 
1391 int
1392 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1393 {
1394         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1395 }
1396 
1397 int
1398 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1399 {
1400         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1401 }
1402 
1403 int
1404 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1405 {
1406         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1407 }
1408 
1409 int
1410 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1411 {
1412         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1413 }
1414 
1415 #if !defined(_KERNEL)
1416 int
1417 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1418 {
1419         return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1420 }
1421 #endif
1422 
1423 int
1424 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1425 {
1426         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1427 }
1428 
1429 int
1430 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1431 {
1432         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1433 }
1434 
1435 int
1436 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1437     boolean_t **a, uint_t *n)
1438 {
1439         return (nvlist_lookup_common(nvl, name,
1440             DATA_TYPE_BOOLEAN_ARRAY, n, a));
1441 }
1442 
1443 int
1444 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1445     uchar_t **a, uint_t *n)
1446 {
1447         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1448 }
1449 
1450 int
1451 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1452 {
1453         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1454 }
1455 
1456 int
1457 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1458     uint8_t **a, uint_t *n)
1459 {
1460         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1461 }
1462 
1463 int
1464 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1465     int16_t **a, uint_t *n)
1466 {
1467         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1468 }
1469 
1470 int
1471 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1472     uint16_t **a, uint_t *n)
1473 {
1474         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1475 }
1476 
1477 int
1478 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1479     int32_t **a, uint_t *n)
1480 {
1481         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1482 }
1483 
1484 int
1485 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1486     uint32_t **a, uint_t *n)
1487 {
1488         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1489 }
1490 
1491 int
1492 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1493     int64_t **a, uint_t *n)
1494 {
1495         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1496 }
1497 
1498 int
1499 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1500     uint64_t **a, uint_t *n)
1501 {
1502         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1503 }
1504 
1505 int
1506 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1507     char ***a, uint_t *n)
1508 {
1509         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1510 }
1511 
1512 int
1513 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1514     nvlist_t ***a, uint_t *n)
1515 {
1516         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1517 }
1518 
1519 int
1520 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1521 {
1522         return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1523 }
1524 
1525 int
1526 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1527 {
1528         va_list ap;
1529         char *name;
1530         int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1531         int ret = 0;
1532 
1533         va_start(ap, flag);
1534         while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1535                 data_type_t type;
1536                 void *val;
1537                 uint_t *nelem;
1538 
1539                 switch (type = va_arg(ap, data_type_t)) {
1540                 case DATA_TYPE_BOOLEAN:
1541                         ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1542                         break;
1543 
1544                 case DATA_TYPE_BOOLEAN_VALUE:
1545                 case DATA_TYPE_BYTE:
1546                 case DATA_TYPE_INT8:
1547                 case DATA_TYPE_UINT8:
1548                 case DATA_TYPE_INT16:
1549                 case DATA_TYPE_UINT16:
1550                 case DATA_TYPE_INT32:
1551                 case DATA_TYPE_UINT32:
1552                 case DATA_TYPE_INT64:
1553                 case DATA_TYPE_UINT64:
1554                 case DATA_TYPE_HRTIME:
1555                 case DATA_TYPE_STRING:
1556                 case DATA_TYPE_NVLIST:
1557 #if !defined(_KERNEL)
1558                 case DATA_TYPE_DOUBLE:
1559 #endif
1560                         val = va_arg(ap, void *);
1561                         ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1562                         break;
1563 
1564                 case DATA_TYPE_BYTE_ARRAY:
1565                 case DATA_TYPE_BOOLEAN_ARRAY:
1566                 case DATA_TYPE_INT8_ARRAY:
1567                 case DATA_TYPE_UINT8_ARRAY:
1568                 case DATA_TYPE_INT16_ARRAY:
1569                 case DATA_TYPE_UINT16_ARRAY:
1570                 case DATA_TYPE_INT32_ARRAY:
1571                 case DATA_TYPE_UINT32_ARRAY:
1572                 case DATA_TYPE_INT64_ARRAY:
1573                 case DATA_TYPE_UINT64_ARRAY:
1574                 case DATA_TYPE_STRING_ARRAY:
1575                 case DATA_TYPE_NVLIST_ARRAY:
1576                         val = va_arg(ap, void *);
1577                         nelem = va_arg(ap, uint_t *);
1578                         ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1579                         break;
1580 
1581                 default:
1582                         ret = EINVAL;
1583                 }
1584 
1585                 if (ret == ENOENT && noentok)
1586                         ret = 0;
1587         }
1588         va_end(ap);
1589 
1590         return (ret);
1591 }
1592 
1593 /*
1594  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1595  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1596  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1597  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1598  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1599  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convience,
1600  * code also supports "a.d[3]e[1]" syntax).
1601  *
1602  * If 'ip' is non-NULL and the last name component is an array, return the
1603  * value of the "...[index]" array index in *ip. For an array reference that
1604  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1605  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1606  * inside the 'name' string where the syntax error was detected.
1607  */
1608 static int
1609 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1610     nvpair_t **ret, int *ip, char **ep)
1611 {
1612         nvpair_t        *nvp;
1613         const char      *np;
1614         char            *sepp;
1615         char            *idxp, *idxep;
1616         nvlist_t        **nva;
1617         long            idx;
1618         int             n;
1619 
1620         if (ip)
1621                 *ip = -1;                       /* not indexed */
1622         if (ep)
1623                 *ep = NULL;
1624 
1625         if ((nvl == NULL) || (name == NULL))
1626                 return (EINVAL);
1627 
1628         sepp = NULL;
1629         idx = 0;
1630         /* step through components of name */
1631         for (np = name; np && *np; np = sepp) {
1632                 /* ensure unique names */
1633                 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1634                         return (ENOTSUP);
1635 
1636                 /* skip white space */
1637                 skip_whitespace(np);
1638                 if (*np == 0)
1639                         break;
1640 
1641                 /* set 'sepp' to end of current component 'np' */
1642                 if (sep)
1643                         sepp = strchr(np, sep);
1644                 else
1645                         sepp = NULL;
1646 
1647                 /* find start of next "[ index ]..." */
1648                 idxp = strchr(np, '[');
1649 
1650                 /* if sepp comes first, set idxp to NULL */
1651                 if (sepp && idxp && (sepp < idxp))
1652                         idxp = NULL;
1653 
1654                 /*
1655                  * At this point 'idxp' is set if there is an index
1656                  * expected for the current component.
1657                  */
1658                 if (idxp) {
1659                         /* set 'n' to length of current 'np' name component */
1660                         n = idxp++ - np;
1661 
1662                         /* keep sepp up to date for *ep use as we advance */
1663                         skip_whitespace(idxp);
1664                         sepp = idxp;
1665 
1666                         /* determine the index value */
1667 #if defined(_KERNEL) && !defined(_BOOT)
1668                         if (ddi_strtol(idxp, &idxep, 0, &idx))
1669                                 goto fail;
1670 #else
1671                         idx = strtol(idxp, &idxep, 0);
1672 #endif
1673                         if (idxep == idxp)
1674                                 goto fail;
1675 
1676                         /* keep sepp up to date for *ep use as we advance */
1677                         sepp = idxep;
1678 
1679                         /* skip white space index value and check for ']' */
1680                         skip_whitespace(sepp);
1681                         if (*sepp++ != ']')
1682                                 goto fail;
1683 
1684                         /* for embedded arrays, support C syntax: "a[1].b" */
1685                         skip_whitespace(sepp);
1686                         if (sep && (*sepp == sep))
1687                                 sepp++;
1688                 } else if (sepp) {
1689                         n = sepp++ - np;
1690                 } else {
1691                         n = strlen(np);
1692                 }
1693 
1694                 /* trim trailing whitespace by reducing length of 'np' */
1695                 if (n == 0)
1696                         goto fail;
1697                 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1698                         ;
1699                 n++;
1700 
1701                 /* skip whitespace, and set sepp to NULL if complete */
1702                 if (sepp) {
1703                         skip_whitespace(sepp);
1704                         if (*sepp == 0)
1705                                 sepp = NULL;
1706                 }
1707 
1708                 /*
1709                  * At this point:
1710                  * o  'n' is the length of current 'np' component.
1711                  * o  'idxp' is set if there was an index, and value 'idx'.
1712                  * o  'sepp' is set to the beginning of the next component,
1713                  *    and set to NULL if we have no more components.
1714                  *
1715                  * Search for nvpair with matching component name.
1716                  */
1717                 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1718                     nvp = nvlist_next_nvpair(nvl, nvp)) {
1719 
1720                         /* continue if no match on name */
1721                         if (strncmp(np, nvpair_name(nvp), n) ||
1722                             (strlen(nvpair_name(nvp)) != n))
1723                                 continue;
1724 
1725                         /* if indexed, verify type is array oriented */
1726                         if (idxp && !nvpair_type_is_array(nvp))
1727                                 goto fail;
1728 
1729                         /*
1730                          * Full match found, return nvp and idx if this
1731                          * was the last component.
1732                          */
1733                         if (sepp == NULL) {
1734                                 if (ret)
1735                                         *ret = nvp;
1736                                 if (ip && idxp)
1737                                         *ip = (int)idx; /* return index */
1738                                 return (0);             /* found */
1739                         }
1740 
1741                         /*
1742                          * More components: current match must be
1743                          * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1744                          * to support going deeper.
1745                          */
1746                         if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1747                                 nvl = EMBEDDED_NVL(nvp);
1748                                 break;
1749                         } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1750                                 (void) nvpair_value_nvlist_array(nvp,
1751                                     &nva, (uint_t *)&n);
1752                                 if ((n < 0) || (idx >= n))
1753                                         goto fail;
1754                                 nvl = nva[idx];
1755                                 break;
1756                         }
1757 
1758                         /* type does not support more levels */
1759                         goto fail;
1760                 }
1761                 if (nvp == NULL)
1762                         goto fail;              /* 'name' not found */
1763 
1764                 /* search for match of next component in embedded 'nvl' list */
1765         }
1766 
1767 fail:   if (ep && sepp)
1768                 *ep = sepp;
1769         return (EINVAL);
1770 }
1771 
1772 /*
1773  * Return pointer to nvpair with specified 'name'.
1774  */
1775 int
1776 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1777 {
1778         return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1779 }
1780 
1781 /*
1782  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1783  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
1784  * description.
1785  */
1786 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1787     const char *name, nvpair_t **ret, int *ip, char **ep)
1788 {
1789         return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1790 }
1791 
1792 boolean_t
1793 nvlist_exists(nvlist_t *nvl, const char *name)
1794 {
1795         nvpriv_t *priv;
1796         nvpair_t *nvp;
1797         i_nvp_t *curr;
1798 
1799         if (name == NULL || nvl == NULL ||
1800             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1801                 return (B_FALSE);
1802 
1803         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1804                 nvp = &curr->nvi_nvp;
1805 
1806                 if (strcmp(name, NVP_NAME(nvp)) == 0)
1807                         return (B_TRUE);
1808         }
1809 
1810         return (B_FALSE);
1811 }
1812 
1813 int
1814 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1815 {
1816         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1817 }
1818 
1819 int
1820 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1821 {
1822         return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1823 }
1824 
1825 int
1826 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1827 {
1828         return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1829 }
1830 
1831 int
1832 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1833 {
1834         return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1835 }
1836 
1837 int
1838 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1839 {
1840         return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1841 }
1842 
1843 int
1844 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1845 {
1846         return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1847 }
1848 
1849 int
1850 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1851 {
1852         return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1853 }
1854 
1855 int
1856 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1857 {
1858         return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1859 }
1860 
1861 int
1862 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1863 {
1864         return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1865 }
1866 
1867 int
1868 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1869 {
1870         return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1871 }
1872 
1873 #if !defined(_KERNEL)
1874 int
1875 nvpair_value_double(nvpair_t *nvp, double *val)
1876 {
1877         return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1878 }
1879 #endif
1880 
1881 int
1882 nvpair_value_string(nvpair_t *nvp, char **val)
1883 {
1884         return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1885 }
1886 
1887 int
1888 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1889 {
1890         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1891 }
1892 
1893 int
1894 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1895 {
1896         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1897 }
1898 
1899 int
1900 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1901 {
1902         return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1903 }
1904 
1905 int
1906 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1907 {
1908         return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1909 }
1910 
1911 int
1912 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1913 {
1914         return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1915 }
1916 
1917 int
1918 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1919 {
1920         return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1921 }
1922 
1923 int
1924 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1925 {
1926         return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1927 }
1928 
1929 int
1930 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1931 {
1932         return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1933 }
1934 
1935 int
1936 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1937 {
1938         return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1939 }
1940 
1941 int
1942 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1943 {
1944         return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1945 }
1946 
1947 int
1948 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1949 {
1950         return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1951 }
1952 
1953 int
1954 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1955 {
1956         return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1957 }
1958 
1959 int
1960 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1961 {
1962         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1963 }
1964 
1965 int
1966 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1967 {
1968         return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1969 }
1970 
1971 /*
1972  * Add specified pair to the list.
1973  */
1974 int
1975 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1976 {
1977         if (nvl == NULL || nvp == NULL)
1978                 return (EINVAL);
1979 
1980         return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1981             NVP_NELEM(nvp), NVP_VALUE(nvp)));
1982 }
1983 
1984 /*
1985  * Merge the supplied nvlists and put the result in dst.
1986  * The merged list will contain all names specified in both lists,
1987  * the values are taken from nvl in the case of duplicates.
1988  * Return 0 on success.
1989  */
1990 /*ARGSUSED*/
1991 int
1992 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1993 {
1994         if (nvl == NULL || dst == NULL)
1995                 return (EINVAL);
1996 
1997         if (dst != nvl)
1998                 return (nvlist_copy_pairs(nvl, dst));
1999 
2000         return (0);
2001 }
2002 
2003 /*
2004  * Encoding related routines
2005  */
2006 #define NVS_OP_ENCODE   0
2007 #define NVS_OP_DECODE   1
2008 #define NVS_OP_GETSIZE  2
2009 
2010 typedef struct nvs_ops nvs_ops_t;
2011 
2012 typedef struct {
2013         int             nvs_op;
2014         const nvs_ops_t *nvs_ops;
2015         void            *nvs_private;
2016         nvpriv_t        *nvs_priv;
2017 } nvstream_t;
2018 
2019 /*
2020  * nvs operations are:
2021  *   - nvs_nvlist
2022  *     encoding / decoding of a nvlist header (nvlist_t)
2023  *     calculates the size used for header and end detection
2024  *
2025  *   - nvs_nvpair
2026  *     responsible for the first part of encoding / decoding of an nvpair
2027  *     calculates the decoded size of an nvpair
2028  *
2029  *   - nvs_nvp_op
2030  *     second part of encoding / decoding of an nvpair
2031  *
2032  *   - nvs_nvp_size
2033  *     calculates the encoding size of an nvpair
2034  *
2035  *   - nvs_nvl_fini
2036  *     encodes the end detection mark (zeros).
2037  */
2038 struct nvs_ops {
2039         int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2040         int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2041         int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2042         int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2043         int (*nvs_nvl_fini)(nvstream_t *);
2044 };
2045 
2046 typedef struct {
2047         char    nvh_encoding;   /* nvs encoding method */
2048         char    nvh_endian;     /* nvs endian */
2049         char    nvh_reserved1;  /* reserved for future use */
2050         char    nvh_reserved2;  /* reserved for future use */
2051 } nvs_header_t;
2052 
2053 static int
2054 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2055 {
2056         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2057         i_nvp_t *curr;
2058 
2059         /*
2060          * Walk nvpair in list and encode each nvpair
2061          */
2062         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2063                 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2064                         return (EFAULT);
2065 
2066         return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2067 }
2068 
2069 static int
2070 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2071 {
2072         nvpair_t *nvp;
2073         size_t nvsize;
2074         int err;
2075 
2076         /*
2077          * Get decoded size of next pair in stream, alloc
2078          * memory for nvpair_t, then decode the nvpair
2079          */
2080         while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2081                 if (nvsize == 0) /* end of list */
2082                         break;
2083 
2084                 /* make sure len makes sense */
2085                 if (nvsize < NVP_SIZE_CALC(1, 0))
2086                         return (EFAULT);
2087 
2088                 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2089                         return (ENOMEM);
2090 
2091                 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2092                         nvp_buf_free(nvl, nvp);
2093                         return (err);
2094                 }
2095 
2096                 if (i_validate_nvpair(nvp) != 0) {
2097                         nvpair_free(nvp);
2098                         nvp_buf_free(nvl, nvp);
2099                         return (EFAULT);
2100                 }
2101 
2102                 nvp_buf_link(nvl, nvp);
2103         }
2104         return (err);
2105 }
2106 
2107 static int
2108 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2109 {
2110         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2111         i_nvp_t *curr;
2112         uint64_t nvsize = *buflen;
2113         size_t size;
2114 
2115         /*
2116          * Get encoded size of nvpairs in nvlist
2117          */
2118         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2119                 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2120                         return (EINVAL);
2121 
2122                 if ((nvsize += size) > INT32_MAX)
2123                         return (EINVAL);
2124         }
2125 
2126         *buflen = nvsize;
2127         return (0);
2128 }
2129 
2130 static int
2131 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2132 {
2133         int err;
2134 
2135         if (nvl->nvl_priv == 0)
2136                 return (EFAULT);
2137 
2138         /*
2139          * Perform the operation, starting with header, then each nvpair
2140          */
2141         if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2142                 return (err);
2143 
2144         switch (nvs->nvs_op) {
2145         case NVS_OP_ENCODE:
2146                 err = nvs_encode_pairs(nvs, nvl);
2147                 break;
2148 
2149         case NVS_OP_DECODE:
2150                 err = nvs_decode_pairs(nvs, nvl);
2151                 break;
2152 
2153         case NVS_OP_GETSIZE:
2154                 err = nvs_getsize_pairs(nvs, nvl, buflen);
2155                 break;
2156 
2157         default:
2158                 err = EINVAL;
2159         }
2160 
2161         return (err);
2162 }
2163 
2164 static int
2165 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2166 {
2167         switch (nvs->nvs_op) {
2168         case NVS_OP_ENCODE:
2169                 return (nvs_operation(nvs, embedded, NULL));
2170 
2171         case NVS_OP_DECODE: {
2172                 nvpriv_t *priv;
2173                 int err;
2174 
2175                 if (embedded->nvl_version != NV_VERSION)
2176                         return (ENOTSUP);
2177 
2178                 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2179                         return (ENOMEM);
2180 
2181                 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2182 
2183                 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2184                         nvlist_free(embedded);
2185                 return (err);
2186         }
2187         default:
2188                 break;
2189         }
2190 
2191         return (EINVAL);
2192 }
2193 
2194 static int
2195 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2196 {
2197         size_t nelem = NVP_NELEM(nvp);
2198         nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2199         int i;
2200 
2201         switch (nvs->nvs_op) {
2202         case NVS_OP_ENCODE:
2203                 for (i = 0; i < nelem; i++)
2204                         if (nvs_embedded(nvs, nvlp[i]) != 0)
2205                                 return (EFAULT);
2206                 break;
2207 
2208         case NVS_OP_DECODE: {
2209                 size_t len = nelem * sizeof (uint64_t);
2210                 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2211 
2212                 bzero(nvlp, len);       /* don't trust packed data */
2213                 for (i = 0; i < nelem; i++) {
2214                         if (nvs_embedded(nvs, embedded) != 0) {
2215                                 nvpair_free(nvp);
2216                                 return (EFAULT);
2217                         }
2218 
2219                         nvlp[i] = embedded++;
2220                 }
2221                 break;
2222         }
2223         case NVS_OP_GETSIZE: {
2224                 uint64_t nvsize = 0;
2225 
2226                 for (i = 0; i < nelem; i++) {
2227                         size_t nvp_sz = 0;
2228 
2229                         if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2230                                 return (EINVAL);
2231 
2232                         if ((nvsize += nvp_sz) > INT32_MAX)
2233                                 return (EINVAL);
2234                 }
2235 
2236                 *size = nvsize;
2237                 break;
2238         }
2239         default:
2240                 return (EINVAL);
2241         }
2242 
2243         return (0);
2244 }
2245 
2246 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2247 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2248 
2249 /*
2250  * Common routine for nvlist operations:
2251  * encode, decode, getsize (encoded size).
2252  */
2253 static int
2254 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2255     int nvs_op)
2256 {
2257         int err = 0;
2258         nvstream_t nvs;
2259         int nvl_endian;
2260 #ifdef  _LITTLE_ENDIAN
2261         int host_endian = 1;
2262 #else
2263         int host_endian = 0;
2264 #endif  /* _LITTLE_ENDIAN */
2265         nvs_header_t *nvh = (void *)buf;
2266 
2267         if (buflen == NULL || nvl == NULL ||
2268             (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2269                 return (EINVAL);
2270 
2271         nvs.nvs_op = nvs_op;
2272 
2273         /*
2274          * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2275          * a buffer is allocated.  The first 4 bytes in the buffer are
2276          * used for encoding method and host endian.
2277          */
2278         switch (nvs_op) {
2279         case NVS_OP_ENCODE:
2280                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2281                         return (EINVAL);
2282 
2283                 nvh->nvh_encoding = encoding;
2284                 nvh->nvh_endian = nvl_endian = host_endian;
2285                 nvh->nvh_reserved1 = 0;
2286                 nvh->nvh_reserved2 = 0;
2287                 break;
2288 
2289         case NVS_OP_DECODE:
2290                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2291                         return (EINVAL);
2292 
2293                 /* get method of encoding from first byte */
2294                 encoding = nvh->nvh_encoding;
2295                 nvl_endian = nvh->nvh_endian;
2296                 break;
2297 
2298         case NVS_OP_GETSIZE:
2299                 nvl_endian = host_endian;
2300 
2301                 /*
2302                  * add the size for encoding
2303                  */
2304                 *buflen = sizeof (nvs_header_t);
2305                 break;
2306 
2307         default:
2308                 return (ENOTSUP);
2309         }
2310 
2311         /*
2312          * Create an nvstream with proper encoding method
2313          */
2314         switch (encoding) {
2315         case NV_ENCODE_NATIVE:
2316                 /*
2317                  * check endianness, in case we are unpacking
2318                  * from a file
2319                  */
2320                 if (nvl_endian != host_endian)
2321                         return (ENOTSUP);
2322                 err = nvs_native(&nvs, nvl, buf, buflen);
2323                 break;
2324         case NV_ENCODE_XDR:
2325                 err = nvs_xdr(&nvs, nvl, buf, buflen);
2326                 break;
2327         default:
2328                 err = ENOTSUP;
2329                 break;
2330         }
2331 
2332         return (err);
2333 }
2334 
2335 int
2336 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2337 {
2338         return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2339 }
2340 
2341 /*
2342  * Pack nvlist into contiguous memory
2343  */
2344 /*ARGSUSED1*/
2345 int
2346 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2347     int kmflag)
2348 {
2349 #if defined(_KERNEL) && !defined(_BOOT)
2350         return (nvlist_xpack(nvl, bufp, buflen, encoding,
2351             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2352 #else
2353         return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2354 #endif
2355 }
2356 
2357 int
2358 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2359     nv_alloc_t *nva)
2360 {
2361         nvpriv_t nvpriv;
2362         size_t alloc_size;
2363         char *buf;
2364         int err;
2365 
2366         if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2367                 return (EINVAL);
2368 
2369         if (*bufp != NULL)
2370                 return (nvlist_common(nvl, *bufp, buflen, encoding,
2371                     NVS_OP_ENCODE));
2372 
2373         /*
2374          * Here is a difficult situation:
2375          * 1. The nvlist has fixed allocator properties.
2376          *    All other nvlist routines (like nvlist_add_*, ...) use
2377          *    these properties.
2378          * 2. When using nvlist_pack() the user can specify his own
2379          *    allocator properties (e.g. by using KM_NOSLEEP).
2380          *
2381          * We use the user specified properties (2). A clearer solution
2382          * will be to remove the kmflag from nvlist_pack(), but we will
2383          * not change the interface.
2384          */
2385         nv_priv_init(&nvpriv, nva, 0);
2386 
2387         if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2388                 return (err);
2389 
2390         if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2391                 return (ENOMEM);
2392 
2393         if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2394             NVS_OP_ENCODE)) != 0) {
2395                 nv_mem_free(&nvpriv, buf, alloc_size);
2396         } else {
2397                 *buflen = alloc_size;
2398                 *bufp = buf;
2399         }
2400 
2401         return (err);
2402 }
2403 
2404 /*
2405  * Unpack buf into an nvlist_t
2406  */
2407 /*ARGSUSED1*/
2408 int
2409 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2410 {
2411 #if defined(_KERNEL) && !defined(_BOOT)
2412         return (nvlist_xunpack(buf, buflen, nvlp,
2413             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2414 #else
2415         return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2416 #endif
2417 }
2418 
2419 int
2420 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2421 {
2422         nvlist_t *nvl;
2423         int err;
2424 
2425         if (nvlp == NULL)
2426                 return (EINVAL);
2427 
2428         if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2429                 return (err);
2430 
2431         if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2432                 nvlist_free(nvl);
2433         else
2434                 *nvlp = nvl;
2435 
2436         return (err);
2437 }
2438 
2439 /*
2440  * Native encoding functions
2441  */
2442 typedef struct {
2443         /*
2444          * This structure is used when decoding a packed nvpair in
2445          * the native format.  n_base points to a buffer containing the
2446          * packed nvpair.  n_end is a pointer to the end of the buffer.
2447          * (n_end actually points to the first byte past the end of the
2448          * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2449          * It points to the current data that we are decoding.
2450          * The amount of data left in the buffer is equal to n_end - n_curr.
2451          * n_flag is used to recognize a packed embedded list.
2452          */
2453         caddr_t n_base;
2454         caddr_t n_end;
2455         caddr_t n_curr;
2456         uint_t  n_flag;
2457 } nvs_native_t;
2458 
2459 static int
2460 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2461     size_t buflen)
2462 {
2463         switch (nvs->nvs_op) {
2464         case NVS_OP_ENCODE:
2465         case NVS_OP_DECODE:
2466                 nvs->nvs_private = native;
2467                 native->n_curr = native->n_base = buf;
2468                 native->n_end = buf + buflen;
2469                 native->n_flag = 0;
2470                 return (0);
2471 
2472         case NVS_OP_GETSIZE:
2473                 nvs->nvs_private = native;
2474                 native->n_curr = native->n_base = native->n_end = NULL;
2475                 native->n_flag = 0;
2476                 return (0);
2477         default:
2478                 return (EINVAL);
2479         }
2480 }
2481 
2482 /*ARGSUSED*/
2483 static void
2484 nvs_native_destroy(nvstream_t *nvs)
2485 {
2486 }
2487 
2488 static int
2489 native_cp(nvstream_t *nvs, void *buf, size_t size)
2490 {
2491         nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2492 
2493         if (native->n_curr + size > native->n_end)
2494                 return (EFAULT);
2495 
2496         /*
2497          * The bcopy() below eliminates alignment requirement
2498          * on the buffer (stream) and is preferred over direct access.
2499          */
2500         switch (nvs->nvs_op) {
2501         case NVS_OP_ENCODE:
2502                 bcopy(buf, native->n_curr, size);
2503                 break;
2504         case NVS_OP_DECODE:
2505                 bcopy(native->n_curr, buf, size);
2506                 break;
2507         default:
2508                 return (EINVAL);
2509         }
2510 
2511         native->n_curr += size;
2512         return (0);
2513 }
2514 
2515 /*
2516  * operate on nvlist_t header
2517  */
2518 static int
2519 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2520 {
2521         nvs_native_t *native = nvs->nvs_private;
2522 
2523         switch (nvs->nvs_op) {
2524         case NVS_OP_ENCODE:
2525         case NVS_OP_DECODE:
2526                 if (native->n_flag)
2527                         return (0);     /* packed embedded list */
2528 
2529                 native->n_flag = 1;
2530 
2531                 /* copy version and nvflag of the nvlist_t */
2532                 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2533                     native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2534                         return (EFAULT);
2535 
2536                 return (0);
2537 
2538         case NVS_OP_GETSIZE:
2539                 /*
2540                  * if calculate for packed embedded list
2541                  *      4 for end of the embedded list
2542                  * else
2543                  *      2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2544                  *      and 4 for end of the entire list
2545                  */
2546                 if (native->n_flag) {
2547                         *size += 4;
2548                 } else {
2549                         native->n_flag = 1;
2550                         *size += 2 * sizeof (int32_t) + 4;
2551                 }
2552 
2553                 return (0);
2554 
2555         default:
2556                 return (EINVAL);
2557         }
2558 }
2559 
2560 static int
2561 nvs_native_nvl_fini(nvstream_t *nvs)
2562 {
2563         if (nvs->nvs_op == NVS_OP_ENCODE) {
2564                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2565                 /*
2566                  * Add 4 zero bytes at end of nvlist. They are used
2567                  * for end detection by the decode routine.
2568                  */
2569                 if (native->n_curr + sizeof (int) > native->n_end)
2570                         return (EFAULT);
2571 
2572                 bzero(native->n_curr, sizeof (int));
2573                 native->n_curr += sizeof (int);
2574         }
2575 
2576         return (0);
2577 }
2578 
2579 static int
2580 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2581 {
2582         if (nvs->nvs_op == NVS_OP_ENCODE) {
2583                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2584                 nvlist_t *packed = (void *)
2585                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2586                 /*
2587                  * Null out the pointer that is meaningless in the packed
2588                  * structure. The address may not be aligned, so we have
2589                  * to use bzero.
2590                  */
2591                 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2592         }
2593 
2594         return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2595 }
2596 
2597 static int
2598 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2599 {
2600         if (nvs->nvs_op == NVS_OP_ENCODE) {
2601                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2602                 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2603                 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2604                 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2605                 int i;
2606                 /*
2607                  * Null out pointers that are meaningless in the packed
2608                  * structure. The addresses may not be aligned, so we have
2609                  * to use bzero.
2610                  */
2611                 bzero(value, len);
2612 
2613                 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2614                         /*
2615                          * Null out the pointer that is meaningless in the
2616                          * packed structure. The address may not be aligned,
2617                          * so we have to use bzero.
2618                          */
2619                         bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2620         }
2621 
2622         return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2623 }
2624 
2625 static void
2626 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2627 {
2628         switch (nvs->nvs_op) {
2629         case NVS_OP_ENCODE: {
2630                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2631                 uint64_t *strp = (void *)
2632                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2633                 /*
2634                  * Null out pointers that are meaningless in the packed
2635                  * structure. The addresses may not be aligned, so we have
2636                  * to use bzero.
2637                  */
2638                 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2639                 break;
2640         }
2641         case NVS_OP_DECODE: {
2642                 char **strp = (void *)NVP_VALUE(nvp);
2643                 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2644                 int i;
2645 
2646                 for (i = 0; i < NVP_NELEM(nvp); i++) {
2647                         strp[i] = buf;
2648                         buf += strlen(buf) + 1;
2649                 }
2650                 break;
2651         }
2652         }
2653 }
2654 
2655 static int
2656 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2657 {
2658         data_type_t type;
2659         int value_sz;
2660         int ret = 0;
2661 
2662         /*
2663          * We do the initial bcopy of the data before we look at
2664          * the nvpair type, because when we're decoding, we won't
2665          * have the correct values for the pair until we do the bcopy.
2666          */
2667         switch (nvs->nvs_op) {
2668         case NVS_OP_ENCODE:
2669         case NVS_OP_DECODE:
2670                 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2671                         return (EFAULT);
2672                 break;
2673         default:
2674                 return (EINVAL);
2675         }
2676 
2677         /* verify nvp_name_sz, check the name string length */
2678         if (i_validate_nvpair_name(nvp) != 0)
2679                 return (EFAULT);
2680 
2681         type = NVP_TYPE(nvp);
2682 
2683         /*
2684          * Verify type and nelem and get the value size.
2685          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2686          * is the size of the string(s) excluded.
2687          */
2688         if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2689                 return (EFAULT);
2690 
2691         if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2692                 return (EFAULT);
2693 
2694         switch (type) {
2695         case DATA_TYPE_NVLIST:
2696                 ret = nvpair_native_embedded(nvs, nvp);
2697                 break;
2698         case DATA_TYPE_NVLIST_ARRAY:
2699                 ret = nvpair_native_embedded_array(nvs, nvp);
2700                 break;
2701         case DATA_TYPE_STRING_ARRAY:
2702                 nvpair_native_string_array(nvs, nvp);
2703                 break;
2704         default:
2705                 break;
2706         }
2707 
2708         return (ret);
2709 }
2710 
2711 static int
2712 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2713 {
2714         uint64_t nvp_sz = nvp->nvp_size;
2715 
2716         switch (NVP_TYPE(nvp)) {
2717         case DATA_TYPE_NVLIST: {
2718                 size_t nvsize = 0;
2719 
2720                 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2721                         return (EINVAL);
2722 
2723                 nvp_sz += nvsize;
2724                 break;
2725         }
2726         case DATA_TYPE_NVLIST_ARRAY: {
2727                 size_t nvsize;
2728 
2729                 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2730                         return (EINVAL);
2731 
2732                 nvp_sz += nvsize;
2733                 break;
2734         }
2735         default:
2736                 break;
2737         }
2738 
2739         if (nvp_sz > INT32_MAX)
2740                 return (EINVAL);
2741 
2742         *size = nvp_sz;
2743 
2744         return (0);
2745 }
2746 
2747 static int
2748 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2749 {
2750         switch (nvs->nvs_op) {
2751         case NVS_OP_ENCODE:
2752                 return (nvs_native_nvp_op(nvs, nvp));
2753 
2754         case NVS_OP_DECODE: {
2755                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2756                 int32_t decode_len;
2757 
2758                 /* try to read the size value from the stream */
2759                 if (native->n_curr + sizeof (int32_t) > native->n_end)
2760                         return (EFAULT);
2761                 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2762 
2763                 /* sanity check the size value */
2764                 if (decode_len < 0 ||
2765                     decode_len > native->n_end - native->n_curr)
2766                         return (EFAULT);
2767 
2768                 *size = decode_len;
2769 
2770                 /*
2771                  * If at the end of the stream then move the cursor
2772                  * forward, otherwise nvpair_native_op() will read
2773                  * the entire nvpair at the same cursor position.
2774                  */
2775                 if (*size == 0)
2776                         native->n_curr += sizeof (int32_t);
2777                 break;
2778         }
2779 
2780         default:
2781                 return (EINVAL);
2782         }
2783 
2784         return (0);
2785 }
2786 
2787 static const nvs_ops_t nvs_native_ops = {
2788         nvs_native_nvlist,
2789         nvs_native_nvpair,
2790         nvs_native_nvp_op,
2791         nvs_native_nvp_size,
2792         nvs_native_nvl_fini
2793 };
2794 
2795 static int
2796 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2797 {
2798         nvs_native_t native;
2799         int err;
2800 
2801         nvs->nvs_ops = &nvs_native_ops;
2802 
2803         if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2804             *buflen - sizeof (nvs_header_t))) != 0)
2805                 return (err);
2806 
2807         err = nvs_operation(nvs, nvl, buflen);
2808 
2809         nvs_native_destroy(nvs);
2810 
2811         return (err);
2812 }
2813 
2814 /*
2815  * XDR encoding functions
2816  *
2817  * An xdr packed nvlist is encoded as:
2818  *
2819  *  - encoding methode and host endian (4 bytes)
2820  *  - nvl_version (4 bytes)
2821  *  - nvl_nvflag (4 bytes)
2822  *
2823  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
2824  *      - encoded size of the nvpair (4 bytes)
2825  *      - decoded size of the nvpair (4 bytes)
2826  *      - name string, (4 + sizeof(NV_ALIGN4(string))
2827  *        a string is coded as size (4 bytes) and data
2828  *      - data type (4 bytes)
2829  *      - number of elements in the nvpair (4 bytes)
2830  *      - data
2831  *
2832  *  - 2 zero's for end of the entire list (8 bytes)
2833  */
2834 static int
2835 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2836 {
2837         /* xdr data must be 4 byte aligned */
2838         if ((ulong_t)buf % 4 != 0)
2839                 return (EFAULT);
2840 
2841         switch (nvs->nvs_op) {
2842         case NVS_OP_ENCODE:
2843                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2844                 nvs->nvs_private = xdr;
2845                 return (0);
2846         case NVS_OP_DECODE:
2847                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2848                 nvs->nvs_private = xdr;
2849                 return (0);
2850         case NVS_OP_GETSIZE:
2851                 nvs->nvs_private = NULL;
2852                 return (0);
2853         default:
2854                 return (EINVAL);
2855         }
2856 }
2857 
2858 static void
2859 nvs_xdr_destroy(nvstream_t *nvs)
2860 {
2861         switch (nvs->nvs_op) {
2862         case NVS_OP_ENCODE:
2863         case NVS_OP_DECODE:
2864                 xdr_destroy((XDR *)nvs->nvs_private);
2865                 break;
2866         default:
2867                 break;
2868         }
2869 }
2870 
2871 static int
2872 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2873 {
2874         switch (nvs->nvs_op) {
2875         case NVS_OP_ENCODE:
2876         case NVS_OP_DECODE: {
2877                 XDR     *xdr = nvs->nvs_private;
2878 
2879                 if (!xdr_int(xdr, &nvl->nvl_version) ||
2880                     !xdr_u_int(xdr, &nvl->nvl_nvflag))
2881                         return (EFAULT);
2882                 break;
2883         }
2884         case NVS_OP_GETSIZE: {
2885                 /*
2886                  * 2 * 4 for nvl_version + nvl_nvflag
2887                  * and 8 for end of the entire list
2888                  */
2889                 *size += 2 * 4 + 8;
2890                 break;
2891         }
2892         default:
2893                 return (EINVAL);
2894         }
2895         return (0);
2896 }
2897 
2898 static int
2899 nvs_xdr_nvl_fini(nvstream_t *nvs)
2900 {
2901         if (nvs->nvs_op == NVS_OP_ENCODE) {
2902                 XDR *xdr = nvs->nvs_private;
2903                 int zero = 0;
2904 
2905                 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2906                         return (EFAULT);
2907         }
2908 
2909         return (0);
2910 }
2911 
2912 /*
2913  * The format of xdr encoded nvpair is:
2914  * encode_size, decode_size, name string, data type, nelem, data
2915  */
2916 static int
2917 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2918 {
2919         data_type_t type;
2920         char    *buf;
2921         char    *buf_end = (char *)nvp + nvp->nvp_size;
2922         int     value_sz;
2923         uint_t  nelem, buflen;
2924         bool_t  ret = FALSE;
2925         XDR     *xdr = nvs->nvs_private;
2926 
2927         ASSERT(xdr != NULL && nvp != NULL);
2928 
2929         /* name string */
2930         if ((buf = NVP_NAME(nvp)) >= buf_end)
2931                 return (EFAULT);
2932         buflen = buf_end - buf;
2933 
2934         if (!xdr_string(xdr, &buf, buflen - 1))
2935                 return (EFAULT);
2936         nvp->nvp_name_sz = strlen(buf) + 1;
2937 
2938         /* type and nelem */
2939         if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2940             !xdr_int(xdr, &nvp->nvp_value_elem))
2941                 return (EFAULT);
2942 
2943         type = NVP_TYPE(nvp);
2944         nelem = nvp->nvp_value_elem;
2945 
2946         /*
2947          * Verify type and nelem and get the value size.
2948          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2949          * is the size of the string(s) excluded.
2950          */
2951         if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2952                 return (EFAULT);
2953 
2954         /* if there is no data to extract then return */
2955         if (nelem == 0)
2956                 return (0);
2957 
2958         /* value */
2959         if ((buf = NVP_VALUE(nvp)) >= buf_end)
2960                 return (EFAULT);
2961         buflen = buf_end - buf;
2962 
2963         if (buflen < value_sz)
2964                 return (EFAULT);
2965 
2966         switch (type) {
2967         case DATA_TYPE_NVLIST:
2968                 if (nvs_embedded(nvs, (void *)buf) == 0)
2969                         return (0);
2970                 break;
2971 
2972         case DATA_TYPE_NVLIST_ARRAY:
2973                 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2974                         return (0);
2975                 break;
2976 
2977         case DATA_TYPE_BOOLEAN:
2978                 ret = TRUE;
2979                 break;
2980 
2981         case DATA_TYPE_BYTE:
2982         case DATA_TYPE_INT8:
2983         case DATA_TYPE_UINT8:
2984                 ret = xdr_char(xdr, buf);
2985                 break;
2986 
2987         case DATA_TYPE_INT16:
2988                 ret = xdr_short(xdr, (void *)buf);
2989                 break;
2990 
2991         case DATA_TYPE_UINT16:
2992                 ret = xdr_u_short(xdr, (void *)buf);
2993                 break;
2994 
2995         case DATA_TYPE_BOOLEAN_VALUE:
2996         case DATA_TYPE_INT32:
2997                 ret = xdr_int(xdr, (void *)buf);
2998                 break;
2999 
3000         case DATA_TYPE_UINT32:
3001                 ret = xdr_u_int(xdr, (void *)buf);
3002                 break;
3003 
3004         case DATA_TYPE_INT64:
3005                 ret = xdr_longlong_t(xdr, (void *)buf);
3006                 break;
3007 
3008         case DATA_TYPE_UINT64:
3009                 ret = xdr_u_longlong_t(xdr, (void *)buf);
3010                 break;
3011 
3012         case DATA_TYPE_HRTIME:
3013                 /*
3014                  * NOTE: must expose the definition of hrtime_t here
3015                  */
3016                 ret = xdr_longlong_t(xdr, (void *)buf);
3017                 break;
3018 #if !defined(_KERNEL)
3019         case DATA_TYPE_DOUBLE:
3020                 ret = xdr_double(xdr, (void *)buf);
3021                 break;
3022 #endif
3023         case DATA_TYPE_STRING:
3024                 ret = xdr_string(xdr, &buf, buflen - 1);
3025                 break;
3026 
3027         case DATA_TYPE_BYTE_ARRAY:
3028                 ret = xdr_opaque(xdr, buf, nelem);
3029                 break;
3030 
3031         case DATA_TYPE_INT8_ARRAY:
3032         case DATA_TYPE_UINT8_ARRAY:
3033                 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3034                     (xdrproc_t)xdr_char);
3035                 break;
3036 
3037         case DATA_TYPE_INT16_ARRAY:
3038                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3039                     sizeof (int16_t), (xdrproc_t)xdr_short);
3040                 break;
3041 
3042         case DATA_TYPE_UINT16_ARRAY:
3043                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3044                     sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3045                 break;
3046 
3047         case DATA_TYPE_BOOLEAN_ARRAY:
3048         case DATA_TYPE_INT32_ARRAY:
3049                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3050                     sizeof (int32_t), (xdrproc_t)xdr_int);
3051                 break;
3052 
3053         case DATA_TYPE_UINT32_ARRAY:
3054                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3055                     sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3056                 break;
3057 
3058         case DATA_TYPE_INT64_ARRAY:
3059                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3060                     sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3061                 break;
3062 
3063         case DATA_TYPE_UINT64_ARRAY:
3064                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3065                     sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3066                 break;
3067 
3068         case DATA_TYPE_STRING_ARRAY: {
3069                 size_t len = nelem * sizeof (uint64_t);
3070                 char **strp = (void *)buf;
3071                 int i;
3072 
3073                 if (nvs->nvs_op == NVS_OP_DECODE)
3074                         bzero(buf, len);        /* don't trust packed data */
3075 
3076                 for (i = 0; i < nelem; i++) {
3077                         if (buflen <= len)
3078                                 return (EFAULT);
3079 
3080                         buf += len;
3081                         buflen -= len;
3082 
3083                         if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3084                                 return (EFAULT);
3085 
3086                         if (nvs->nvs_op == NVS_OP_DECODE)
3087                                 strp[i] = buf;
3088                         len = strlen(buf) + 1;
3089                 }
3090                 ret = TRUE;
3091                 break;
3092         }
3093         default:
3094                 break;
3095         }
3096 
3097         return (ret == TRUE ? 0 : EFAULT);
3098 }
3099 
3100 static int
3101 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3102 {
3103         data_type_t type = NVP_TYPE(nvp);
3104         /*
3105          * encode_size + decode_size + name string size + data type + nelem
3106          * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3107          */
3108         uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3109 
3110         switch (type) {
3111         case DATA_TYPE_BOOLEAN:
3112                 break;
3113 
3114         case DATA_TYPE_BOOLEAN_VALUE:
3115         case DATA_TYPE_BYTE:
3116         case DATA_TYPE_INT8:
3117         case DATA_TYPE_UINT8:
3118         case DATA_TYPE_INT16:
3119         case DATA_TYPE_UINT16:
3120         case DATA_TYPE_INT32:
3121         case DATA_TYPE_UINT32:
3122                 nvp_sz += 4;    /* 4 is the minimum xdr unit */
3123                 break;
3124 
3125         case DATA_TYPE_INT64:
3126         case DATA_TYPE_UINT64:
3127         case DATA_TYPE_HRTIME:
3128 #if !defined(_KERNEL)
3129         case DATA_TYPE_DOUBLE:
3130 #endif
3131                 nvp_sz += 8;
3132                 break;
3133 
3134         case DATA_TYPE_STRING:
3135                 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3136                 break;
3137 
3138         case DATA_TYPE_BYTE_ARRAY:
3139                 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3140                 break;
3141 
3142         case DATA_TYPE_BOOLEAN_ARRAY:
3143         case DATA_TYPE_INT8_ARRAY:
3144         case DATA_TYPE_UINT8_ARRAY:
3145         case DATA_TYPE_INT16_ARRAY:
3146         case DATA_TYPE_UINT16_ARRAY:
3147         case DATA_TYPE_INT32_ARRAY:
3148         case DATA_TYPE_UINT32_ARRAY:
3149                 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3150                 break;
3151 
3152         case DATA_TYPE_INT64_ARRAY:
3153         case DATA_TYPE_UINT64_ARRAY:
3154                 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3155                 break;
3156 
3157         case DATA_TYPE_STRING_ARRAY: {
3158                 int i;
3159                 char **strs = (void *)NVP_VALUE(nvp);
3160 
3161                 for (i = 0; i < NVP_NELEM(nvp); i++)
3162                         nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3163 
3164                 break;
3165         }
3166 
3167         case DATA_TYPE_NVLIST:
3168         case DATA_TYPE_NVLIST_ARRAY: {
3169                 size_t nvsize = 0;
3170                 int old_nvs_op = nvs->nvs_op;
3171                 int err;
3172 
3173                 nvs->nvs_op = NVS_OP_GETSIZE;
3174                 if (type == DATA_TYPE_NVLIST)
3175                         err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3176                 else
3177                         err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3178                 nvs->nvs_op = old_nvs_op;
3179 
3180                 if (err != 0)
3181                         return (EINVAL);
3182 
3183                 nvp_sz += nvsize;
3184                 break;
3185         }
3186 
3187         default:
3188                 return (EINVAL);
3189         }
3190 
3191         if (nvp_sz > INT32_MAX)
3192                 return (EINVAL);
3193 
3194         *size = nvp_sz;
3195 
3196         return (0);
3197 }
3198 
3199 
3200 /*
3201  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3202  * the largest nvpair that could be encoded in the buffer.
3203  *
3204  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3205  * The size of a xdr packed nvpair without any data is 5 words.
3206  *
3207  * Using the size of the data directly as an estimate would be ok
3208  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3209  * then the actual nvpair has space for an array of pointers to index
3210  * the strings.  These pointers are not encoded into the packed xdr buffer.
3211  *
3212  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3213  * of length 0, then each string is endcoded in xdr format as a single word.
3214  * Therefore when expanded to an nvpair there will be 2.25 word used for
3215  * each string.  (a int64_t allocated for pointer usage, and a single char
3216  * for the null termination.)
3217  *
3218  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3219  */
3220 #define NVS_XDR_HDR_LEN         ((size_t)(5 * 4))
3221 #define NVS_XDR_DATA_LEN(y)     (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3222                                         0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3223 #define NVS_XDR_MAX_LEN(x)      (NVP_SIZE_CALC(1, 0) + \
3224                                         (NVS_XDR_DATA_LEN(x) * 2) + \
3225                                         NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3226 
3227 static int
3228 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3229 {
3230         XDR     *xdr = nvs->nvs_private;
3231         int32_t encode_len, decode_len;
3232 
3233         switch (nvs->nvs_op) {
3234         case NVS_OP_ENCODE: {
3235                 size_t nvsize;
3236 
3237                 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3238                         return (EFAULT);
3239 
3240                 decode_len = nvp->nvp_size;
3241                 encode_len = nvsize;
3242                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3243                         return (EFAULT);
3244 
3245                 return (nvs_xdr_nvp_op(nvs, nvp));
3246         }
3247         case NVS_OP_DECODE: {
3248                 struct xdr_bytesrec bytesrec;
3249 
3250                 /* get the encode and decode size */
3251                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3252                         return (EFAULT);
3253                 *size = decode_len;
3254 
3255                 /* are we at the end of the stream? */
3256                 if (*size == 0)
3257                         return (0);
3258 
3259                 /* sanity check the size parameter */
3260                 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3261                         return (EFAULT);
3262 
3263                 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3264                         return (EFAULT);
3265                 break;
3266         }
3267 
3268         default:
3269                 return (EINVAL);
3270         }
3271         return (0);
3272 }
3273 
3274 static const struct nvs_ops nvs_xdr_ops = {
3275         nvs_xdr_nvlist,
3276         nvs_xdr_nvpair,
3277         nvs_xdr_nvp_op,
3278         nvs_xdr_nvp_size,
3279         nvs_xdr_nvl_fini
3280 };
3281 
3282 static int
3283 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3284 {
3285         XDR xdr;
3286         int err;
3287 
3288         nvs->nvs_ops = &nvs_xdr_ops;
3289 
3290         if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3291             *buflen - sizeof (nvs_header_t))) != 0)
3292                 return (err);
3293 
3294         err = nvs_operation(nvs, nvl, buflen);
3295 
3296         nvs_xdr_destroy(nvs);
3297 
3298         return (err);
3299 }