1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/stropts.h> 27 #include <sys/debug.h> 28 #include <sys/isa_defs.h> 29 #include <sys/int_limits.h> 30 #include <sys/nvpair.h> 31 #include <sys/nvpair_impl.h> 32 #include <rpc/types.h> 33 #include <rpc/xdr.h> 34 35 #if defined(_KERNEL) && !defined(_BOOT) 36 #include <sys/varargs.h> 37 #include <sys/ddi.h> 38 #include <sys/sunddi.h> 39 #include <sys/sysmacros.h> 40 #else 41 #include <stdarg.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <strings.h> 45 #include <stddef.h> 46 #endif 47 48 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++ 49 50 /* 51 * nvpair.c - Provides kernel & userland interfaces for manipulating 52 * name-value pairs. 53 * 54 * Overview Diagram 55 * 56 * +--------------+ 57 * | nvlist_t | 58 * |--------------| 59 * | nvl_version | 60 * | nvl_nvflag | 61 * | nvl_priv -+-+ 62 * | nvl_flag | | 63 * | nvl_pad | | 64 * +--------------+ | 65 * V 66 * +--------------+ last i_nvp in list 67 * | nvpriv_t | +---------------------> 68 * |--------------| | 69 * +--+- nvp_list | | +------------+ 70 * | | nvp_last -+--+ + nv_alloc_t | 71 * | | nvp_curr | |------------| 72 * | | nvp_nva -+----> | nva_ops | 73 * | | nvp_stat | | nva_arg | 74 * | +--------------+ +------------+ 75 * | 76 * +-------+ 77 * V 78 * +---------------------+ +-------------------+ 79 * | i_nvp_t | +-->| i_nvp_t | +--> 80 * |---------------------| | |-------------------| | 81 * | nvi_next -+--+ | nvi_next -+--+ 82 * | nvi_prev (NULL) | <----+ nvi_prev | 83 * | . . . . . . . . . . | | . . . . . . . . . | 84 * | nvp (nvpair_t) | | nvp (nvpair_t) | 85 * | - nvp_size | | - nvp_size | 86 * | - nvp_name_sz | | - nvp_name_sz | 87 * | - nvp_value_elem | | - nvp_value_elem | 88 * | - nvp_type | | - nvp_type | 89 * | - data ... | | - data ... | 90 * +---------------------+ +-------------------+ 91 * 92 * 93 * 94 * +---------------------+ +---------------------+ 95 * | i_nvp_t | +--> +-->| i_nvp_t (last) | 96 * |---------------------| | | |---------------------| 97 * | nvi_next -+--+ ... --+ | nvi_next (NULL) | 98 * <-+- nvi_prev |<-- ... <----+ nvi_prev | 99 * | . . . . . . . . . | | . . . . . . . . . | 100 * | nvp (nvpair_t) | | nvp (nvpair_t) | 101 * | - nvp_size | | - nvp_size | 102 * | - nvp_name_sz | | - nvp_name_sz | 103 * | - nvp_value_elem | | - nvp_value_elem | 104 * | - DATA_TYPE_NVLIST | | - nvp_type | 105 * | - data (embedded) | | - data ... | 106 * | nvlist name | +---------------------+ 107 * | +--------------+ | 108 * | | nvlist_t | | 109 * | |--------------| | 110 * | | nvl_version | | 111 * | | nvl_nvflag | | 112 * | | nvl_priv --+---+----> 113 * | | nvl_flag | | 114 * | | nvl_pad | | 115 * | +--------------+ | 116 * +---------------------+ 117 * 118 * 119 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will 120 * allow value to be aligned on 8 byte boundary 121 * 122 * name_len is the length of the name string including the null terminator 123 * so it must be >= 1 124 */ 125 #define NVP_SIZE_CALC(name_len, data_len) \ 126 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len)) 127 128 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem); 129 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type, 130 uint_t nelem, const void *data); 131 132 #define NV_STAT_EMBEDDED 0x1 133 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp)) 134 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp)) 135 136 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz)) 137 #define NVPAIR2I_NVP(nvp) \ 138 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp))) 139 140 141 int 142 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...) 143 { 144 va_list valist; 145 int err = 0; 146 147 nva->nva_ops = nvo; 148 nva->nva_arg = NULL; 149 150 va_start(valist, nvo); 151 if (nva->nva_ops->nv_ao_init != NULL) 152 err = nva->nva_ops->nv_ao_init(nva, valist); 153 va_end(valist); 154 155 return (err); 156 } 157 158 void 159 nv_alloc_reset(nv_alloc_t *nva) 160 { 161 if (nva->nva_ops->nv_ao_reset != NULL) 162 nva->nva_ops->nv_ao_reset(nva); 163 } 164 165 void 166 nv_alloc_fini(nv_alloc_t *nva) 167 { 168 if (nva->nva_ops->nv_ao_fini != NULL) 169 nva->nva_ops->nv_ao_fini(nva); 170 } 171 172 nv_alloc_t * 173 nvlist_lookup_nv_alloc(nvlist_t *nvl) 174 { 175 nvpriv_t *priv; 176 177 if (nvl == NULL || 178 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 179 return (NULL); 180 181 return (priv->nvp_nva); 182 } 183 184 static void * 185 nv_mem_zalloc(nvpriv_t *nvp, size_t size) 186 { 187 nv_alloc_t *nva = nvp->nvp_nva; 188 void *buf; 189 190 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL) 191 bzero(buf, size); 192 193 return (buf); 194 } 195 196 static void 197 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size) 198 { 199 nv_alloc_t *nva = nvp->nvp_nva; 200 201 nva->nva_ops->nv_ao_free(nva, buf, size); 202 } 203 204 static void 205 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat) 206 { 207 bzero(priv, sizeof (nvpriv_t)); 208 209 priv->nvp_nva = nva; 210 priv->nvp_stat = stat; 211 } 212 213 static nvpriv_t * 214 nv_priv_alloc(nv_alloc_t *nva) 215 { 216 nvpriv_t *priv; 217 218 /* 219 * nv_mem_alloc() cannot called here because it needs the priv 220 * argument. 221 */ 222 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL) 223 return (NULL); 224 225 nv_priv_init(priv, nva, 0); 226 227 return (priv); 228 } 229 230 /* 231 * Embedded lists need their own nvpriv_t's. We create a new 232 * nvpriv_t using the parameters and allocator from the parent 233 * list's nvpriv_t. 234 */ 235 static nvpriv_t * 236 nv_priv_alloc_embedded(nvpriv_t *priv) 237 { 238 nvpriv_t *emb_priv; 239 240 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL) 241 return (NULL); 242 243 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED); 244 245 return (emb_priv); 246 } 247 248 static void 249 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv) 250 { 251 nvl->nvl_version = NV_VERSION; 252 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE); 253 nvl->nvl_priv = (uint64_t)(uintptr_t)priv; 254 nvl->nvl_flag = 0; 255 nvl->nvl_pad = 0; 256 } 257 258 uint_t 259 nvlist_nvflag(nvlist_t *nvl) 260 { 261 return (nvl->nvl_nvflag); 262 } 263 264 /* 265 * nvlist_alloc - Allocate nvlist. 266 */ 267 /*ARGSUSED1*/ 268 int 269 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag) 270 { 271 #if defined(_KERNEL) && !defined(_BOOT) 272 return (nvlist_xalloc(nvlp, nvflag, 273 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 274 #else 275 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep)); 276 #endif 277 } 278 279 int 280 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva) 281 { 282 nvpriv_t *priv; 283 284 if (nvlp == NULL || nva == NULL) 285 return (EINVAL); 286 287 if ((priv = nv_priv_alloc(nva)) == NULL) 288 return (ENOMEM); 289 290 if ((*nvlp = nv_mem_zalloc(priv, 291 NV_ALIGN(sizeof (nvlist_t)))) == NULL) { 292 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 293 return (ENOMEM); 294 } 295 296 nvlist_init(*nvlp, nvflag, priv); 297 298 return (0); 299 } 300 301 /* 302 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair. 303 */ 304 static nvpair_t * 305 nvp_buf_alloc(nvlist_t *nvl, size_t len) 306 { 307 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 308 i_nvp_t *buf; 309 nvpair_t *nvp; 310 size_t nvsize; 311 312 /* 313 * Allocate the buffer 314 */ 315 nvsize = len + offsetof(i_nvp_t, nvi_nvp); 316 317 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL) 318 return (NULL); 319 320 nvp = &buf->nvi_nvp; 321 nvp->nvp_size = len; 322 323 return (nvp); 324 } 325 326 /* 327 * nvp_buf_free - de-Allocate an i_nvp_t. 328 */ 329 static void 330 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp) 331 { 332 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 333 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp); 334 335 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize); 336 } 337 338 /* 339 * nvp_buf_link - link a new nv pair into the nvlist. 340 */ 341 static void 342 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp) 343 { 344 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 345 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 346 347 /* Put element at end of nvlist */ 348 if (priv->nvp_list == NULL) { 349 priv->nvp_list = priv->nvp_last = curr; 350 } else { 351 curr->nvi_prev = priv->nvp_last; 352 priv->nvp_last->nvi_next = curr; 353 priv->nvp_last = curr; 354 } 355 } 356 357 /* 358 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist. 359 */ 360 static void 361 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp) 362 { 363 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 364 i_nvp_t *curr = NVPAIR2I_NVP(nvp); 365 366 /* 367 * protect nvlist_next_nvpair() against walking on freed memory. 368 */ 369 if (priv->nvp_curr == curr) 370 priv->nvp_curr = curr->nvi_next; 371 372 if (curr == priv->nvp_list) 373 priv->nvp_list = curr->nvi_next; 374 else 375 curr->nvi_prev->nvi_next = curr->nvi_next; 376 377 if (curr == priv->nvp_last) 378 priv->nvp_last = curr->nvi_prev; 379 else 380 curr->nvi_next->nvi_prev = curr->nvi_prev; 381 } 382 383 /* 384 * take a nvpair type and number of elements and make sure the are valid 385 */ 386 static int 387 i_validate_type_nelem(data_type_t type, uint_t nelem) 388 { 389 switch (type) { 390 case DATA_TYPE_BOOLEAN: 391 if (nelem != 0) 392 return (EINVAL); 393 break; 394 case DATA_TYPE_BOOLEAN_VALUE: 395 case DATA_TYPE_BYTE: 396 case DATA_TYPE_INT8: 397 case DATA_TYPE_UINT8: 398 case DATA_TYPE_INT16: 399 case DATA_TYPE_UINT16: 400 case DATA_TYPE_INT32: 401 case DATA_TYPE_UINT32: 402 case DATA_TYPE_INT64: 403 case DATA_TYPE_UINT64: 404 case DATA_TYPE_STRING: 405 case DATA_TYPE_HRTIME: 406 case DATA_TYPE_NVLIST: 407 #if !defined(_KERNEL) 408 case DATA_TYPE_DOUBLE: 409 #endif 410 if (nelem != 1) 411 return (EINVAL); 412 break; 413 case DATA_TYPE_BOOLEAN_ARRAY: 414 case DATA_TYPE_BYTE_ARRAY: 415 case DATA_TYPE_INT8_ARRAY: 416 case DATA_TYPE_UINT8_ARRAY: 417 case DATA_TYPE_INT16_ARRAY: 418 case DATA_TYPE_UINT16_ARRAY: 419 case DATA_TYPE_INT32_ARRAY: 420 case DATA_TYPE_UINT32_ARRAY: 421 case DATA_TYPE_INT64_ARRAY: 422 case DATA_TYPE_UINT64_ARRAY: 423 case DATA_TYPE_STRING_ARRAY: 424 case DATA_TYPE_NVLIST_ARRAY: 425 /* we allow arrays with 0 elements */ 426 break; 427 default: 428 return (EINVAL); 429 } 430 return (0); 431 } 432 433 /* 434 * Verify nvp_name_sz and check the name string length. 435 */ 436 static int 437 i_validate_nvpair_name(nvpair_t *nvp) 438 { 439 if ((nvp->nvp_name_sz <= 0) || 440 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0))) 441 return (EFAULT); 442 443 /* verify the name string, make sure its terminated */ 444 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0') 445 return (EFAULT); 446 447 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT); 448 } 449 450 static int 451 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data) 452 { 453 switch (type) { 454 case DATA_TYPE_BOOLEAN_VALUE: 455 if (*(boolean_t *)data != B_TRUE && 456 *(boolean_t *)data != B_FALSE) 457 return (EINVAL); 458 break; 459 case DATA_TYPE_BOOLEAN_ARRAY: { 460 int i; 461 462 for (i = 0; i < nelem; i++) 463 if (((boolean_t *)data)[i] != B_TRUE && 464 ((boolean_t *)data)[i] != B_FALSE) 465 return (EINVAL); 466 break; 467 } 468 default: 469 break; 470 } 471 472 return (0); 473 } 474 475 /* 476 * This function takes a pointer to what should be a nvpair and it's size 477 * and then verifies that all the nvpair fields make sense and can be 478 * trusted. This function is used when decoding packed nvpairs. 479 */ 480 static int 481 i_validate_nvpair(nvpair_t *nvp) 482 { 483 data_type_t type = NVP_TYPE(nvp); 484 int size1, size2; 485 486 /* verify nvp_name_sz, check the name string length */ 487 if (i_validate_nvpair_name(nvp) != 0) 488 return (EFAULT); 489 490 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0) 491 return (EFAULT); 492 493 /* 494 * verify nvp_type, nvp_value_elem, and also possibly 495 * verify string values and get the value size. 496 */ 497 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp)); 498 size1 = nvp->nvp_size - NVP_VALOFF(nvp); 499 if (size2 < 0 || size1 != NV_ALIGN(size2)) 500 return (EFAULT); 501 502 return (0); 503 } 504 505 static int 506 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl) 507 { 508 nvpriv_t *priv; 509 i_nvp_t *curr; 510 511 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL) 512 return (EINVAL); 513 514 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 515 nvpair_t *nvp = &curr->nvi_nvp; 516 int err; 517 518 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp), 519 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0) 520 return (err); 521 } 522 523 return (0); 524 } 525 526 /* 527 * Frees all memory allocated for an nvpair (like embedded lists) with 528 * the exception of the nvpair buffer itself. 529 */ 530 static void 531 nvpair_free(nvpair_t *nvp) 532 { 533 switch (NVP_TYPE(nvp)) { 534 case DATA_TYPE_NVLIST: 535 nvlist_free(EMBEDDED_NVL(nvp)); 536 break; 537 case DATA_TYPE_NVLIST_ARRAY: { 538 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 539 int i; 540 541 for (i = 0; i < NVP_NELEM(nvp); i++) 542 if (nvlp[i] != NULL) 543 nvlist_free(nvlp[i]); 544 break; 545 } 546 default: 547 break; 548 } 549 } 550 551 /* 552 * nvlist_free - free an unpacked nvlist 553 */ 554 void 555 nvlist_free(nvlist_t *nvl) 556 { 557 nvpriv_t *priv; 558 i_nvp_t *curr; 559 560 if (nvl == NULL || 561 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 562 return; 563 564 /* 565 * Unpacked nvlist are linked through i_nvp_t 566 */ 567 curr = priv->nvp_list; 568 while (curr != NULL) { 569 nvpair_t *nvp = &curr->nvi_nvp; 570 curr = curr->nvi_next; 571 572 nvpair_free(nvp); 573 nvp_buf_free(nvl, nvp); 574 } 575 576 if (!(priv->nvp_stat & NV_STAT_EMBEDDED)) 577 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t))); 578 else 579 nvl->nvl_priv = 0; 580 581 nv_mem_free(priv, priv, sizeof (nvpriv_t)); 582 } 583 584 static int 585 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp) 586 { 587 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 588 i_nvp_t *curr; 589 590 if (nvp == NULL) 591 return (0); 592 593 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 594 if (&curr->nvi_nvp == nvp) 595 return (1); 596 597 return (0); 598 } 599 600 /* 601 * Make a copy of nvlist 602 */ 603 /*ARGSUSED1*/ 604 int 605 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag) 606 { 607 #if defined(_KERNEL) && !defined(_BOOT) 608 return (nvlist_xdup(nvl, nvlp, 609 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 610 #else 611 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep)); 612 #endif 613 } 614 615 int 616 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva) 617 { 618 int err; 619 nvlist_t *ret; 620 621 if (nvl == NULL || nvlp == NULL) 622 return (EINVAL); 623 624 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0) 625 return (err); 626 627 if ((err = nvlist_copy_pairs(nvl, ret)) != 0) 628 nvlist_free(ret); 629 else 630 *nvlp = ret; 631 632 return (err); 633 } 634 635 /* 636 * Remove all with matching name 637 */ 638 int 639 nvlist_remove_all(nvlist_t *nvl, const char *name) 640 { 641 nvpriv_t *priv; 642 i_nvp_t *curr; 643 int error = ENOENT; 644 645 if (nvl == NULL || name == NULL || 646 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 647 return (EINVAL); 648 649 curr = priv->nvp_list; 650 while (curr != NULL) { 651 nvpair_t *nvp = &curr->nvi_nvp; 652 653 curr = curr->nvi_next; 654 if (strcmp(name, NVP_NAME(nvp)) != 0) 655 continue; 656 657 nvp_buf_unlink(nvl, nvp); 658 nvpair_free(nvp); 659 nvp_buf_free(nvl, nvp); 660 661 error = 0; 662 } 663 664 return (error); 665 } 666 667 /* 668 * Remove first one with matching name and type 669 */ 670 int 671 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type) 672 { 673 nvpriv_t *priv; 674 i_nvp_t *curr; 675 676 if (nvl == NULL || name == NULL || 677 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 678 return (EINVAL); 679 680 curr = priv->nvp_list; 681 while (curr != NULL) { 682 nvpair_t *nvp = &curr->nvi_nvp; 683 684 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) { 685 nvp_buf_unlink(nvl, nvp); 686 nvpair_free(nvp); 687 nvp_buf_free(nvl, nvp); 688 689 return (0); 690 } 691 curr = curr->nvi_next; 692 } 693 694 return (ENOENT); 695 } 696 697 int 698 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp) 699 { 700 if (nvl == NULL || nvp == NULL) 701 return (EINVAL); 702 703 nvp_buf_unlink(nvl, nvp); 704 nvpair_free(nvp); 705 nvp_buf_free(nvl, nvp); 706 return (0); 707 } 708 709 /* 710 * This function calculates the size of an nvpair value. 711 * 712 * The data argument controls the behavior in case of the data types 713 * DATA_TYPE_STRING and 714 * DATA_TYPE_STRING_ARRAY 715 * Is data == NULL then the size of the string(s) is excluded. 716 */ 717 static int 718 i_get_value_size(data_type_t type, const void *data, uint_t nelem) 719 { 720 uint64_t value_sz; 721 722 if (i_validate_type_nelem(type, nelem) != 0) 723 return (-1); 724 725 /* Calculate required size for holding value */ 726 switch (type) { 727 case DATA_TYPE_BOOLEAN: 728 value_sz = 0; 729 break; 730 case DATA_TYPE_BOOLEAN_VALUE: 731 value_sz = sizeof (boolean_t); 732 break; 733 case DATA_TYPE_BYTE: 734 value_sz = sizeof (uchar_t); 735 break; 736 case DATA_TYPE_INT8: 737 value_sz = sizeof (int8_t); 738 break; 739 case DATA_TYPE_UINT8: 740 value_sz = sizeof (uint8_t); 741 break; 742 case DATA_TYPE_INT16: 743 value_sz = sizeof (int16_t); 744 break; 745 case DATA_TYPE_UINT16: 746 value_sz = sizeof (uint16_t); 747 break; 748 case DATA_TYPE_INT32: 749 value_sz = sizeof (int32_t); 750 break; 751 case DATA_TYPE_UINT32: 752 value_sz = sizeof (uint32_t); 753 break; 754 case DATA_TYPE_INT64: 755 value_sz = sizeof (int64_t); 756 break; 757 case DATA_TYPE_UINT64: 758 value_sz = sizeof (uint64_t); 759 break; 760 #if !defined(_KERNEL) 761 case DATA_TYPE_DOUBLE: 762 value_sz = sizeof (double); 763 break; 764 #endif 765 case DATA_TYPE_STRING: 766 if (data == NULL) 767 value_sz = 0; 768 else 769 value_sz = strlen(data) + 1; 770 break; 771 case DATA_TYPE_BOOLEAN_ARRAY: 772 value_sz = (uint64_t)nelem * sizeof (boolean_t); 773 break; 774 case DATA_TYPE_BYTE_ARRAY: 775 value_sz = (uint64_t)nelem * sizeof (uchar_t); 776 break; 777 case DATA_TYPE_INT8_ARRAY: 778 value_sz = (uint64_t)nelem * sizeof (int8_t); 779 break; 780 case DATA_TYPE_UINT8_ARRAY: 781 value_sz = (uint64_t)nelem * sizeof (uint8_t); 782 break; 783 case DATA_TYPE_INT16_ARRAY: 784 value_sz = (uint64_t)nelem * sizeof (int16_t); 785 break; 786 case DATA_TYPE_UINT16_ARRAY: 787 value_sz = (uint64_t)nelem * sizeof (uint16_t); 788 break; 789 case DATA_TYPE_INT32_ARRAY: 790 value_sz = (uint64_t)nelem * sizeof (int32_t); 791 break; 792 case DATA_TYPE_UINT32_ARRAY: 793 value_sz = (uint64_t)nelem * sizeof (uint32_t); 794 break; 795 case DATA_TYPE_INT64_ARRAY: 796 value_sz = (uint64_t)nelem * sizeof (int64_t); 797 break; 798 case DATA_TYPE_UINT64_ARRAY: 799 value_sz = (uint64_t)nelem * sizeof (uint64_t); 800 break; 801 case DATA_TYPE_STRING_ARRAY: 802 value_sz = (uint64_t)nelem * sizeof (uint64_t); 803 804 if (data != NULL) { 805 char *const *strs = data; 806 uint_t i; 807 808 /* no alignment requirement for strings */ 809 for (i = 0; i < nelem; i++) { 810 if (strs[i] == NULL) 811 return (-1); 812 value_sz += strlen(strs[i]) + 1; 813 } 814 } 815 break; 816 case DATA_TYPE_HRTIME: 817 value_sz = sizeof (hrtime_t); 818 break; 819 case DATA_TYPE_NVLIST: 820 value_sz = NV_ALIGN(sizeof (nvlist_t)); 821 break; 822 case DATA_TYPE_NVLIST_ARRAY: 823 value_sz = (uint64_t)nelem * sizeof (uint64_t) + 824 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t)); 825 break; 826 default: 827 return (-1); 828 } 829 830 return (value_sz > INT32_MAX ? -1 : (int)value_sz); 831 } 832 833 static int 834 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl) 835 { 836 nvpriv_t *priv; 837 int err; 838 839 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t) 840 nvl->nvl_priv)) == NULL) 841 return (ENOMEM); 842 843 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv); 844 845 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) { 846 nvlist_free(emb_nvl); 847 emb_nvl->nvl_priv = 0; 848 } 849 850 return (err); 851 } 852 853 /* 854 * nvlist_add_common - Add new <name,value> pair to nvlist 855 */ 856 static int 857 nvlist_add_common(nvlist_t *nvl, const char *name, 858 data_type_t type, uint_t nelem, const void *data) 859 { 860 nvpair_t *nvp; 861 uint_t i; 862 863 int nvp_sz, name_sz, value_sz; 864 int err = 0; 865 866 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0) 867 return (EINVAL); 868 869 if (nelem != 0 && data == NULL) 870 return (EINVAL); 871 872 /* 873 * Verify type and nelem and get the value size. 874 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 875 * is the size of the string(s) included. 876 */ 877 if ((value_sz = i_get_value_size(type, data, nelem)) < 0) 878 return (EINVAL); 879 880 if (i_validate_nvpair_value(type, nelem, data) != 0) 881 return (EINVAL); 882 883 /* 884 * If we're adding an nvlist or nvlist array, ensure that we are not 885 * adding the input nvlist to itself, which would cause recursion, 886 * and ensure that no NULL nvlist pointers are present. 887 */ 888 switch (type) { 889 case DATA_TYPE_NVLIST: 890 if (data == nvl || data == NULL) 891 return (EINVAL); 892 break; 893 case DATA_TYPE_NVLIST_ARRAY: { 894 nvlist_t **onvlp = (nvlist_t **)data; 895 for (i = 0; i < nelem; i++) { 896 if (onvlp[i] == nvl || onvlp[i] == NULL) 897 return (EINVAL); 898 } 899 break; 900 } 901 default: 902 break; 903 } 904 905 /* calculate sizes of the nvpair elements and the nvpair itself */ 906 name_sz = strlen(name) + 1; 907 908 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz); 909 910 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL) 911 return (ENOMEM); 912 913 ASSERT(nvp->nvp_size == nvp_sz); 914 nvp->nvp_name_sz = name_sz; 915 nvp->nvp_value_elem = nelem; 916 nvp->nvp_type = type; 917 bcopy(name, NVP_NAME(nvp), name_sz); 918 919 switch (type) { 920 case DATA_TYPE_BOOLEAN: 921 break; 922 case DATA_TYPE_STRING_ARRAY: { 923 char *const *strs = data; 924 char *buf = NVP_VALUE(nvp); 925 char **cstrs = (void *)buf; 926 927 /* skip pre-allocated space for pointer array */ 928 buf += nelem * sizeof (uint64_t); 929 for (i = 0; i < nelem; i++) { 930 int slen = strlen(strs[i]) + 1; 931 bcopy(strs[i], buf, slen); 932 cstrs[i] = buf; 933 buf += slen; 934 } 935 break; 936 } 937 case DATA_TYPE_NVLIST: { 938 nvlist_t *nnvl = EMBEDDED_NVL(nvp); 939 nvlist_t *onvl = (nvlist_t *)data; 940 941 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) { 942 nvp_buf_free(nvl, nvp); 943 return (err); 944 } 945 break; 946 } 947 case DATA_TYPE_NVLIST_ARRAY: { 948 nvlist_t **onvlp = (nvlist_t **)data; 949 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 950 nvlist_t *embedded = (nvlist_t *) 951 ((uintptr_t)nvlp + nelem * sizeof (uint64_t)); 952 953 for (i = 0; i < nelem; i++) { 954 if ((err = nvlist_copy_embedded(nvl, 955 onvlp[i], embedded)) != 0) { 956 /* 957 * Free any successfully created lists 958 */ 959 nvpair_free(nvp); 960 nvp_buf_free(nvl, nvp); 961 return (err); 962 } 963 964 nvlp[i] = embedded++; 965 } 966 break; 967 } 968 default: 969 bcopy(data, NVP_VALUE(nvp), value_sz); 970 } 971 972 /* if unique name, remove before add */ 973 if (nvl->nvl_nvflag & NV_UNIQUE_NAME) 974 (void) nvlist_remove_all(nvl, name); 975 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE) 976 (void) nvlist_remove(nvl, name, type); 977 978 nvp_buf_link(nvl, nvp); 979 980 return (0); 981 } 982 983 int 984 nvlist_add_boolean(nvlist_t *nvl, const char *name) 985 { 986 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL)); 987 } 988 989 int 990 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val) 991 { 992 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val)); 993 } 994 995 int 996 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val) 997 { 998 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val)); 999 } 1000 1001 int 1002 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val) 1003 { 1004 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val)); 1005 } 1006 1007 int 1008 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val) 1009 { 1010 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val)); 1011 } 1012 1013 int 1014 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val) 1015 { 1016 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val)); 1017 } 1018 1019 int 1020 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val) 1021 { 1022 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val)); 1023 } 1024 1025 int 1026 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val) 1027 { 1028 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val)); 1029 } 1030 1031 int 1032 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val) 1033 { 1034 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val)); 1035 } 1036 1037 int 1038 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val) 1039 { 1040 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val)); 1041 } 1042 1043 int 1044 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val) 1045 { 1046 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val)); 1047 } 1048 1049 #if !defined(_KERNEL) 1050 int 1051 nvlist_add_double(nvlist_t *nvl, const char *name, double val) 1052 { 1053 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val)); 1054 } 1055 #endif 1056 1057 int 1058 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val) 1059 { 1060 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val)); 1061 } 1062 1063 int 1064 nvlist_add_boolean_array(nvlist_t *nvl, const char *name, 1065 boolean_t *a, uint_t n) 1066 { 1067 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1068 } 1069 1070 int 1071 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n) 1072 { 1073 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1074 } 1075 1076 int 1077 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n) 1078 { 1079 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1080 } 1081 1082 int 1083 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n) 1084 { 1085 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1086 } 1087 1088 int 1089 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n) 1090 { 1091 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1092 } 1093 1094 int 1095 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n) 1096 { 1097 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1098 } 1099 1100 int 1101 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n) 1102 { 1103 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1104 } 1105 1106 int 1107 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n) 1108 { 1109 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1110 } 1111 1112 int 1113 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n) 1114 { 1115 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1116 } 1117 1118 int 1119 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n) 1120 { 1121 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1122 } 1123 1124 int 1125 nvlist_add_string_array(nvlist_t *nvl, const char *name, 1126 char *const *a, uint_t n) 1127 { 1128 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1129 } 1130 1131 int 1132 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val) 1133 { 1134 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val)); 1135 } 1136 1137 int 1138 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val) 1139 { 1140 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val)); 1141 } 1142 1143 int 1144 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n) 1145 { 1146 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1147 } 1148 1149 /* reading name-value pairs */ 1150 nvpair_t * 1151 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1152 { 1153 nvpriv_t *priv; 1154 i_nvp_t *curr; 1155 1156 if (nvl == NULL || 1157 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1158 return (NULL); 1159 1160 curr = NVPAIR2I_NVP(nvp); 1161 1162 /* 1163 * Ensure that nvp is a valid nvpair on this nvlist. 1164 * NB: nvp_curr is used only as a hint so that we don't always 1165 * have to walk the list to determine if nvp is still on the list. 1166 */ 1167 if (nvp == NULL) 1168 curr = priv->nvp_list; 1169 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1170 curr = curr->nvi_next; 1171 else 1172 curr = NULL; 1173 1174 priv->nvp_curr = curr; 1175 1176 return (curr != NULL ? &curr->nvi_nvp : NULL); 1177 } 1178 1179 nvpair_t * 1180 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1181 { 1182 nvpriv_t *priv; 1183 i_nvp_t *curr; 1184 1185 if (nvl == NULL || 1186 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1187 return (NULL); 1188 1189 curr = NVPAIR2I_NVP(nvp); 1190 1191 if (nvp == NULL) 1192 curr = priv->nvp_last; 1193 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp)) 1194 curr = curr->nvi_prev; 1195 else 1196 curr = NULL; 1197 1198 priv->nvp_curr = curr; 1199 1200 return (curr != NULL ? &curr->nvi_nvp : NULL); 1201 } 1202 1203 boolean_t 1204 nvlist_empty(nvlist_t *nvl) 1205 { 1206 nvpriv_t *priv; 1207 1208 if (nvl == NULL || 1209 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1210 return (B_TRUE); 1211 1212 return (priv->nvp_list == NULL); 1213 } 1214 1215 char * 1216 nvpair_name(nvpair_t *nvp) 1217 { 1218 return (NVP_NAME(nvp)); 1219 } 1220 1221 data_type_t 1222 nvpair_type(nvpair_t *nvp) 1223 { 1224 return (NVP_TYPE(nvp)); 1225 } 1226 1227 int 1228 nvpair_type_is_array(nvpair_t *nvp) 1229 { 1230 data_type_t type = NVP_TYPE(nvp); 1231 1232 if ((type == DATA_TYPE_BYTE_ARRAY) || 1233 (type == DATA_TYPE_INT8_ARRAY) || 1234 (type == DATA_TYPE_UINT8_ARRAY) || 1235 (type == DATA_TYPE_INT16_ARRAY) || 1236 (type == DATA_TYPE_UINT16_ARRAY) || 1237 (type == DATA_TYPE_INT32_ARRAY) || 1238 (type == DATA_TYPE_UINT32_ARRAY) || 1239 (type == DATA_TYPE_INT64_ARRAY) || 1240 (type == DATA_TYPE_UINT64_ARRAY) || 1241 (type == DATA_TYPE_BOOLEAN_ARRAY) || 1242 (type == DATA_TYPE_STRING_ARRAY) || 1243 (type == DATA_TYPE_NVLIST_ARRAY)) 1244 return (1); 1245 return (0); 1246 1247 } 1248 1249 static int 1250 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data) 1251 { 1252 if (nvp == NULL || nvpair_type(nvp) != type) 1253 return (EINVAL); 1254 1255 /* 1256 * For non-array types, we copy the data. 1257 * For array types (including string), we set a pointer. 1258 */ 1259 switch (type) { 1260 case DATA_TYPE_BOOLEAN: 1261 if (nelem != NULL) 1262 *nelem = 0; 1263 break; 1264 1265 case DATA_TYPE_BOOLEAN_VALUE: 1266 case DATA_TYPE_BYTE: 1267 case DATA_TYPE_INT8: 1268 case DATA_TYPE_UINT8: 1269 case DATA_TYPE_INT16: 1270 case DATA_TYPE_UINT16: 1271 case DATA_TYPE_INT32: 1272 case DATA_TYPE_UINT32: 1273 case DATA_TYPE_INT64: 1274 case DATA_TYPE_UINT64: 1275 case DATA_TYPE_HRTIME: 1276 #if !defined(_KERNEL) 1277 case DATA_TYPE_DOUBLE: 1278 #endif 1279 if (data == NULL) 1280 return (EINVAL); 1281 bcopy(NVP_VALUE(nvp), data, 1282 (size_t)i_get_value_size(type, NULL, 1)); 1283 if (nelem != NULL) 1284 *nelem = 1; 1285 break; 1286 1287 case DATA_TYPE_NVLIST: 1288 case DATA_TYPE_STRING: 1289 if (data == NULL) 1290 return (EINVAL); 1291 *(void **)data = (void *)NVP_VALUE(nvp); 1292 if (nelem != NULL) 1293 *nelem = 1; 1294 break; 1295 1296 case DATA_TYPE_BOOLEAN_ARRAY: 1297 case DATA_TYPE_BYTE_ARRAY: 1298 case DATA_TYPE_INT8_ARRAY: 1299 case DATA_TYPE_UINT8_ARRAY: 1300 case DATA_TYPE_INT16_ARRAY: 1301 case DATA_TYPE_UINT16_ARRAY: 1302 case DATA_TYPE_INT32_ARRAY: 1303 case DATA_TYPE_UINT32_ARRAY: 1304 case DATA_TYPE_INT64_ARRAY: 1305 case DATA_TYPE_UINT64_ARRAY: 1306 case DATA_TYPE_STRING_ARRAY: 1307 case DATA_TYPE_NVLIST_ARRAY: 1308 if (nelem == NULL || data == NULL) 1309 return (EINVAL); 1310 if ((*nelem = NVP_NELEM(nvp)) != 0) 1311 *(void **)data = (void *)NVP_VALUE(nvp); 1312 else 1313 *(void **)data = NULL; 1314 break; 1315 1316 default: 1317 return (ENOTSUP); 1318 } 1319 1320 return (0); 1321 } 1322 1323 static int 1324 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type, 1325 uint_t *nelem, void *data) 1326 { 1327 nvpriv_t *priv; 1328 nvpair_t *nvp; 1329 i_nvp_t *curr; 1330 1331 if (name == NULL || nvl == NULL || 1332 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1333 return (EINVAL); 1334 1335 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE))) 1336 return (ENOTSUP); 1337 1338 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1339 nvp = &curr->nvi_nvp; 1340 1341 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) 1342 return (nvpair_value_common(nvp, type, nelem, data)); 1343 } 1344 1345 return (ENOENT); 1346 } 1347 1348 int 1349 nvlist_lookup_boolean(nvlist_t *nvl, const char *name) 1350 { 1351 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL)); 1352 } 1353 1354 int 1355 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val) 1356 { 1357 return (nvlist_lookup_common(nvl, name, 1358 DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1359 } 1360 1361 int 1362 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val) 1363 { 1364 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val)); 1365 } 1366 1367 int 1368 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val) 1369 { 1370 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val)); 1371 } 1372 1373 int 1374 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val) 1375 { 1376 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val)); 1377 } 1378 1379 int 1380 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val) 1381 { 1382 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val)); 1383 } 1384 1385 int 1386 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val) 1387 { 1388 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val)); 1389 } 1390 1391 int 1392 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val) 1393 { 1394 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val)); 1395 } 1396 1397 int 1398 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val) 1399 { 1400 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val)); 1401 } 1402 1403 int 1404 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val) 1405 { 1406 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val)); 1407 } 1408 1409 int 1410 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val) 1411 { 1412 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val)); 1413 } 1414 1415 #if !defined(_KERNEL) 1416 int 1417 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val) 1418 { 1419 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val)); 1420 } 1421 #endif 1422 1423 int 1424 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val) 1425 { 1426 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val)); 1427 } 1428 1429 int 1430 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val) 1431 { 1432 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val)); 1433 } 1434 1435 int 1436 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name, 1437 boolean_t **a, uint_t *n) 1438 { 1439 return (nvlist_lookup_common(nvl, name, 1440 DATA_TYPE_BOOLEAN_ARRAY, n, a)); 1441 } 1442 1443 int 1444 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name, 1445 uchar_t **a, uint_t *n) 1446 { 1447 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a)); 1448 } 1449 1450 int 1451 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n) 1452 { 1453 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a)); 1454 } 1455 1456 int 1457 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name, 1458 uint8_t **a, uint_t *n) 1459 { 1460 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a)); 1461 } 1462 1463 int 1464 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name, 1465 int16_t **a, uint_t *n) 1466 { 1467 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a)); 1468 } 1469 1470 int 1471 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name, 1472 uint16_t **a, uint_t *n) 1473 { 1474 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a)); 1475 } 1476 1477 int 1478 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name, 1479 int32_t **a, uint_t *n) 1480 { 1481 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a)); 1482 } 1483 1484 int 1485 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name, 1486 uint32_t **a, uint_t *n) 1487 { 1488 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a)); 1489 } 1490 1491 int 1492 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name, 1493 int64_t **a, uint_t *n) 1494 { 1495 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a)); 1496 } 1497 1498 int 1499 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name, 1500 uint64_t **a, uint_t *n) 1501 { 1502 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a)); 1503 } 1504 1505 int 1506 nvlist_lookup_string_array(nvlist_t *nvl, const char *name, 1507 char ***a, uint_t *n) 1508 { 1509 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a)); 1510 } 1511 1512 int 1513 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name, 1514 nvlist_t ***a, uint_t *n) 1515 { 1516 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a)); 1517 } 1518 1519 int 1520 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val) 1521 { 1522 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val)); 1523 } 1524 1525 int 1526 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...) 1527 { 1528 va_list ap; 1529 char *name; 1530 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0); 1531 int ret = 0; 1532 1533 va_start(ap, flag); 1534 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) { 1535 data_type_t type; 1536 void *val; 1537 uint_t *nelem; 1538 1539 switch (type = va_arg(ap, data_type_t)) { 1540 case DATA_TYPE_BOOLEAN: 1541 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL); 1542 break; 1543 1544 case DATA_TYPE_BOOLEAN_VALUE: 1545 case DATA_TYPE_BYTE: 1546 case DATA_TYPE_INT8: 1547 case DATA_TYPE_UINT8: 1548 case DATA_TYPE_INT16: 1549 case DATA_TYPE_UINT16: 1550 case DATA_TYPE_INT32: 1551 case DATA_TYPE_UINT32: 1552 case DATA_TYPE_INT64: 1553 case DATA_TYPE_UINT64: 1554 case DATA_TYPE_HRTIME: 1555 case DATA_TYPE_STRING: 1556 case DATA_TYPE_NVLIST: 1557 #if !defined(_KERNEL) 1558 case DATA_TYPE_DOUBLE: 1559 #endif 1560 val = va_arg(ap, void *); 1561 ret = nvlist_lookup_common(nvl, name, type, NULL, val); 1562 break; 1563 1564 case DATA_TYPE_BYTE_ARRAY: 1565 case DATA_TYPE_BOOLEAN_ARRAY: 1566 case DATA_TYPE_INT8_ARRAY: 1567 case DATA_TYPE_UINT8_ARRAY: 1568 case DATA_TYPE_INT16_ARRAY: 1569 case DATA_TYPE_UINT16_ARRAY: 1570 case DATA_TYPE_INT32_ARRAY: 1571 case DATA_TYPE_UINT32_ARRAY: 1572 case DATA_TYPE_INT64_ARRAY: 1573 case DATA_TYPE_UINT64_ARRAY: 1574 case DATA_TYPE_STRING_ARRAY: 1575 case DATA_TYPE_NVLIST_ARRAY: 1576 val = va_arg(ap, void *); 1577 nelem = va_arg(ap, uint_t *); 1578 ret = nvlist_lookup_common(nvl, name, type, nelem, val); 1579 break; 1580 1581 default: 1582 ret = EINVAL; 1583 } 1584 1585 if (ret == ENOENT && noentok) 1586 ret = 0; 1587 } 1588 va_end(ap); 1589 1590 return (ret); 1591 } 1592 1593 /* 1594 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function 1595 * returns zero and a pointer to the matching nvpair is returned in '*ret' 1596 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate 1597 * multiple levels of embedded nvlists, with 'sep' as the separator. As an 1598 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or 1599 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience, 1600 * code also supports "a.d[3]e[1]" syntax). 1601 * 1602 * If 'ip' is non-NULL and the last name component is an array, return the 1603 * value of the "...[index]" array index in *ip. For an array reference that 1604 * is not indexed, *ip will be returned as -1. If there is a syntax error in 1605 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location 1606 * inside the 'name' string where the syntax error was detected. 1607 */ 1608 static int 1609 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep, 1610 nvpair_t **ret, int *ip, char **ep) 1611 { 1612 nvpair_t *nvp; 1613 const char *np; 1614 char *sepp; 1615 char *idxp, *idxep; 1616 nvlist_t **nva; 1617 long idx; 1618 int n; 1619 1620 if (ip) 1621 *ip = -1; /* not indexed */ 1622 if (ep) 1623 *ep = NULL; 1624 1625 if ((nvl == NULL) || (name == NULL)) 1626 return (EINVAL); 1627 1628 sepp = NULL; 1629 idx = 0; 1630 /* step through components of name */ 1631 for (np = name; np && *np; np = sepp) { 1632 /* ensure unique names */ 1633 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME)) 1634 return (ENOTSUP); 1635 1636 /* skip white space */ 1637 skip_whitespace(np); 1638 if (*np == 0) 1639 break; 1640 1641 /* set 'sepp' to end of current component 'np' */ 1642 if (sep) 1643 sepp = strchr(np, sep); 1644 else 1645 sepp = NULL; 1646 1647 /* find start of next "[ index ]..." */ 1648 idxp = strchr(np, '['); 1649 1650 /* if sepp comes first, set idxp to NULL */ 1651 if (sepp && idxp && (sepp < idxp)) 1652 idxp = NULL; 1653 1654 /* 1655 * At this point 'idxp' is set if there is an index 1656 * expected for the current component. 1657 */ 1658 if (idxp) { 1659 /* set 'n' to length of current 'np' name component */ 1660 n = idxp++ - np; 1661 1662 /* keep sepp up to date for *ep use as we advance */ 1663 skip_whitespace(idxp); 1664 sepp = idxp; 1665 1666 /* determine the index value */ 1667 #if defined(_KERNEL) && !defined(_BOOT) 1668 if (ddi_strtol(idxp, &idxep, 0, &idx)) 1669 goto fail; 1670 #else 1671 idx = strtol(idxp, &idxep, 0); 1672 #endif 1673 if (idxep == idxp) 1674 goto fail; 1675 1676 /* keep sepp up to date for *ep use as we advance */ 1677 sepp = idxep; 1678 1679 /* skip white space index value and check for ']' */ 1680 skip_whitespace(sepp); 1681 if (*sepp++ != ']') 1682 goto fail; 1683 1684 /* for embedded arrays, support C syntax: "a[1].b" */ 1685 skip_whitespace(sepp); 1686 if (sep && (*sepp == sep)) 1687 sepp++; 1688 } else if (sepp) { 1689 n = sepp++ - np; 1690 } else { 1691 n = strlen(np); 1692 } 1693 1694 /* trim trailing whitespace by reducing length of 'np' */ 1695 if (n == 0) 1696 goto fail; 1697 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--) 1698 ; 1699 n++; 1700 1701 /* skip whitespace, and set sepp to NULL if complete */ 1702 if (sepp) { 1703 skip_whitespace(sepp); 1704 if (*sepp == 0) 1705 sepp = NULL; 1706 } 1707 1708 /* 1709 * At this point: 1710 * o 'n' is the length of current 'np' component. 1711 * o 'idxp' is set if there was an index, and value 'idx'. 1712 * o 'sepp' is set to the beginning of the next component, 1713 * and set to NULL if we have no more components. 1714 * 1715 * Search for nvpair with matching component name. 1716 */ 1717 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL; 1718 nvp = nvlist_next_nvpair(nvl, nvp)) { 1719 1720 /* continue if no match on name */ 1721 if (strncmp(np, nvpair_name(nvp), n) || 1722 (strlen(nvpair_name(nvp)) != n)) 1723 continue; 1724 1725 /* if indexed, verify type is array oriented */ 1726 if (idxp && !nvpair_type_is_array(nvp)) 1727 goto fail; 1728 1729 /* 1730 * Full match found, return nvp and idx if this 1731 * was the last component. 1732 */ 1733 if (sepp == NULL) { 1734 if (ret) 1735 *ret = nvp; 1736 if (ip && idxp) 1737 *ip = (int)idx; /* return index */ 1738 return (0); /* found */ 1739 } 1740 1741 /* 1742 * More components: current match must be 1743 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY 1744 * to support going deeper. 1745 */ 1746 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) { 1747 nvl = EMBEDDED_NVL(nvp); 1748 break; 1749 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) { 1750 (void) nvpair_value_nvlist_array(nvp, 1751 &nva, (uint_t *)&n); 1752 if ((n < 0) || (idx >= n)) 1753 goto fail; 1754 nvl = nva[idx]; 1755 break; 1756 } 1757 1758 /* type does not support more levels */ 1759 goto fail; 1760 } 1761 if (nvp == NULL) 1762 goto fail; /* 'name' not found */ 1763 1764 /* search for match of next component in embedded 'nvl' list */ 1765 } 1766 1767 fail: if (ep && sepp) 1768 *ep = sepp; 1769 return (EINVAL); 1770 } 1771 1772 /* 1773 * Return pointer to nvpair with specified 'name'. 1774 */ 1775 int 1776 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret) 1777 { 1778 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL)); 1779 } 1780 1781 /* 1782 * Determine if named nvpair exists in nvlist (use embedded separator of '.' 1783 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed 1784 * description. 1785 */ 1786 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl, 1787 const char *name, nvpair_t **ret, int *ip, char **ep) 1788 { 1789 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep)); 1790 } 1791 1792 boolean_t 1793 nvlist_exists(nvlist_t *nvl, const char *name) 1794 { 1795 nvpriv_t *priv; 1796 nvpair_t *nvp; 1797 i_nvp_t *curr; 1798 1799 if (name == NULL || nvl == NULL || 1800 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 1801 return (B_FALSE); 1802 1803 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 1804 nvp = &curr->nvi_nvp; 1805 1806 if (strcmp(name, NVP_NAME(nvp)) == 0) 1807 return (B_TRUE); 1808 } 1809 1810 return (B_FALSE); 1811 } 1812 1813 int 1814 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val) 1815 { 1816 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val)); 1817 } 1818 1819 int 1820 nvpair_value_byte(nvpair_t *nvp, uchar_t *val) 1821 { 1822 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val)); 1823 } 1824 1825 int 1826 nvpair_value_int8(nvpair_t *nvp, int8_t *val) 1827 { 1828 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val)); 1829 } 1830 1831 int 1832 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val) 1833 { 1834 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val)); 1835 } 1836 1837 int 1838 nvpair_value_int16(nvpair_t *nvp, int16_t *val) 1839 { 1840 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val)); 1841 } 1842 1843 int 1844 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val) 1845 { 1846 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val)); 1847 } 1848 1849 int 1850 nvpair_value_int32(nvpair_t *nvp, int32_t *val) 1851 { 1852 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val)); 1853 } 1854 1855 int 1856 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val) 1857 { 1858 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val)); 1859 } 1860 1861 int 1862 nvpair_value_int64(nvpair_t *nvp, int64_t *val) 1863 { 1864 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val)); 1865 } 1866 1867 int 1868 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val) 1869 { 1870 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val)); 1871 } 1872 1873 #if !defined(_KERNEL) 1874 int 1875 nvpair_value_double(nvpair_t *nvp, double *val) 1876 { 1877 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val)); 1878 } 1879 #endif 1880 1881 int 1882 nvpair_value_string(nvpair_t *nvp, char **val) 1883 { 1884 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val)); 1885 } 1886 1887 int 1888 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val) 1889 { 1890 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val)); 1891 } 1892 1893 int 1894 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem) 1895 { 1896 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val)); 1897 } 1898 1899 int 1900 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem) 1901 { 1902 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val)); 1903 } 1904 1905 int 1906 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem) 1907 { 1908 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val)); 1909 } 1910 1911 int 1912 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem) 1913 { 1914 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val)); 1915 } 1916 1917 int 1918 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem) 1919 { 1920 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val)); 1921 } 1922 1923 int 1924 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem) 1925 { 1926 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val)); 1927 } 1928 1929 int 1930 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem) 1931 { 1932 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val)); 1933 } 1934 1935 int 1936 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem) 1937 { 1938 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val)); 1939 } 1940 1941 int 1942 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem) 1943 { 1944 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val)); 1945 } 1946 1947 int 1948 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem) 1949 { 1950 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val)); 1951 } 1952 1953 int 1954 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem) 1955 { 1956 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val)); 1957 } 1958 1959 int 1960 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem) 1961 { 1962 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val)); 1963 } 1964 1965 int 1966 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val) 1967 { 1968 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val)); 1969 } 1970 1971 /* 1972 * Add specified pair to the list. 1973 */ 1974 int 1975 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp) 1976 { 1977 if (nvl == NULL || nvp == NULL) 1978 return (EINVAL); 1979 1980 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp), 1981 NVP_NELEM(nvp), NVP_VALUE(nvp))); 1982 } 1983 1984 /* 1985 * Merge the supplied nvlists and put the result in dst. 1986 * The merged list will contain all names specified in both lists, 1987 * the values are taken from nvl in the case of duplicates. 1988 * Return 0 on success. 1989 */ 1990 /*ARGSUSED*/ 1991 int 1992 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag) 1993 { 1994 if (nvl == NULL || dst == NULL) 1995 return (EINVAL); 1996 1997 if (dst != nvl) 1998 return (nvlist_copy_pairs(nvl, dst)); 1999 2000 return (0); 2001 } 2002 2003 /* 2004 * Encoding related routines 2005 */ 2006 #define NVS_OP_ENCODE 0 2007 #define NVS_OP_DECODE 1 2008 #define NVS_OP_GETSIZE 2 2009 2010 typedef struct nvs_ops nvs_ops_t; 2011 2012 typedef struct { 2013 int nvs_op; 2014 const nvs_ops_t *nvs_ops; 2015 void *nvs_private; 2016 nvpriv_t *nvs_priv; 2017 } nvstream_t; 2018 2019 /* 2020 * nvs operations are: 2021 * - nvs_nvlist 2022 * encoding / decoding of a nvlist header (nvlist_t) 2023 * calculates the size used for header and end detection 2024 * 2025 * - nvs_nvpair 2026 * responsible for the first part of encoding / decoding of an nvpair 2027 * calculates the decoded size of an nvpair 2028 * 2029 * - nvs_nvp_op 2030 * second part of encoding / decoding of an nvpair 2031 * 2032 * - nvs_nvp_size 2033 * calculates the encoding size of an nvpair 2034 * 2035 * - nvs_nvl_fini 2036 * encodes the end detection mark (zeros). 2037 */ 2038 struct nvs_ops { 2039 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *); 2040 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *); 2041 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *); 2042 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *); 2043 int (*nvs_nvl_fini)(nvstream_t *); 2044 }; 2045 2046 typedef struct { 2047 char nvh_encoding; /* nvs encoding method */ 2048 char nvh_endian; /* nvs endian */ 2049 char nvh_reserved1; /* reserved for future use */ 2050 char nvh_reserved2; /* reserved for future use */ 2051 } nvs_header_t; 2052 2053 static int 2054 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2055 { 2056 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2057 i_nvp_t *curr; 2058 2059 /* 2060 * Walk nvpair in list and encode each nvpair 2061 */ 2062 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) 2063 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0) 2064 return (EFAULT); 2065 2066 return (nvs->nvs_ops->nvs_nvl_fini(nvs)); 2067 } 2068 2069 static int 2070 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl) 2071 { 2072 nvpair_t *nvp; 2073 size_t nvsize; 2074 int err; 2075 2076 /* 2077 * Get decoded size of next pair in stream, alloc 2078 * memory for nvpair_t, then decode the nvpair 2079 */ 2080 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) { 2081 if (nvsize == 0) /* end of list */ 2082 break; 2083 2084 /* make sure len makes sense */ 2085 if (nvsize < NVP_SIZE_CALC(1, 0)) 2086 return (EFAULT); 2087 2088 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL) 2089 return (ENOMEM); 2090 2091 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) { 2092 nvp_buf_free(nvl, nvp); 2093 return (err); 2094 } 2095 2096 if (i_validate_nvpair(nvp) != 0) { 2097 nvpair_free(nvp); 2098 nvp_buf_free(nvl, nvp); 2099 return (EFAULT); 2100 } 2101 2102 nvp_buf_link(nvl, nvp); 2103 } 2104 return (err); 2105 } 2106 2107 static int 2108 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2109 { 2110 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv; 2111 i_nvp_t *curr; 2112 uint64_t nvsize = *buflen; 2113 size_t size; 2114 2115 /* 2116 * Get encoded size of nvpairs in nvlist 2117 */ 2118 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) { 2119 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0) 2120 return (EINVAL); 2121 2122 if ((nvsize += size) > INT32_MAX) 2123 return (EINVAL); 2124 } 2125 2126 *buflen = nvsize; 2127 return (0); 2128 } 2129 2130 static int 2131 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen) 2132 { 2133 int err; 2134 2135 if (nvl->nvl_priv == 0) 2136 return (EFAULT); 2137 2138 /* 2139 * Perform the operation, starting with header, then each nvpair 2140 */ 2141 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0) 2142 return (err); 2143 2144 switch (nvs->nvs_op) { 2145 case NVS_OP_ENCODE: 2146 err = nvs_encode_pairs(nvs, nvl); 2147 break; 2148 2149 case NVS_OP_DECODE: 2150 err = nvs_decode_pairs(nvs, nvl); 2151 break; 2152 2153 case NVS_OP_GETSIZE: 2154 err = nvs_getsize_pairs(nvs, nvl, buflen); 2155 break; 2156 2157 default: 2158 err = EINVAL; 2159 } 2160 2161 return (err); 2162 } 2163 2164 static int 2165 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded) 2166 { 2167 switch (nvs->nvs_op) { 2168 case NVS_OP_ENCODE: 2169 return (nvs_operation(nvs, embedded, NULL)); 2170 2171 case NVS_OP_DECODE: { 2172 nvpriv_t *priv; 2173 int err; 2174 2175 if (embedded->nvl_version != NV_VERSION) 2176 return (ENOTSUP); 2177 2178 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL) 2179 return (ENOMEM); 2180 2181 nvlist_init(embedded, embedded->nvl_nvflag, priv); 2182 2183 if ((err = nvs_operation(nvs, embedded, NULL)) != 0) 2184 nvlist_free(embedded); 2185 return (err); 2186 } 2187 default: 2188 break; 2189 } 2190 2191 return (EINVAL); 2192 } 2193 2194 static int 2195 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2196 { 2197 size_t nelem = NVP_NELEM(nvp); 2198 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp); 2199 int i; 2200 2201 switch (nvs->nvs_op) { 2202 case NVS_OP_ENCODE: 2203 for (i = 0; i < nelem; i++) 2204 if (nvs_embedded(nvs, nvlp[i]) != 0) 2205 return (EFAULT); 2206 break; 2207 2208 case NVS_OP_DECODE: { 2209 size_t len = nelem * sizeof (uint64_t); 2210 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len); 2211 2212 bzero(nvlp, len); /* don't trust packed data */ 2213 for (i = 0; i < nelem; i++) { 2214 if (nvs_embedded(nvs, embedded) != 0) { 2215 nvpair_free(nvp); 2216 return (EFAULT); 2217 } 2218 2219 nvlp[i] = embedded++; 2220 } 2221 break; 2222 } 2223 case NVS_OP_GETSIZE: { 2224 uint64_t nvsize = 0; 2225 2226 for (i = 0; i < nelem; i++) { 2227 size_t nvp_sz = 0; 2228 2229 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0) 2230 return (EINVAL); 2231 2232 if ((nvsize += nvp_sz) > INT32_MAX) 2233 return (EINVAL); 2234 } 2235 2236 *size = nvsize; 2237 break; 2238 } 2239 default: 2240 return (EINVAL); 2241 } 2242 2243 return (0); 2244 } 2245 2246 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *); 2247 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *); 2248 2249 /* 2250 * Common routine for nvlist operations: 2251 * encode, decode, getsize (encoded size). 2252 */ 2253 static int 2254 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding, 2255 int nvs_op) 2256 { 2257 int err = 0; 2258 nvstream_t nvs; 2259 int nvl_endian; 2260 #ifdef _LITTLE_ENDIAN 2261 int host_endian = 1; 2262 #else 2263 int host_endian = 0; 2264 #endif /* _LITTLE_ENDIAN */ 2265 nvs_header_t *nvh = (void *)buf; 2266 2267 if (buflen == NULL || nvl == NULL || 2268 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL) 2269 return (EINVAL); 2270 2271 nvs.nvs_op = nvs_op; 2272 2273 /* 2274 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and 2275 * a buffer is allocated. The first 4 bytes in the buffer are 2276 * used for encoding method and host endian. 2277 */ 2278 switch (nvs_op) { 2279 case NVS_OP_ENCODE: 2280 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2281 return (EINVAL); 2282 2283 nvh->nvh_encoding = encoding; 2284 nvh->nvh_endian = nvl_endian = host_endian; 2285 nvh->nvh_reserved1 = 0; 2286 nvh->nvh_reserved2 = 0; 2287 break; 2288 2289 case NVS_OP_DECODE: 2290 if (buf == NULL || *buflen < sizeof (nvs_header_t)) 2291 return (EINVAL); 2292 2293 /* get method of encoding from first byte */ 2294 encoding = nvh->nvh_encoding; 2295 nvl_endian = nvh->nvh_endian; 2296 break; 2297 2298 case NVS_OP_GETSIZE: 2299 nvl_endian = host_endian; 2300 2301 /* 2302 * add the size for encoding 2303 */ 2304 *buflen = sizeof (nvs_header_t); 2305 break; 2306 2307 default: 2308 return (ENOTSUP); 2309 } 2310 2311 /* 2312 * Create an nvstream with proper encoding method 2313 */ 2314 switch (encoding) { 2315 case NV_ENCODE_NATIVE: 2316 /* 2317 * check endianness, in case we are unpacking 2318 * from a file 2319 */ 2320 if (nvl_endian != host_endian) 2321 return (ENOTSUP); 2322 err = nvs_native(&nvs, nvl, buf, buflen); 2323 break; 2324 case NV_ENCODE_XDR: 2325 err = nvs_xdr(&nvs, nvl, buf, buflen); 2326 break; 2327 default: 2328 err = ENOTSUP; 2329 break; 2330 } 2331 2332 return (err); 2333 } 2334 2335 int 2336 nvlist_size(nvlist_t *nvl, size_t *size, int encoding) 2337 { 2338 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE)); 2339 } 2340 2341 /* 2342 * Pack nvlist into contiguous memory 2343 */ 2344 /*ARGSUSED1*/ 2345 int 2346 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2347 int kmflag) 2348 { 2349 #if defined(_KERNEL) && !defined(_BOOT) 2350 return (nvlist_xpack(nvl, bufp, buflen, encoding, 2351 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2352 #else 2353 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep)); 2354 #endif 2355 } 2356 2357 int 2358 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding, 2359 nv_alloc_t *nva) 2360 { 2361 nvpriv_t nvpriv; 2362 size_t alloc_size; 2363 char *buf; 2364 int err; 2365 2366 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL) 2367 return (EINVAL); 2368 2369 if (*bufp != NULL) 2370 return (nvlist_common(nvl, *bufp, buflen, encoding, 2371 NVS_OP_ENCODE)); 2372 2373 /* 2374 * Here is a difficult situation: 2375 * 1. The nvlist has fixed allocator properties. 2376 * All other nvlist routines (like nvlist_add_*, ...) use 2377 * these properties. 2378 * 2. When using nvlist_pack() the user can specify his own 2379 * allocator properties (e.g. by using KM_NOSLEEP). 2380 * 2381 * We use the user specified properties (2). A clearer solution 2382 * will be to remove the kmflag from nvlist_pack(), but we will 2383 * not change the interface. 2384 */ 2385 nv_priv_init(&nvpriv, nva, 0); 2386 2387 if ((err = nvlist_size(nvl, &alloc_size, encoding))) 2388 return (err); 2389 2390 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL) 2391 return (ENOMEM); 2392 2393 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding, 2394 NVS_OP_ENCODE)) != 0) { 2395 nv_mem_free(&nvpriv, buf, alloc_size); 2396 } else { 2397 *buflen = alloc_size; 2398 *bufp = buf; 2399 } 2400 2401 return (err); 2402 } 2403 2404 /* 2405 * Unpack buf into an nvlist_t 2406 */ 2407 /*ARGSUSED1*/ 2408 int 2409 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag) 2410 { 2411 #if defined(_KERNEL) && !defined(_BOOT) 2412 return (nvlist_xunpack(buf, buflen, nvlp, 2413 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep))); 2414 #else 2415 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep)); 2416 #endif 2417 } 2418 2419 int 2420 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva) 2421 { 2422 nvlist_t *nvl; 2423 int err; 2424 2425 if (nvlp == NULL) 2426 return (EINVAL); 2427 2428 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0) 2429 return (err); 2430 2431 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0) 2432 nvlist_free(nvl); 2433 else 2434 *nvlp = nvl; 2435 2436 return (err); 2437 } 2438 2439 /* 2440 * Native encoding functions 2441 */ 2442 typedef struct { 2443 /* 2444 * This structure is used when decoding a packed nvpair in 2445 * the native format. n_base points to a buffer containing the 2446 * packed nvpair. n_end is a pointer to the end of the buffer. 2447 * (n_end actually points to the first byte past the end of the 2448 * buffer.) n_curr is a pointer that lies between n_base and n_end. 2449 * It points to the current data that we are decoding. 2450 * The amount of data left in the buffer is equal to n_end - n_curr. 2451 * n_flag is used to recognize a packed embedded list. 2452 */ 2453 caddr_t n_base; 2454 caddr_t n_end; 2455 caddr_t n_curr; 2456 uint_t n_flag; 2457 } nvs_native_t; 2458 2459 static int 2460 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf, 2461 size_t buflen) 2462 { 2463 switch (nvs->nvs_op) { 2464 case NVS_OP_ENCODE: 2465 case NVS_OP_DECODE: 2466 nvs->nvs_private = native; 2467 native->n_curr = native->n_base = buf; 2468 native->n_end = buf + buflen; 2469 native->n_flag = 0; 2470 return (0); 2471 2472 case NVS_OP_GETSIZE: 2473 nvs->nvs_private = native; 2474 native->n_curr = native->n_base = native->n_end = NULL; 2475 native->n_flag = 0; 2476 return (0); 2477 default: 2478 return (EINVAL); 2479 } 2480 } 2481 2482 /*ARGSUSED*/ 2483 static void 2484 nvs_native_destroy(nvstream_t *nvs) 2485 { 2486 } 2487 2488 static int 2489 native_cp(nvstream_t *nvs, void *buf, size_t size) 2490 { 2491 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2492 2493 if (native->n_curr + size > native->n_end) 2494 return (EFAULT); 2495 2496 /* 2497 * The bcopy() below eliminates alignment requirement 2498 * on the buffer (stream) and is preferred over direct access. 2499 */ 2500 switch (nvs->nvs_op) { 2501 case NVS_OP_ENCODE: 2502 bcopy(buf, native->n_curr, size); 2503 break; 2504 case NVS_OP_DECODE: 2505 bcopy(native->n_curr, buf, size); 2506 break; 2507 default: 2508 return (EINVAL); 2509 } 2510 2511 native->n_curr += size; 2512 return (0); 2513 } 2514 2515 /* 2516 * operate on nvlist_t header 2517 */ 2518 static int 2519 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2520 { 2521 nvs_native_t *native = nvs->nvs_private; 2522 2523 switch (nvs->nvs_op) { 2524 case NVS_OP_ENCODE: 2525 case NVS_OP_DECODE: 2526 if (native->n_flag) 2527 return (0); /* packed embedded list */ 2528 2529 native->n_flag = 1; 2530 2531 /* copy version and nvflag of the nvlist_t */ 2532 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 || 2533 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0) 2534 return (EFAULT); 2535 2536 return (0); 2537 2538 case NVS_OP_GETSIZE: 2539 /* 2540 * if calculate for packed embedded list 2541 * 4 for end of the embedded list 2542 * else 2543 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag 2544 * and 4 for end of the entire list 2545 */ 2546 if (native->n_flag) { 2547 *size += 4; 2548 } else { 2549 native->n_flag = 1; 2550 *size += 2 * sizeof (int32_t) + 4; 2551 } 2552 2553 return (0); 2554 2555 default: 2556 return (EINVAL); 2557 } 2558 } 2559 2560 static int 2561 nvs_native_nvl_fini(nvstream_t *nvs) 2562 { 2563 if (nvs->nvs_op == NVS_OP_ENCODE) { 2564 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2565 /* 2566 * Add 4 zero bytes at end of nvlist. They are used 2567 * for end detection by the decode routine. 2568 */ 2569 if (native->n_curr + sizeof (int) > native->n_end) 2570 return (EFAULT); 2571 2572 bzero(native->n_curr, sizeof (int)); 2573 native->n_curr += sizeof (int); 2574 } 2575 2576 return (0); 2577 } 2578 2579 static int 2580 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp) 2581 { 2582 if (nvs->nvs_op == NVS_OP_ENCODE) { 2583 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2584 nvlist_t *packed = (void *) 2585 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2586 /* 2587 * Null out the pointer that is meaningless in the packed 2588 * structure. The address may not be aligned, so we have 2589 * to use bzero. 2590 */ 2591 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2592 } 2593 2594 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp))); 2595 } 2596 2597 static int 2598 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp) 2599 { 2600 if (nvs->nvs_op == NVS_OP_ENCODE) { 2601 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2602 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp); 2603 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t); 2604 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len); 2605 int i; 2606 /* 2607 * Null out pointers that are meaningless in the packed 2608 * structure. The addresses may not be aligned, so we have 2609 * to use bzero. 2610 */ 2611 bzero(value, len); 2612 2613 for (i = 0; i < NVP_NELEM(nvp); i++, packed++) 2614 /* 2615 * Null out the pointer that is meaningless in the 2616 * packed structure. The address may not be aligned, 2617 * so we have to use bzero. 2618 */ 2619 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv)); 2620 } 2621 2622 return (nvs_embedded_nvl_array(nvs, nvp, NULL)); 2623 } 2624 2625 static void 2626 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp) 2627 { 2628 switch (nvs->nvs_op) { 2629 case NVS_OP_ENCODE: { 2630 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2631 uint64_t *strp = (void *) 2632 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp)); 2633 /* 2634 * Null out pointers that are meaningless in the packed 2635 * structure. The addresses may not be aligned, so we have 2636 * to use bzero. 2637 */ 2638 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t)); 2639 break; 2640 } 2641 case NVS_OP_DECODE: { 2642 char **strp = (void *)NVP_VALUE(nvp); 2643 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t)); 2644 int i; 2645 2646 for (i = 0; i < NVP_NELEM(nvp); i++) { 2647 strp[i] = buf; 2648 buf += strlen(buf) + 1; 2649 } 2650 break; 2651 } 2652 } 2653 } 2654 2655 static int 2656 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2657 { 2658 data_type_t type; 2659 int value_sz; 2660 int ret = 0; 2661 2662 /* 2663 * We do the initial bcopy of the data before we look at 2664 * the nvpair type, because when we're decoding, we won't 2665 * have the correct values for the pair until we do the bcopy. 2666 */ 2667 switch (nvs->nvs_op) { 2668 case NVS_OP_ENCODE: 2669 case NVS_OP_DECODE: 2670 if (native_cp(nvs, nvp, nvp->nvp_size) != 0) 2671 return (EFAULT); 2672 break; 2673 default: 2674 return (EINVAL); 2675 } 2676 2677 /* verify nvp_name_sz, check the name string length */ 2678 if (i_validate_nvpair_name(nvp) != 0) 2679 return (EFAULT); 2680 2681 type = NVP_TYPE(nvp); 2682 2683 /* 2684 * Verify type and nelem and get the value size. 2685 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2686 * is the size of the string(s) excluded. 2687 */ 2688 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0) 2689 return (EFAULT); 2690 2691 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size) 2692 return (EFAULT); 2693 2694 switch (type) { 2695 case DATA_TYPE_NVLIST: 2696 ret = nvpair_native_embedded(nvs, nvp); 2697 break; 2698 case DATA_TYPE_NVLIST_ARRAY: 2699 ret = nvpair_native_embedded_array(nvs, nvp); 2700 break; 2701 case DATA_TYPE_STRING_ARRAY: 2702 nvpair_native_string_array(nvs, nvp); 2703 break; 2704 default: 2705 break; 2706 } 2707 2708 return (ret); 2709 } 2710 2711 static int 2712 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2713 { 2714 uint64_t nvp_sz = nvp->nvp_size; 2715 2716 switch (NVP_TYPE(nvp)) { 2717 case DATA_TYPE_NVLIST: { 2718 size_t nvsize = 0; 2719 2720 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0) 2721 return (EINVAL); 2722 2723 nvp_sz += nvsize; 2724 break; 2725 } 2726 case DATA_TYPE_NVLIST_ARRAY: { 2727 size_t nvsize; 2728 2729 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0) 2730 return (EINVAL); 2731 2732 nvp_sz += nvsize; 2733 break; 2734 } 2735 default: 2736 break; 2737 } 2738 2739 if (nvp_sz > INT32_MAX) 2740 return (EINVAL); 2741 2742 *size = nvp_sz; 2743 2744 return (0); 2745 } 2746 2747 static int 2748 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 2749 { 2750 switch (nvs->nvs_op) { 2751 case NVS_OP_ENCODE: 2752 return (nvs_native_nvp_op(nvs, nvp)); 2753 2754 case NVS_OP_DECODE: { 2755 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private; 2756 int32_t decode_len; 2757 2758 /* try to read the size value from the stream */ 2759 if (native->n_curr + sizeof (int32_t) > native->n_end) 2760 return (EFAULT); 2761 bcopy(native->n_curr, &decode_len, sizeof (int32_t)); 2762 2763 /* sanity check the size value */ 2764 if (decode_len < 0 || 2765 decode_len > native->n_end - native->n_curr) 2766 return (EFAULT); 2767 2768 *size = decode_len; 2769 2770 /* 2771 * If at the end of the stream then move the cursor 2772 * forward, otherwise nvpair_native_op() will read 2773 * the entire nvpair at the same cursor position. 2774 */ 2775 if (*size == 0) 2776 native->n_curr += sizeof (int32_t); 2777 break; 2778 } 2779 2780 default: 2781 return (EINVAL); 2782 } 2783 2784 return (0); 2785 } 2786 2787 static const nvs_ops_t nvs_native_ops = { 2788 nvs_native_nvlist, 2789 nvs_native_nvpair, 2790 nvs_native_nvp_op, 2791 nvs_native_nvp_size, 2792 nvs_native_nvl_fini 2793 }; 2794 2795 static int 2796 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 2797 { 2798 nvs_native_t native; 2799 int err; 2800 2801 nvs->nvs_ops = &nvs_native_ops; 2802 2803 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t), 2804 *buflen - sizeof (nvs_header_t))) != 0) 2805 return (err); 2806 2807 err = nvs_operation(nvs, nvl, buflen); 2808 2809 nvs_native_destroy(nvs); 2810 2811 return (err); 2812 } 2813 2814 /* 2815 * XDR encoding functions 2816 * 2817 * An xdr packed nvlist is encoded as: 2818 * 2819 * - encoding methode and host endian (4 bytes) 2820 * - nvl_version (4 bytes) 2821 * - nvl_nvflag (4 bytes) 2822 * 2823 * - encoded nvpairs, the format of one xdr encoded nvpair is: 2824 * - encoded size of the nvpair (4 bytes) 2825 * - decoded size of the nvpair (4 bytes) 2826 * - name string, (4 + sizeof(NV_ALIGN4(string)) 2827 * a string is coded as size (4 bytes) and data 2828 * - data type (4 bytes) 2829 * - number of elements in the nvpair (4 bytes) 2830 * - data 2831 * 2832 * - 2 zero's for end of the entire list (8 bytes) 2833 */ 2834 static int 2835 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen) 2836 { 2837 /* xdr data must be 4 byte aligned */ 2838 if ((ulong_t)buf % 4 != 0) 2839 return (EFAULT); 2840 2841 switch (nvs->nvs_op) { 2842 case NVS_OP_ENCODE: 2843 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE); 2844 nvs->nvs_private = xdr; 2845 return (0); 2846 case NVS_OP_DECODE: 2847 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE); 2848 nvs->nvs_private = xdr; 2849 return (0); 2850 case NVS_OP_GETSIZE: 2851 nvs->nvs_private = NULL; 2852 return (0); 2853 default: 2854 return (EINVAL); 2855 } 2856 } 2857 2858 static void 2859 nvs_xdr_destroy(nvstream_t *nvs) 2860 { 2861 switch (nvs->nvs_op) { 2862 case NVS_OP_ENCODE: 2863 case NVS_OP_DECODE: 2864 xdr_destroy((XDR *)nvs->nvs_private); 2865 break; 2866 default: 2867 break; 2868 } 2869 } 2870 2871 static int 2872 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size) 2873 { 2874 switch (nvs->nvs_op) { 2875 case NVS_OP_ENCODE: 2876 case NVS_OP_DECODE: { 2877 XDR *xdr = nvs->nvs_private; 2878 2879 if (!xdr_int(xdr, &nvl->nvl_version) || 2880 !xdr_u_int(xdr, &nvl->nvl_nvflag)) 2881 return (EFAULT); 2882 break; 2883 } 2884 case NVS_OP_GETSIZE: { 2885 /* 2886 * 2 * 4 for nvl_version + nvl_nvflag 2887 * and 8 for end of the entire list 2888 */ 2889 *size += 2 * 4 + 8; 2890 break; 2891 } 2892 default: 2893 return (EINVAL); 2894 } 2895 return (0); 2896 } 2897 2898 static int 2899 nvs_xdr_nvl_fini(nvstream_t *nvs) 2900 { 2901 if (nvs->nvs_op == NVS_OP_ENCODE) { 2902 XDR *xdr = nvs->nvs_private; 2903 int zero = 0; 2904 2905 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero)) 2906 return (EFAULT); 2907 } 2908 2909 return (0); 2910 } 2911 2912 /* 2913 * The format of xdr encoded nvpair is: 2914 * encode_size, decode_size, name string, data type, nelem, data 2915 */ 2916 static int 2917 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp) 2918 { 2919 data_type_t type; 2920 char *buf; 2921 char *buf_end = (char *)nvp + nvp->nvp_size; 2922 int value_sz; 2923 uint_t nelem, buflen; 2924 bool_t ret = FALSE; 2925 XDR *xdr = nvs->nvs_private; 2926 2927 ASSERT(xdr != NULL && nvp != NULL); 2928 2929 /* name string */ 2930 if ((buf = NVP_NAME(nvp)) >= buf_end) 2931 return (EFAULT); 2932 buflen = buf_end - buf; 2933 2934 if (!xdr_string(xdr, &buf, buflen - 1)) 2935 return (EFAULT); 2936 nvp->nvp_name_sz = strlen(buf) + 1; 2937 2938 /* type and nelem */ 2939 if (!xdr_int(xdr, (int *)&nvp->nvp_type) || 2940 !xdr_int(xdr, &nvp->nvp_value_elem)) 2941 return (EFAULT); 2942 2943 type = NVP_TYPE(nvp); 2944 nelem = nvp->nvp_value_elem; 2945 2946 /* 2947 * Verify type and nelem and get the value size. 2948 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY 2949 * is the size of the string(s) excluded. 2950 */ 2951 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0) 2952 return (EFAULT); 2953 2954 /* if there is no data to extract then return */ 2955 if (nelem == 0) 2956 return (0); 2957 2958 /* value */ 2959 if ((buf = NVP_VALUE(nvp)) >= buf_end) 2960 return (EFAULT); 2961 buflen = buf_end - buf; 2962 2963 if (buflen < value_sz) 2964 return (EFAULT); 2965 2966 switch (type) { 2967 case DATA_TYPE_NVLIST: 2968 if (nvs_embedded(nvs, (void *)buf) == 0) 2969 return (0); 2970 break; 2971 2972 case DATA_TYPE_NVLIST_ARRAY: 2973 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0) 2974 return (0); 2975 break; 2976 2977 case DATA_TYPE_BOOLEAN: 2978 ret = TRUE; 2979 break; 2980 2981 case DATA_TYPE_BYTE: 2982 case DATA_TYPE_INT8: 2983 case DATA_TYPE_UINT8: 2984 ret = xdr_char(xdr, buf); 2985 break; 2986 2987 case DATA_TYPE_INT16: 2988 ret = xdr_short(xdr, (void *)buf); 2989 break; 2990 2991 case DATA_TYPE_UINT16: 2992 ret = xdr_u_short(xdr, (void *)buf); 2993 break; 2994 2995 case DATA_TYPE_BOOLEAN_VALUE: 2996 case DATA_TYPE_INT32: 2997 ret = xdr_int(xdr, (void *)buf); 2998 break; 2999 3000 case DATA_TYPE_UINT32: 3001 ret = xdr_u_int(xdr, (void *)buf); 3002 break; 3003 3004 case DATA_TYPE_INT64: 3005 ret = xdr_longlong_t(xdr, (void *)buf); 3006 break; 3007 3008 case DATA_TYPE_UINT64: 3009 ret = xdr_u_longlong_t(xdr, (void *)buf); 3010 break; 3011 3012 case DATA_TYPE_HRTIME: 3013 /* 3014 * NOTE: must expose the definition of hrtime_t here 3015 */ 3016 ret = xdr_longlong_t(xdr, (void *)buf); 3017 break; 3018 #if !defined(_KERNEL) 3019 case DATA_TYPE_DOUBLE: 3020 ret = xdr_double(xdr, (void *)buf); 3021 break; 3022 #endif 3023 case DATA_TYPE_STRING: 3024 ret = xdr_string(xdr, &buf, buflen - 1); 3025 break; 3026 3027 case DATA_TYPE_BYTE_ARRAY: 3028 ret = xdr_opaque(xdr, buf, nelem); 3029 break; 3030 3031 case DATA_TYPE_INT8_ARRAY: 3032 case DATA_TYPE_UINT8_ARRAY: 3033 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t), 3034 (xdrproc_t)xdr_char); 3035 break; 3036 3037 case DATA_TYPE_INT16_ARRAY: 3038 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t), 3039 sizeof (int16_t), (xdrproc_t)xdr_short); 3040 break; 3041 3042 case DATA_TYPE_UINT16_ARRAY: 3043 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t), 3044 sizeof (uint16_t), (xdrproc_t)xdr_u_short); 3045 break; 3046 3047 case DATA_TYPE_BOOLEAN_ARRAY: 3048 case DATA_TYPE_INT32_ARRAY: 3049 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t), 3050 sizeof (int32_t), (xdrproc_t)xdr_int); 3051 break; 3052 3053 case DATA_TYPE_UINT32_ARRAY: 3054 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t), 3055 sizeof (uint32_t), (xdrproc_t)xdr_u_int); 3056 break; 3057 3058 case DATA_TYPE_INT64_ARRAY: 3059 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t), 3060 sizeof (int64_t), (xdrproc_t)xdr_longlong_t); 3061 break; 3062 3063 case DATA_TYPE_UINT64_ARRAY: 3064 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t), 3065 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t); 3066 break; 3067 3068 case DATA_TYPE_STRING_ARRAY: { 3069 size_t len = nelem * sizeof (uint64_t); 3070 char **strp = (void *)buf; 3071 int i; 3072 3073 if (nvs->nvs_op == NVS_OP_DECODE) 3074 bzero(buf, len); /* don't trust packed data */ 3075 3076 for (i = 0; i < nelem; i++) { 3077 if (buflen <= len) 3078 return (EFAULT); 3079 3080 buf += len; 3081 buflen -= len; 3082 3083 if (xdr_string(xdr, &buf, buflen - 1) != TRUE) 3084 return (EFAULT); 3085 3086 if (nvs->nvs_op == NVS_OP_DECODE) 3087 strp[i] = buf; 3088 len = strlen(buf) + 1; 3089 } 3090 ret = TRUE; 3091 break; 3092 } 3093 default: 3094 break; 3095 } 3096 3097 return (ret == TRUE ? 0 : EFAULT); 3098 } 3099 3100 static int 3101 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3102 { 3103 data_type_t type = NVP_TYPE(nvp); 3104 /* 3105 * encode_size + decode_size + name string size + data type + nelem 3106 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) 3107 */ 3108 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4; 3109 3110 switch (type) { 3111 case DATA_TYPE_BOOLEAN: 3112 break; 3113 3114 case DATA_TYPE_BOOLEAN_VALUE: 3115 case DATA_TYPE_BYTE: 3116 case DATA_TYPE_INT8: 3117 case DATA_TYPE_UINT8: 3118 case DATA_TYPE_INT16: 3119 case DATA_TYPE_UINT16: 3120 case DATA_TYPE_INT32: 3121 case DATA_TYPE_UINT32: 3122 nvp_sz += 4; /* 4 is the minimum xdr unit */ 3123 break; 3124 3125 case DATA_TYPE_INT64: 3126 case DATA_TYPE_UINT64: 3127 case DATA_TYPE_HRTIME: 3128 #if !defined(_KERNEL) 3129 case DATA_TYPE_DOUBLE: 3130 #endif 3131 nvp_sz += 8; 3132 break; 3133 3134 case DATA_TYPE_STRING: 3135 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp))); 3136 break; 3137 3138 case DATA_TYPE_BYTE_ARRAY: 3139 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp)); 3140 break; 3141 3142 case DATA_TYPE_BOOLEAN_ARRAY: 3143 case DATA_TYPE_INT8_ARRAY: 3144 case DATA_TYPE_UINT8_ARRAY: 3145 case DATA_TYPE_INT16_ARRAY: 3146 case DATA_TYPE_UINT16_ARRAY: 3147 case DATA_TYPE_INT32_ARRAY: 3148 case DATA_TYPE_UINT32_ARRAY: 3149 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp); 3150 break; 3151 3152 case DATA_TYPE_INT64_ARRAY: 3153 case DATA_TYPE_UINT64_ARRAY: 3154 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp); 3155 break; 3156 3157 case DATA_TYPE_STRING_ARRAY: { 3158 int i; 3159 char **strs = (void *)NVP_VALUE(nvp); 3160 3161 for (i = 0; i < NVP_NELEM(nvp); i++) 3162 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i])); 3163 3164 break; 3165 } 3166 3167 case DATA_TYPE_NVLIST: 3168 case DATA_TYPE_NVLIST_ARRAY: { 3169 size_t nvsize = 0; 3170 int old_nvs_op = nvs->nvs_op; 3171 int err; 3172 3173 nvs->nvs_op = NVS_OP_GETSIZE; 3174 if (type == DATA_TYPE_NVLIST) 3175 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize); 3176 else 3177 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize); 3178 nvs->nvs_op = old_nvs_op; 3179 3180 if (err != 0) 3181 return (EINVAL); 3182 3183 nvp_sz += nvsize; 3184 break; 3185 } 3186 3187 default: 3188 return (EINVAL); 3189 } 3190 3191 if (nvp_sz > INT32_MAX) 3192 return (EINVAL); 3193 3194 *size = nvp_sz; 3195 3196 return (0); 3197 } 3198 3199 3200 /* 3201 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates 3202 * the largest nvpair that could be encoded in the buffer. 3203 * 3204 * See comments above nvpair_xdr_op() for the format of xdr encoding. 3205 * The size of a xdr packed nvpair without any data is 5 words. 3206 * 3207 * Using the size of the data directly as an estimate would be ok 3208 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY 3209 * then the actual nvpair has space for an array of pointers to index 3210 * the strings. These pointers are not encoded into the packed xdr buffer. 3211 * 3212 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are 3213 * of length 0, then each string is endcoded in xdr format as a single word. 3214 * Therefore when expanded to an nvpair there will be 2.25 word used for 3215 * each string. (a int64_t allocated for pointer usage, and a single char 3216 * for the null termination.) 3217 * 3218 * This is the calculation performed by the NVS_XDR_MAX_LEN macro. 3219 */ 3220 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4)) 3221 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \ 3222 0 : ((size_t)(y) - NVS_XDR_HDR_LEN)) 3223 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \ 3224 (NVS_XDR_DATA_LEN(x) * 2) + \ 3225 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4))) 3226 3227 static int 3228 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size) 3229 { 3230 XDR *xdr = nvs->nvs_private; 3231 int32_t encode_len, decode_len; 3232 3233 switch (nvs->nvs_op) { 3234 case NVS_OP_ENCODE: { 3235 size_t nvsize; 3236 3237 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0) 3238 return (EFAULT); 3239 3240 decode_len = nvp->nvp_size; 3241 encode_len = nvsize; 3242 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3243 return (EFAULT); 3244 3245 return (nvs_xdr_nvp_op(nvs, nvp)); 3246 } 3247 case NVS_OP_DECODE: { 3248 struct xdr_bytesrec bytesrec; 3249 3250 /* get the encode and decode size */ 3251 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len)) 3252 return (EFAULT); 3253 *size = decode_len; 3254 3255 /* are we at the end of the stream? */ 3256 if (*size == 0) 3257 return (0); 3258 3259 /* sanity check the size parameter */ 3260 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec)) 3261 return (EFAULT); 3262 3263 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail)) 3264 return (EFAULT); 3265 break; 3266 } 3267 3268 default: 3269 return (EINVAL); 3270 } 3271 return (0); 3272 } 3273 3274 static const struct nvs_ops nvs_xdr_ops = { 3275 nvs_xdr_nvlist, 3276 nvs_xdr_nvpair, 3277 nvs_xdr_nvp_op, 3278 nvs_xdr_nvp_size, 3279 nvs_xdr_nvl_fini 3280 }; 3281 3282 static int 3283 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen) 3284 { 3285 XDR xdr; 3286 int err; 3287 3288 nvs->nvs_ops = &nvs_xdr_ops; 3289 3290 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t), 3291 *buflen - sizeof (nvs_header_t))) != 0) 3292 return (err); 3293 3294 err = nvs_operation(nvs, nvl, buflen); 3295 3296 nvs_xdr_destroy(nvs); 3297 3298 return (err); 3299 }