1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
  24  */
  25 
  26 #include <sys/stropts.h>
  27 #include <sys/debug.h>
  28 #include <sys/isa_defs.h>
  29 #include <sys/int_limits.h>
  30 #include <sys/nvpair.h>
  31 #include <sys/nvpair_impl.h>
  32 #include <rpc/types.h>
  33 #include <rpc/xdr.h>
  34 
  35 #if defined(_KERNEL) && !defined(_BOOT)
  36 #include <sys/varargs.h>
  37 #include <sys/ddi.h>
  38 #include <sys/sunddi.h>
  39 #else
  40 #include <stdarg.h>
  41 #include <stdlib.h>
  42 #include <string.h>
  43 #include <strings.h>
  44 #endif
  45 
  46 #ifndef offsetof
  47 #define offsetof(s, m)          ((size_t)(&(((s *)0)->m)))
  48 #endif
  49 #define skip_whitespace(p)      while ((*(p) == ' ') || (*(p) == '\t')) p++
  50 
  51 /*
  52  * nvpair.c - Provides kernel & userland interfaces for manipulating
  53  *      name-value pairs.
  54  *
  55  * Overview Diagram
  56  *
  57  *  +--------------+
  58  *  |  nvlist_t    |
  59  *  |--------------|
  60  *  | nvl_version  |
  61  *  | nvl_nvflag   |
  62  *  | nvl_priv    -+-+
  63  *  | nvl_flag     | |
  64  *  | nvl_pad      | |
  65  *  +--------------+ |
  66  *                   V
  67  *      +--------------+      last i_nvp in list
  68  *      | nvpriv_t     |  +--------------------->
  69  *      |--------------|  |
  70  *   +--+- nvp_list    |  |   +------------+
  71  *   |  |  nvp_last   -+--+   + nv_alloc_t |
  72  *   |  |  nvp_curr    |      |------------|
  73  *   |  |  nvp_nva    -+----> | nva_ops    |
  74  *   |  |  nvp_stat    |      | nva_arg    |
  75  *   |  +--------------+      +------------+
  76  *   |
  77  *   +-------+
  78  *           V
  79  *   +---------------------+      +-------------------+
  80  *   |  i_nvp_t            |  +-->|  i_nvp_t          |  +-->
  81  *   |---------------------|  |   |-------------------|  |
  82  *   | nvi_next           -+--+   | nvi_next         -+--+
  83  *   | nvi_prev (NULL)     | <----+ nvi_prev          |
  84  *   | . . . . . . . . . . |      | . . . . . . . . . |
  85  *   | nvp (nvpair_t)      |      | nvp (nvpair_t)    |
  86  *   |  - nvp_size         |      |  - nvp_size       |
  87  *   |  - nvp_name_sz      |      |  - nvp_name_sz    |
  88  *   |  - nvp_value_elem   |      |  - nvp_value_elem |
  89  *   |  - nvp_type         |      |  - nvp_type       |
  90  *   |  - data ...         |      |  - data ...       |
  91  *   +---------------------+      +-------------------+
  92  *
  93  *
  94  *
  95  *   +---------------------+              +---------------------+
  96  *   |  i_nvp_t            |  +-->    +-->|  i_nvp_t (last)     |
  97  *   |---------------------|  |       |   |---------------------|
  98  *   |  nvi_next          -+--+ ... --+   | nvi_next (NULL)     |
  99  * <-+- nvi_prev           |<-- ...  <----+ nvi_prev            |
 100  *   | . . . . . . . . .   |              | . . . . . . . . .   |
 101  *   | nvp (nvpair_t)      |              | nvp (nvpair_t)      |
 102  *   |  - nvp_size         |              |  - nvp_size         |
 103  *   |  - nvp_name_sz      |              |  - nvp_name_sz      |
 104  *   |  - nvp_value_elem   |              |  - nvp_value_elem   |
 105  *   |  - DATA_TYPE_NVLIST |              |  - nvp_type         |
 106  *   |  - data (embedded)  |              |  - data ...         |
 107  *   |    nvlist name      |              +---------------------+
 108  *   |  +--------------+   |
 109  *   |  |  nvlist_t    |   |
 110  *   |  |--------------|   |
 111  *   |  | nvl_version  |   |
 112  *   |  | nvl_nvflag   |   |
 113  *   |  | nvl_priv   --+---+---->
 114  *   |  | nvl_flag     |   |
 115  *   |  | nvl_pad      |   |
 116  *   |  +--------------+   |
 117  *   +---------------------+
 118  *
 119  *
 120  * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
 121  * allow value to be aligned on 8 byte boundary
 122  *
 123  * name_len is the length of the name string including the null terminator
 124  * so it must be >= 1
 125  */
 126 #define NVP_SIZE_CALC(name_len, data_len) \
 127         (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
 128 
 129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
 130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
 131     uint_t nelem, const void *data);
 132 
 133 #define NV_STAT_EMBEDDED        0x1
 134 #define EMBEDDED_NVL(nvp)       ((nvlist_t *)(void *)NVP_VALUE(nvp))
 135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
 136 
 137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
 138 #define NVPAIR2I_NVP(nvp) \
 139         ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
 140 
 141 
 142 int
 143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
 144 {
 145         va_list valist;
 146         int err = 0;
 147 
 148         nva->nva_ops = nvo;
 149         nva->nva_arg = NULL;
 150 
 151         va_start(valist, nvo);
 152         if (nva->nva_ops->nv_ao_init != NULL)
 153                 err = nva->nva_ops->nv_ao_init(nva, valist);
 154         va_end(valist);
 155 
 156         return (err);
 157 }
 158 
 159 void
 160 nv_alloc_reset(nv_alloc_t *nva)
 161 {
 162         if (nva->nva_ops->nv_ao_reset != NULL)
 163                 nva->nva_ops->nv_ao_reset(nva);
 164 }
 165 
 166 void
 167 nv_alloc_fini(nv_alloc_t *nva)
 168 {
 169         if (nva->nva_ops->nv_ao_fini != NULL)
 170                 nva->nva_ops->nv_ao_fini(nva);
 171 }
 172 
 173 nv_alloc_t *
 174 nvlist_lookup_nv_alloc(nvlist_t *nvl)
 175 {
 176         nvpriv_t *priv;
 177 
 178         if (nvl == NULL ||
 179             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 180                 return (NULL);
 181 
 182         return (priv->nvp_nva);
 183 }
 184 
 185 static void *
 186 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
 187 {
 188         nv_alloc_t *nva = nvp->nvp_nva;
 189         void *buf;
 190 
 191         if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
 192                 bzero(buf, size);
 193 
 194         return (buf);
 195 }
 196 
 197 static void
 198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
 199 {
 200         nv_alloc_t *nva = nvp->nvp_nva;
 201 
 202         nva->nva_ops->nv_ao_free(nva, buf, size);
 203 }
 204 
 205 static void
 206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
 207 {
 208         bzero(priv, sizeof (nvpriv_t));
 209 
 210         priv->nvp_nva = nva;
 211         priv->nvp_stat = stat;
 212 }
 213 
 214 static nvpriv_t *
 215 nv_priv_alloc(nv_alloc_t *nva)
 216 {
 217         nvpriv_t *priv;
 218 
 219         /*
 220          * nv_mem_alloc() cannot called here because it needs the priv
 221          * argument.
 222          */
 223         if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
 224                 return (NULL);
 225 
 226         nv_priv_init(priv, nva, 0);
 227 
 228         return (priv);
 229 }
 230 
 231 /*
 232  * Embedded lists need their own nvpriv_t's.  We create a new
 233  * nvpriv_t using the parameters and allocator from the parent
 234  * list's nvpriv_t.
 235  */
 236 static nvpriv_t *
 237 nv_priv_alloc_embedded(nvpriv_t *priv)
 238 {
 239         nvpriv_t *emb_priv;
 240 
 241         if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
 242                 return (NULL);
 243 
 244         nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
 245 
 246         return (emb_priv);
 247 }
 248 
 249 static void
 250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
 251 {
 252         nvl->nvl_version = NV_VERSION;
 253         nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
 254         nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
 255         nvl->nvl_flag = 0;
 256         nvl->nvl_pad = 0;
 257 }
 258 
 259 uint_t
 260 nvlist_nvflag(nvlist_t *nvl)
 261 {
 262         return (nvl->nvl_nvflag);
 263 }
 264 
 265 /*
 266  * nvlist_alloc - Allocate nvlist.
 267  */
 268 /*ARGSUSED1*/
 269 int
 270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
 271 {
 272 #if defined(_KERNEL) && !defined(_BOOT)
 273         return (nvlist_xalloc(nvlp, nvflag,
 274             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 275 #else
 276         return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
 277 #endif
 278 }
 279 
 280 int
 281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
 282 {
 283         nvpriv_t *priv;
 284 
 285         if (nvlp == NULL || nva == NULL)
 286                 return (EINVAL);
 287 
 288         if ((priv = nv_priv_alloc(nva)) == NULL)
 289                 return (ENOMEM);
 290 
 291         if ((*nvlp = nv_mem_zalloc(priv,
 292             NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
 293                 nv_mem_free(priv, priv, sizeof (nvpriv_t));
 294                 return (ENOMEM);
 295         }
 296 
 297         nvlist_init(*nvlp, nvflag, priv);
 298 
 299         return (0);
 300 }
 301 
 302 /*
 303  * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
 304  */
 305 static nvpair_t *
 306 nvp_buf_alloc(nvlist_t *nvl, size_t len)
 307 {
 308         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 309         i_nvp_t *buf;
 310         nvpair_t *nvp;
 311         size_t nvsize;
 312 
 313         /*
 314          * Allocate the buffer
 315          */
 316         nvsize = len + offsetof(i_nvp_t, nvi_nvp);
 317 
 318         if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
 319                 return (NULL);
 320 
 321         nvp = &buf->nvi_nvp;
 322         nvp->nvp_size = len;
 323 
 324         return (nvp);
 325 }
 326 
 327 /*
 328  * nvp_buf_free - de-Allocate an i_nvp_t.
 329  */
 330 static void
 331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
 332 {
 333         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 334         size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
 335 
 336         nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
 337 }
 338 
 339 /*
 340  * nvp_buf_link - link a new nv pair into the nvlist.
 341  */
 342 static void
 343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
 344 {
 345         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 346         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 347 
 348         /* Put element at end of nvlist */
 349         if (priv->nvp_list == NULL) {
 350                 priv->nvp_list = priv->nvp_last = curr;
 351         } else {
 352                 curr->nvi_prev = priv->nvp_last;
 353                 priv->nvp_last->nvi_next = curr;
 354                 priv->nvp_last = curr;
 355         }
 356 }
 357 
 358 /*
 359  * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
 360  */
 361 static void
 362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
 363 {
 364         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 365         i_nvp_t *curr = NVPAIR2I_NVP(nvp);
 366 
 367         /*
 368          * protect nvlist_next_nvpair() against walking on freed memory.
 369          */
 370         if (priv->nvp_curr == curr)
 371                 priv->nvp_curr = curr->nvi_next;
 372 
 373         if (curr == priv->nvp_list)
 374                 priv->nvp_list = curr->nvi_next;
 375         else
 376                 curr->nvi_prev->nvi_next = curr->nvi_next;
 377 
 378         if (curr == priv->nvp_last)
 379                 priv->nvp_last = curr->nvi_prev;
 380         else
 381                 curr->nvi_next->nvi_prev = curr->nvi_prev;
 382 }
 383 
 384 /*
 385  * take a nvpair type and number of elements and make sure the are valid
 386  */
 387 static int
 388 i_validate_type_nelem(data_type_t type, uint_t nelem)
 389 {
 390         switch (type) {
 391         case DATA_TYPE_BOOLEAN:
 392                 if (nelem != 0)
 393                         return (EINVAL);
 394                 break;
 395         case DATA_TYPE_BOOLEAN_VALUE:
 396         case DATA_TYPE_BYTE:
 397         case DATA_TYPE_INT8:
 398         case DATA_TYPE_UINT8:
 399         case DATA_TYPE_INT16:
 400         case DATA_TYPE_UINT16:
 401         case DATA_TYPE_INT32:
 402         case DATA_TYPE_UINT32:
 403         case DATA_TYPE_INT64:
 404         case DATA_TYPE_UINT64:
 405         case DATA_TYPE_STRING:
 406         case DATA_TYPE_HRTIME:
 407         case DATA_TYPE_NVLIST:
 408 #if !defined(_KERNEL)
 409         case DATA_TYPE_DOUBLE:
 410 #endif
 411                 if (nelem != 1)
 412                         return (EINVAL);
 413                 break;
 414         case DATA_TYPE_BOOLEAN_ARRAY:
 415         case DATA_TYPE_BYTE_ARRAY:
 416         case DATA_TYPE_INT8_ARRAY:
 417         case DATA_TYPE_UINT8_ARRAY:
 418         case DATA_TYPE_INT16_ARRAY:
 419         case DATA_TYPE_UINT16_ARRAY:
 420         case DATA_TYPE_INT32_ARRAY:
 421         case DATA_TYPE_UINT32_ARRAY:
 422         case DATA_TYPE_INT64_ARRAY:
 423         case DATA_TYPE_UINT64_ARRAY:
 424         case DATA_TYPE_STRING_ARRAY:
 425         case DATA_TYPE_NVLIST_ARRAY:
 426                 /* we allow arrays with 0 elements */
 427                 break;
 428         default:
 429                 return (EINVAL);
 430         }
 431         return (0);
 432 }
 433 
 434 /*
 435  * Verify nvp_name_sz and check the name string length.
 436  */
 437 static int
 438 i_validate_nvpair_name(nvpair_t *nvp)
 439 {
 440         if ((nvp->nvp_name_sz <= 0) ||
 441             (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
 442                 return (EFAULT);
 443 
 444         /* verify the name string, make sure its terminated */
 445         if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
 446                 return (EFAULT);
 447 
 448         return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
 449 }
 450 
 451 static int
 452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
 453 {
 454         switch (type) {
 455         case DATA_TYPE_BOOLEAN_VALUE:
 456                 if (*(boolean_t *)data != B_TRUE &&
 457                     *(boolean_t *)data != B_FALSE)
 458                         return (EINVAL);
 459                 break;
 460         case DATA_TYPE_BOOLEAN_ARRAY: {
 461                 int i;
 462 
 463                 for (i = 0; i < nelem; i++)
 464                         if (((boolean_t *)data)[i] != B_TRUE &&
 465                             ((boolean_t *)data)[i] != B_FALSE)
 466                                 return (EINVAL);
 467                 break;
 468         }
 469         default:
 470                 break;
 471         }
 472 
 473         return (0);
 474 }
 475 
 476 /*
 477  * This function takes a pointer to what should be a nvpair and it's size
 478  * and then verifies that all the nvpair fields make sense and can be
 479  * trusted.  This function is used when decoding packed nvpairs.
 480  */
 481 static int
 482 i_validate_nvpair(nvpair_t *nvp)
 483 {
 484         data_type_t type = NVP_TYPE(nvp);
 485         int size1, size2;
 486 
 487         /* verify nvp_name_sz, check the name string length */
 488         if (i_validate_nvpair_name(nvp) != 0)
 489                 return (EFAULT);
 490 
 491         if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
 492                 return (EFAULT);
 493 
 494         /*
 495          * verify nvp_type, nvp_value_elem, and also possibly
 496          * verify string values and get the value size.
 497          */
 498         size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
 499         size1 = nvp->nvp_size - NVP_VALOFF(nvp);
 500         if (size2 < 0 || size1 != NV_ALIGN(size2))
 501                 return (EFAULT);
 502 
 503         return (0);
 504 }
 505 
 506 static int
 507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
 508 {
 509         nvpriv_t *priv;
 510         i_nvp_t *curr;
 511 
 512         if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
 513                 return (EINVAL);
 514 
 515         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
 516                 nvpair_t *nvp = &curr->nvi_nvp;
 517                 int err;
 518 
 519                 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
 520                     NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
 521                         return (err);
 522         }
 523 
 524         return (0);
 525 }
 526 
 527 /*
 528  * Frees all memory allocated for an nvpair (like embedded lists) with
 529  * the exception of the nvpair buffer itself.
 530  */
 531 static void
 532 nvpair_free(nvpair_t *nvp)
 533 {
 534         switch (NVP_TYPE(nvp)) {
 535         case DATA_TYPE_NVLIST:
 536                 nvlist_free(EMBEDDED_NVL(nvp));
 537                 break;
 538         case DATA_TYPE_NVLIST_ARRAY: {
 539                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 540                 int i;
 541 
 542                 for (i = 0; i < NVP_NELEM(nvp); i++)
 543                         if (nvlp[i] != NULL)
 544                                 nvlist_free(nvlp[i]);
 545                 break;
 546         }
 547         default:
 548                 break;
 549         }
 550 }
 551 
 552 /*
 553  * nvlist_free - free an unpacked nvlist
 554  */
 555 void
 556 nvlist_free(nvlist_t *nvl)
 557 {
 558         nvpriv_t *priv;
 559         i_nvp_t *curr;
 560 
 561         if (nvl == NULL ||
 562             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 563                 return;
 564 
 565         /*
 566          * Unpacked nvlist are linked through i_nvp_t
 567          */
 568         curr = priv->nvp_list;
 569         while (curr != NULL) {
 570                 nvpair_t *nvp = &curr->nvi_nvp;
 571                 curr = curr->nvi_next;
 572 
 573                 nvpair_free(nvp);
 574                 nvp_buf_free(nvl, nvp);
 575         }
 576 
 577         if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
 578                 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
 579         else
 580                 nvl->nvl_priv = 0;
 581 
 582         nv_mem_free(priv, priv, sizeof (nvpriv_t));
 583 }
 584 
 585 static int
 586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
 587 {
 588         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
 589         i_nvp_t *curr;
 590 
 591         if (nvp == NULL)
 592                 return (0);
 593 
 594         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
 595                 if (&curr->nvi_nvp == nvp)
 596                         return (1);
 597 
 598         return (0);
 599 }
 600 
 601 /*
 602  * Make a copy of nvlist
 603  */
 604 /*ARGSUSED1*/
 605 int
 606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
 607 {
 608 #if defined(_KERNEL) && !defined(_BOOT)
 609         return (nvlist_xdup(nvl, nvlp,
 610             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
 611 #else
 612         return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
 613 #endif
 614 }
 615 
 616 int
 617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
 618 {
 619         int err;
 620         nvlist_t *ret;
 621 
 622         if (nvl == NULL || nvlp == NULL)
 623                 return (EINVAL);
 624 
 625         if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
 626                 return (err);
 627 
 628         if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
 629                 nvlist_free(ret);
 630         else
 631                 *nvlp = ret;
 632 
 633         return (err);
 634 }
 635 
 636 /*
 637  * Remove all with matching name
 638  */
 639 int
 640 nvlist_remove_all(nvlist_t *nvl, const char *name)
 641 {
 642         nvpriv_t *priv;
 643         i_nvp_t *curr;
 644         int error = ENOENT;
 645 
 646         if (nvl == NULL || name == NULL ||
 647             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 648                 return (EINVAL);
 649 
 650         curr = priv->nvp_list;
 651         while (curr != NULL) {
 652                 nvpair_t *nvp = &curr->nvi_nvp;
 653 
 654                 curr = curr->nvi_next;
 655                 if (strcmp(name, NVP_NAME(nvp)) != 0)
 656                         continue;
 657 
 658                 nvp_buf_unlink(nvl, nvp);
 659                 nvpair_free(nvp);
 660                 nvp_buf_free(nvl, nvp);
 661 
 662                 error = 0;
 663         }
 664 
 665         return (error);
 666 }
 667 
 668 /*
 669  * Remove first one with matching name and type
 670  */
 671 int
 672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
 673 {
 674         nvpriv_t *priv;
 675         i_nvp_t *curr;
 676 
 677         if (nvl == NULL || name == NULL ||
 678             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
 679                 return (EINVAL);
 680 
 681         curr = priv->nvp_list;
 682         while (curr != NULL) {
 683                 nvpair_t *nvp = &curr->nvi_nvp;
 684 
 685                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
 686                         nvp_buf_unlink(nvl, nvp);
 687                         nvpair_free(nvp);
 688                         nvp_buf_free(nvl, nvp);
 689 
 690                         return (0);
 691                 }
 692                 curr = curr->nvi_next;
 693         }
 694 
 695         return (ENOENT);
 696 }
 697 
 698 int
 699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
 700 {
 701         if (nvl == NULL || nvp == NULL)
 702                 return (EINVAL);
 703 
 704         nvp_buf_unlink(nvl, nvp);
 705         nvpair_free(nvp);
 706         nvp_buf_free(nvl, nvp);
 707         return (0);
 708 }
 709 
 710 /*
 711  * This function calculates the size of an nvpair value.
 712  *
 713  * The data argument controls the behavior in case of the data types
 714  *      DATA_TYPE_STRING        and
 715  *      DATA_TYPE_STRING_ARRAY
 716  * Is data == NULL then the size of the string(s) is excluded.
 717  */
 718 static int
 719 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
 720 {
 721         uint64_t value_sz;
 722 
 723         if (i_validate_type_nelem(type, nelem) != 0)
 724                 return (-1);
 725 
 726         /* Calculate required size for holding value */
 727         switch (type) {
 728         case DATA_TYPE_BOOLEAN:
 729                 value_sz = 0;
 730                 break;
 731         case DATA_TYPE_BOOLEAN_VALUE:
 732                 value_sz = sizeof (boolean_t);
 733                 break;
 734         case DATA_TYPE_BYTE:
 735                 value_sz = sizeof (uchar_t);
 736                 break;
 737         case DATA_TYPE_INT8:
 738                 value_sz = sizeof (int8_t);
 739                 break;
 740         case DATA_TYPE_UINT8:
 741                 value_sz = sizeof (uint8_t);
 742                 break;
 743         case DATA_TYPE_INT16:
 744                 value_sz = sizeof (int16_t);
 745                 break;
 746         case DATA_TYPE_UINT16:
 747                 value_sz = sizeof (uint16_t);
 748                 break;
 749         case DATA_TYPE_INT32:
 750                 value_sz = sizeof (int32_t);
 751                 break;
 752         case DATA_TYPE_UINT32:
 753                 value_sz = sizeof (uint32_t);
 754                 break;
 755         case DATA_TYPE_INT64:
 756                 value_sz = sizeof (int64_t);
 757                 break;
 758         case DATA_TYPE_UINT64:
 759                 value_sz = sizeof (uint64_t);
 760                 break;
 761 #if !defined(_KERNEL)
 762         case DATA_TYPE_DOUBLE:
 763                 value_sz = sizeof (double);
 764                 break;
 765 #endif
 766         case DATA_TYPE_STRING:
 767                 if (data == NULL)
 768                         value_sz = 0;
 769                 else
 770                         value_sz = strlen(data) + 1;
 771                 break;
 772         case DATA_TYPE_BOOLEAN_ARRAY:
 773                 value_sz = (uint64_t)nelem * sizeof (boolean_t);
 774                 break;
 775         case DATA_TYPE_BYTE_ARRAY:
 776                 value_sz = (uint64_t)nelem * sizeof (uchar_t);
 777                 break;
 778         case DATA_TYPE_INT8_ARRAY:
 779                 value_sz = (uint64_t)nelem * sizeof (int8_t);
 780                 break;
 781         case DATA_TYPE_UINT8_ARRAY:
 782                 value_sz = (uint64_t)nelem * sizeof (uint8_t);
 783                 break;
 784         case DATA_TYPE_INT16_ARRAY:
 785                 value_sz = (uint64_t)nelem * sizeof (int16_t);
 786                 break;
 787         case DATA_TYPE_UINT16_ARRAY:
 788                 value_sz = (uint64_t)nelem * sizeof (uint16_t);
 789                 break;
 790         case DATA_TYPE_INT32_ARRAY:
 791                 value_sz = (uint64_t)nelem * sizeof (int32_t);
 792                 break;
 793         case DATA_TYPE_UINT32_ARRAY:
 794                 value_sz = (uint64_t)nelem * sizeof (uint32_t);
 795                 break;
 796         case DATA_TYPE_INT64_ARRAY:
 797                 value_sz = (uint64_t)nelem * sizeof (int64_t);
 798                 break;
 799         case DATA_TYPE_UINT64_ARRAY:
 800                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 801                 break;
 802         case DATA_TYPE_STRING_ARRAY:
 803                 value_sz = (uint64_t)nelem * sizeof (uint64_t);
 804 
 805                 if (data != NULL) {
 806                         char *const *strs = data;
 807                         uint_t i;
 808 
 809                         /* no alignment requirement for strings */
 810                         for (i = 0; i < nelem; i++) {
 811                                 if (strs[i] == NULL)
 812                                         return (-1);
 813                                 value_sz += strlen(strs[i]) + 1;
 814                         }
 815                 }
 816                 break;
 817         case DATA_TYPE_HRTIME:
 818                 value_sz = sizeof (hrtime_t);
 819                 break;
 820         case DATA_TYPE_NVLIST:
 821                 value_sz = NV_ALIGN(sizeof (nvlist_t));
 822                 break;
 823         case DATA_TYPE_NVLIST_ARRAY:
 824                 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
 825                     (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
 826                 break;
 827         default:
 828                 return (-1);
 829         }
 830 
 831         return (value_sz > INT32_MAX ? -1 : (int)value_sz);
 832 }
 833 
 834 static int
 835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
 836 {
 837         nvpriv_t *priv;
 838         int err;
 839 
 840         if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
 841             nvl->nvl_priv)) == NULL)
 842                 return (ENOMEM);
 843 
 844         nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
 845 
 846         if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
 847                 nvlist_free(emb_nvl);
 848                 emb_nvl->nvl_priv = 0;
 849         }
 850 
 851         return (err);
 852 }
 853 
 854 /*
 855  * nvlist_add_common - Add new <name,value> pair to nvlist
 856  */
 857 static int
 858 nvlist_add_common(nvlist_t *nvl, const char *name,
 859     data_type_t type, uint_t nelem, const void *data)
 860 {
 861         nvpair_t *nvp;
 862         uint_t i;
 863 
 864         int nvp_sz, name_sz, value_sz;
 865         int err = 0;
 866 
 867         if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
 868                 return (EINVAL);
 869 
 870         if (nelem != 0 && data == NULL)
 871                 return (EINVAL);
 872 
 873         /*
 874          * Verify type and nelem and get the value size.
 875          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
 876          * is the size of the string(s) included.
 877          */
 878         if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
 879                 return (EINVAL);
 880 
 881         if (i_validate_nvpair_value(type, nelem, data) != 0)
 882                 return (EINVAL);
 883 
 884         /*
 885          * If we're adding an nvlist or nvlist array, ensure that we are not
 886          * adding the input nvlist to itself, which would cause recursion,
 887          * and ensure that no NULL nvlist pointers are present.
 888          */
 889         switch (type) {
 890         case DATA_TYPE_NVLIST:
 891                 if (data == nvl || data == NULL)
 892                         return (EINVAL);
 893                 break;
 894         case DATA_TYPE_NVLIST_ARRAY: {
 895                 nvlist_t **onvlp = (nvlist_t **)data;
 896                 for (i = 0; i < nelem; i++) {
 897                         if (onvlp[i] == nvl || onvlp[i] == NULL)
 898                                 return (EINVAL);
 899                 }
 900                 break;
 901         }
 902         default:
 903                 break;
 904         }
 905 
 906         /* calculate sizes of the nvpair elements and the nvpair itself */
 907         name_sz = strlen(name) + 1;
 908 
 909         nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
 910 
 911         if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
 912                 return (ENOMEM);
 913 
 914         ASSERT(nvp->nvp_size == nvp_sz);
 915         nvp->nvp_name_sz = name_sz;
 916         nvp->nvp_value_elem = nelem;
 917         nvp->nvp_type = type;
 918         bcopy(name, NVP_NAME(nvp), name_sz);
 919 
 920         switch (type) {
 921         case DATA_TYPE_BOOLEAN:
 922                 break;
 923         case DATA_TYPE_STRING_ARRAY: {
 924                 char *const *strs = data;
 925                 char *buf = NVP_VALUE(nvp);
 926                 char **cstrs = (void *)buf;
 927 
 928                 /* skip pre-allocated space for pointer array */
 929                 buf += nelem * sizeof (uint64_t);
 930                 for (i = 0; i < nelem; i++) {
 931                         int slen = strlen(strs[i]) + 1;
 932                         bcopy(strs[i], buf, slen);
 933                         cstrs[i] = buf;
 934                         buf += slen;
 935                 }
 936                 break;
 937         }
 938         case DATA_TYPE_NVLIST: {
 939                 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
 940                 nvlist_t *onvl = (nvlist_t *)data;
 941 
 942                 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
 943                         nvp_buf_free(nvl, nvp);
 944                         return (err);
 945                 }
 946                 break;
 947         }
 948         case DATA_TYPE_NVLIST_ARRAY: {
 949                 nvlist_t **onvlp = (nvlist_t **)data;
 950                 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
 951                 nvlist_t *embedded = (nvlist_t *)
 952                     ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
 953 
 954                 for (i = 0; i < nelem; i++) {
 955                         if ((err = nvlist_copy_embedded(nvl,
 956                             onvlp[i], embedded)) != 0) {
 957                                 /*
 958                                  * Free any successfully created lists
 959                                  */
 960                                 nvpair_free(nvp);
 961                                 nvp_buf_free(nvl, nvp);
 962                                 return (err);
 963                         }
 964 
 965                         nvlp[i] = embedded++;
 966                 }
 967                 break;
 968         }
 969         default:
 970                 bcopy(data, NVP_VALUE(nvp), value_sz);
 971         }
 972 
 973         /* if unique name, remove before add */
 974         if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
 975                 (void) nvlist_remove_all(nvl, name);
 976         else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
 977                 (void) nvlist_remove(nvl, name, type);
 978 
 979         nvp_buf_link(nvl, nvp);
 980 
 981         return (0);
 982 }
 983 
 984 int
 985 nvlist_add_boolean(nvlist_t *nvl, const char *name)
 986 {
 987         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
 988 }
 989 
 990 int
 991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
 992 {
 993         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
 994 }
 995 
 996 int
 997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
 998 {
 999         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1000 }
1001 
1002 int
1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1004 {
1005         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1006 }
1007 
1008 int
1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1010 {
1011         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1012 }
1013 
1014 int
1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1016 {
1017         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1018 }
1019 
1020 int
1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1022 {
1023         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1024 }
1025 
1026 int
1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1028 {
1029         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1030 }
1031 
1032 int
1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1034 {
1035         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1036 }
1037 
1038 int
1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1040 {
1041         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1042 }
1043 
1044 int
1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1046 {
1047         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1048 }
1049 
1050 #if !defined(_KERNEL)
1051 int
1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1053 {
1054         return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1055 }
1056 #endif
1057 
1058 int
1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1060 {
1061         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1062 }
1063 
1064 int
1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1066     boolean_t *a, uint_t n)
1067 {
1068         return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1069 }
1070 
1071 int
1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1073 {
1074         return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1075 }
1076 
1077 int
1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1079 {
1080         return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1081 }
1082 
1083 int
1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1085 {
1086         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1087 }
1088 
1089 int
1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1091 {
1092         return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1093 }
1094 
1095 int
1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1097 {
1098         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1099 }
1100 
1101 int
1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1103 {
1104         return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1105 }
1106 
1107 int
1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1109 {
1110         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1111 }
1112 
1113 int
1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1115 {
1116         return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1117 }
1118 
1119 int
1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1121 {
1122         return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1123 }
1124 
1125 int
1126 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1127     char *const *a, uint_t n)
1128 {
1129         return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1130 }
1131 
1132 int
1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1134 {
1135         return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1136 }
1137 
1138 int
1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1140 {
1141         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1142 }
1143 
1144 int
1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1146 {
1147         return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1148 }
1149 
1150 /* reading name-value pairs */
1151 nvpair_t *
1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1153 {
1154         nvpriv_t *priv;
1155         i_nvp_t *curr;
1156 
1157         if (nvl == NULL ||
1158             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1159                 return (NULL);
1160 
1161         curr = NVPAIR2I_NVP(nvp);
1162 
1163         /*
1164          * Ensure that nvp is a valid nvpair on this nvlist.
1165          * NB: nvp_curr is used only as a hint so that we don't always
1166          * have to walk the list to determine if nvp is still on the list.
1167          */
1168         if (nvp == NULL)
1169                 curr = priv->nvp_list;
1170         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1171                 curr = curr->nvi_next;
1172         else
1173                 curr = NULL;
1174 
1175         priv->nvp_curr = curr;
1176 
1177         return (curr != NULL ? &curr->nvi_nvp : NULL);
1178 }
1179 
1180 nvpair_t *
1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1182 {
1183         nvpriv_t *priv;
1184         i_nvp_t *curr;
1185 
1186         if (nvl == NULL ||
1187             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1188                 return (NULL);
1189 
1190         curr = NVPAIR2I_NVP(nvp);
1191 
1192         if (nvp == NULL)
1193                 curr = priv->nvp_last;
1194         else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1195                 curr = curr->nvi_prev;
1196         else
1197                 curr = NULL;
1198 
1199         priv->nvp_curr = curr;
1200 
1201         return (curr != NULL ? &curr->nvi_nvp : NULL);
1202 }
1203 
1204 boolean_t
1205 nvlist_empty(nvlist_t *nvl)
1206 {
1207         nvpriv_t *priv;
1208 
1209         if (nvl == NULL ||
1210             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1211                 return (B_TRUE);
1212 
1213         return (priv->nvp_list == NULL);
1214 }
1215 
1216 char *
1217 nvpair_name(nvpair_t *nvp)
1218 {
1219         return (NVP_NAME(nvp));
1220 }
1221 
1222 data_type_t
1223 nvpair_type(nvpair_t *nvp)
1224 {
1225         return (NVP_TYPE(nvp));
1226 }
1227 
1228 int
1229 nvpair_type_is_array(nvpair_t *nvp)
1230 {
1231         data_type_t type = NVP_TYPE(nvp);
1232 
1233         if ((type == DATA_TYPE_BYTE_ARRAY) ||
1234             (type == DATA_TYPE_INT8_ARRAY) ||
1235             (type == DATA_TYPE_UINT8_ARRAY) ||
1236             (type == DATA_TYPE_INT16_ARRAY) ||
1237             (type == DATA_TYPE_UINT16_ARRAY) ||
1238             (type == DATA_TYPE_INT32_ARRAY) ||
1239             (type == DATA_TYPE_UINT32_ARRAY) ||
1240             (type == DATA_TYPE_INT64_ARRAY) ||
1241             (type == DATA_TYPE_UINT64_ARRAY) ||
1242             (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1243             (type == DATA_TYPE_STRING_ARRAY) ||
1244             (type == DATA_TYPE_NVLIST_ARRAY))
1245                 return (1);
1246         return (0);
1247 
1248 }
1249 
1250 static int
1251 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1252 {
1253         if (nvp == NULL || nvpair_type(nvp) != type)
1254                 return (EINVAL);
1255 
1256         /*
1257          * For non-array types, we copy the data.
1258          * For array types (including string), we set a pointer.
1259          */
1260         switch (type) {
1261         case DATA_TYPE_BOOLEAN:
1262                 if (nelem != NULL)
1263                         *nelem = 0;
1264                 break;
1265 
1266         case DATA_TYPE_BOOLEAN_VALUE:
1267         case DATA_TYPE_BYTE:
1268         case DATA_TYPE_INT8:
1269         case DATA_TYPE_UINT8:
1270         case DATA_TYPE_INT16:
1271         case DATA_TYPE_UINT16:
1272         case DATA_TYPE_INT32:
1273         case DATA_TYPE_UINT32:
1274         case DATA_TYPE_INT64:
1275         case DATA_TYPE_UINT64:
1276         case DATA_TYPE_HRTIME:
1277 #if !defined(_KERNEL)
1278         case DATA_TYPE_DOUBLE:
1279 #endif
1280                 if (data == NULL)
1281                         return (EINVAL);
1282                 bcopy(NVP_VALUE(nvp), data,
1283                     (size_t)i_get_value_size(type, NULL, 1));
1284                 if (nelem != NULL)
1285                         *nelem = 1;
1286                 break;
1287 
1288         case DATA_TYPE_NVLIST:
1289         case DATA_TYPE_STRING:
1290                 if (data == NULL)
1291                         return (EINVAL);
1292                 *(void **)data = (void *)NVP_VALUE(nvp);
1293                 if (nelem != NULL)
1294                         *nelem = 1;
1295                 break;
1296 
1297         case DATA_TYPE_BOOLEAN_ARRAY:
1298         case DATA_TYPE_BYTE_ARRAY:
1299         case DATA_TYPE_INT8_ARRAY:
1300         case DATA_TYPE_UINT8_ARRAY:
1301         case DATA_TYPE_INT16_ARRAY:
1302         case DATA_TYPE_UINT16_ARRAY:
1303         case DATA_TYPE_INT32_ARRAY:
1304         case DATA_TYPE_UINT32_ARRAY:
1305         case DATA_TYPE_INT64_ARRAY:
1306         case DATA_TYPE_UINT64_ARRAY:
1307         case DATA_TYPE_STRING_ARRAY:
1308         case DATA_TYPE_NVLIST_ARRAY:
1309                 if (nelem == NULL || data == NULL)
1310                         return (EINVAL);
1311                 if ((*nelem = NVP_NELEM(nvp)) != 0)
1312                         *(void **)data = (void *)NVP_VALUE(nvp);
1313                 else
1314                         *(void **)data = NULL;
1315                 break;
1316 
1317         default:
1318                 return (ENOTSUP);
1319         }
1320 
1321         return (0);
1322 }
1323 
1324 static int
1325 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1326     uint_t *nelem, void *data)
1327 {
1328         nvpriv_t *priv;
1329         nvpair_t *nvp;
1330         i_nvp_t *curr;
1331 
1332         if (name == NULL || nvl == NULL ||
1333             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1334                 return (EINVAL);
1335 
1336         if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1337                 return (ENOTSUP);
1338 
1339         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1340                 nvp = &curr->nvi_nvp;
1341 
1342                 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1343                         return (nvpair_value_common(nvp, type, nelem, data));
1344         }
1345 
1346         return (ENOENT);
1347 }
1348 
1349 int
1350 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1351 {
1352         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1353 }
1354 
1355 int
1356 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1357 {
1358         return (nvlist_lookup_common(nvl, name,
1359             DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1360 }
1361 
1362 int
1363 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1364 {
1365         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1366 }
1367 
1368 int
1369 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1370 {
1371         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1372 }
1373 
1374 int
1375 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1376 {
1377         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1378 }
1379 
1380 int
1381 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1382 {
1383         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1384 }
1385 
1386 int
1387 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1388 {
1389         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1390 }
1391 
1392 int
1393 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1394 {
1395         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1396 }
1397 
1398 int
1399 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1400 {
1401         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1402 }
1403 
1404 int
1405 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1406 {
1407         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1408 }
1409 
1410 int
1411 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1412 {
1413         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1414 }
1415 
1416 #if !defined(_KERNEL)
1417 int
1418 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1419 {
1420         return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1421 }
1422 #endif
1423 
1424 int
1425 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1426 {
1427         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1428 }
1429 
1430 int
1431 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1432 {
1433         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1434 }
1435 
1436 int
1437 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1438     boolean_t **a, uint_t *n)
1439 {
1440         return (nvlist_lookup_common(nvl, name,
1441             DATA_TYPE_BOOLEAN_ARRAY, n, a));
1442 }
1443 
1444 int
1445 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1446     uchar_t **a, uint_t *n)
1447 {
1448         return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1449 }
1450 
1451 int
1452 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1453 {
1454         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1455 }
1456 
1457 int
1458 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1459     uint8_t **a, uint_t *n)
1460 {
1461         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1462 }
1463 
1464 int
1465 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1466     int16_t **a, uint_t *n)
1467 {
1468         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1469 }
1470 
1471 int
1472 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1473     uint16_t **a, uint_t *n)
1474 {
1475         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1476 }
1477 
1478 int
1479 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1480     int32_t **a, uint_t *n)
1481 {
1482         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1483 }
1484 
1485 int
1486 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1487     uint32_t **a, uint_t *n)
1488 {
1489         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1490 }
1491 
1492 int
1493 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1494     int64_t **a, uint_t *n)
1495 {
1496         return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1497 }
1498 
1499 int
1500 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1501     uint64_t **a, uint_t *n)
1502 {
1503         return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1504 }
1505 
1506 int
1507 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1508     char ***a, uint_t *n)
1509 {
1510         return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1511 }
1512 
1513 int
1514 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1515     nvlist_t ***a, uint_t *n)
1516 {
1517         return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1518 }
1519 
1520 int
1521 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1522 {
1523         return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1524 }
1525 
1526 int
1527 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1528 {
1529         va_list ap;
1530         char *name;
1531         int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1532         int ret = 0;
1533 
1534         va_start(ap, flag);
1535         while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1536                 data_type_t type;
1537                 void *val;
1538                 uint_t *nelem;
1539 
1540                 switch (type = va_arg(ap, data_type_t)) {
1541                 case DATA_TYPE_BOOLEAN:
1542                         ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1543                         break;
1544 
1545                 case DATA_TYPE_BOOLEAN_VALUE:
1546                 case DATA_TYPE_BYTE:
1547                 case DATA_TYPE_INT8:
1548                 case DATA_TYPE_UINT8:
1549                 case DATA_TYPE_INT16:
1550                 case DATA_TYPE_UINT16:
1551                 case DATA_TYPE_INT32:
1552                 case DATA_TYPE_UINT32:
1553                 case DATA_TYPE_INT64:
1554                 case DATA_TYPE_UINT64:
1555                 case DATA_TYPE_HRTIME:
1556                 case DATA_TYPE_STRING:
1557                 case DATA_TYPE_NVLIST:
1558 #if !defined(_KERNEL)
1559                 case DATA_TYPE_DOUBLE:
1560 #endif
1561                         val = va_arg(ap, void *);
1562                         ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1563                         break;
1564 
1565                 case DATA_TYPE_BYTE_ARRAY:
1566                 case DATA_TYPE_BOOLEAN_ARRAY:
1567                 case DATA_TYPE_INT8_ARRAY:
1568                 case DATA_TYPE_UINT8_ARRAY:
1569                 case DATA_TYPE_INT16_ARRAY:
1570                 case DATA_TYPE_UINT16_ARRAY:
1571                 case DATA_TYPE_INT32_ARRAY:
1572                 case DATA_TYPE_UINT32_ARRAY:
1573                 case DATA_TYPE_INT64_ARRAY:
1574                 case DATA_TYPE_UINT64_ARRAY:
1575                 case DATA_TYPE_STRING_ARRAY:
1576                 case DATA_TYPE_NVLIST_ARRAY:
1577                         val = va_arg(ap, void *);
1578                         nelem = va_arg(ap, uint_t *);
1579                         ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1580                         break;
1581 
1582                 default:
1583                         ret = EINVAL;
1584                 }
1585 
1586                 if (ret == ENOENT && noentok)
1587                         ret = 0;
1588         }
1589         va_end(ap);
1590 
1591         return (ret);
1592 }
1593 
1594 /*
1595  * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1596  * returns zero and a pointer to the matching nvpair is returned in '*ret'
1597  * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1598  * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1599  * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1600  * "a.d[3].e[1]".  This matches the C syntax for array embed (for convience,
1601  * code also supports "a.d[3]e[1]" syntax).
1602  *
1603  * If 'ip' is non-NULL and the last name component is an array, return the
1604  * value of the "...[index]" array index in *ip. For an array reference that
1605  * is not indexed, *ip will be returned as -1. If there is a syntax error in
1606  * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1607  * inside the 'name' string where the syntax error was detected.
1608  */
1609 static int
1610 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1611     nvpair_t **ret, int *ip, char **ep)
1612 {
1613         nvpair_t        *nvp;
1614         const char      *np;
1615         char            *sepp;
1616         char            *idxp, *idxep;
1617         nvlist_t        **nva;
1618         long            idx;
1619         int             n;
1620 
1621         if (ip)
1622                 *ip = -1;                       /* not indexed */
1623         if (ep)
1624                 *ep = NULL;
1625 
1626         if ((nvl == NULL) || (name == NULL))
1627                 return (EINVAL);
1628 
1629         sepp = NULL;
1630         idx = 0;
1631         /* step through components of name */
1632         for (np = name; np && *np; np = sepp) {
1633                 /* ensure unique names */
1634                 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1635                         return (ENOTSUP);
1636 
1637                 /* skip white space */
1638                 skip_whitespace(np);
1639                 if (*np == 0)
1640                         break;
1641 
1642                 /* set 'sepp' to end of current component 'np' */
1643                 if (sep)
1644                         sepp = strchr(np, sep);
1645                 else
1646                         sepp = NULL;
1647 
1648                 /* find start of next "[ index ]..." */
1649                 idxp = strchr(np, '[');
1650 
1651                 /* if sepp comes first, set idxp to NULL */
1652                 if (sepp && idxp && (sepp < idxp))
1653                         idxp = NULL;
1654 
1655                 /*
1656                  * At this point 'idxp' is set if there is an index
1657                  * expected for the current component.
1658                  */
1659                 if (idxp) {
1660                         /* set 'n' to length of current 'np' name component */
1661                         n = idxp++ - np;
1662 
1663                         /* keep sepp up to date for *ep use as we advance */
1664                         skip_whitespace(idxp);
1665                         sepp = idxp;
1666 
1667                         /* determine the index value */
1668 #if defined(_KERNEL) && !defined(_BOOT)
1669                         if (ddi_strtol(idxp, &idxep, 0, &idx))
1670                                 goto fail;
1671 #else
1672                         idx = strtol(idxp, &idxep, 0);
1673 #endif
1674                         if (idxep == idxp)
1675                                 goto fail;
1676 
1677                         /* keep sepp up to date for *ep use as we advance */
1678                         sepp = idxep;
1679 
1680                         /* skip white space index value and check for ']' */
1681                         skip_whitespace(sepp);
1682                         if (*sepp++ != ']')
1683                                 goto fail;
1684 
1685                         /* for embedded arrays, support C syntax: "a[1].b" */
1686                         skip_whitespace(sepp);
1687                         if (sep && (*sepp == sep))
1688                                 sepp++;
1689                 } else if (sepp) {
1690                         n = sepp++ - np;
1691                 } else {
1692                         n = strlen(np);
1693                 }
1694 
1695                 /* trim trailing whitespace by reducing length of 'np' */
1696                 if (n == 0)
1697                         goto fail;
1698                 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1699                         ;
1700                 n++;
1701 
1702                 /* skip whitespace, and set sepp to NULL if complete */
1703                 if (sepp) {
1704                         skip_whitespace(sepp);
1705                         if (*sepp == 0)
1706                                 sepp = NULL;
1707                 }
1708 
1709                 /*
1710                  * At this point:
1711                  * o  'n' is the length of current 'np' component.
1712                  * o  'idxp' is set if there was an index, and value 'idx'.
1713                  * o  'sepp' is set to the beginning of the next component,
1714                  *    and set to NULL if we have no more components.
1715                  *
1716                  * Search for nvpair with matching component name.
1717                  */
1718                 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1719                     nvp = nvlist_next_nvpair(nvl, nvp)) {
1720 
1721                         /* continue if no match on name */
1722                         if (strncmp(np, nvpair_name(nvp), n) ||
1723                             (strlen(nvpair_name(nvp)) != n))
1724                                 continue;
1725 
1726                         /* if indexed, verify type is array oriented */
1727                         if (idxp && !nvpair_type_is_array(nvp))
1728                                 goto fail;
1729 
1730                         /*
1731                          * Full match found, return nvp and idx if this
1732                          * was the last component.
1733                          */
1734                         if (sepp == NULL) {
1735                                 if (ret)
1736                                         *ret = nvp;
1737                                 if (ip && idxp)
1738                                         *ip = (int)idx; /* return index */
1739                                 return (0);             /* found */
1740                         }
1741 
1742                         /*
1743                          * More components: current match must be
1744                          * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1745                          * to support going deeper.
1746                          */
1747                         if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1748                                 nvl = EMBEDDED_NVL(nvp);
1749                                 break;
1750                         } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1751                                 (void) nvpair_value_nvlist_array(nvp,
1752                                     &nva, (uint_t *)&n);
1753                                 if ((n < 0) || (idx >= n))
1754                                         goto fail;
1755                                 nvl = nva[idx];
1756                                 break;
1757                         }
1758 
1759                         /* type does not support more levels */
1760                         goto fail;
1761                 }
1762                 if (nvp == NULL)
1763                         goto fail;              /* 'name' not found */
1764 
1765                 /* search for match of next component in embedded 'nvl' list */
1766         }
1767 
1768 fail:   if (ep && sepp)
1769                 *ep = sepp;
1770         return (EINVAL);
1771 }
1772 
1773 /*
1774  * Return pointer to nvpair with specified 'name'.
1775  */
1776 int
1777 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1778 {
1779         return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1780 }
1781 
1782 /*
1783  * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1784  * and return array index).  See nvlist_lookup_nvpair_ei_sep for more detailed
1785  * description.
1786  */
1787 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1788     const char *name, nvpair_t **ret, int *ip, char **ep)
1789 {
1790         return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1791 }
1792 
1793 boolean_t
1794 nvlist_exists(nvlist_t *nvl, const char *name)
1795 {
1796         nvpriv_t *priv;
1797         nvpair_t *nvp;
1798         i_nvp_t *curr;
1799 
1800         if (name == NULL || nvl == NULL ||
1801             (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1802                 return (B_FALSE);
1803 
1804         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1805                 nvp = &curr->nvi_nvp;
1806 
1807                 if (strcmp(name, NVP_NAME(nvp)) == 0)
1808                         return (B_TRUE);
1809         }
1810 
1811         return (B_FALSE);
1812 }
1813 
1814 int
1815 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1816 {
1817         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1818 }
1819 
1820 int
1821 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1822 {
1823         return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1824 }
1825 
1826 int
1827 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1828 {
1829         return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1830 }
1831 
1832 int
1833 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1834 {
1835         return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1836 }
1837 
1838 int
1839 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1840 {
1841         return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1842 }
1843 
1844 int
1845 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1846 {
1847         return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1848 }
1849 
1850 int
1851 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1852 {
1853         return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1854 }
1855 
1856 int
1857 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1858 {
1859         return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1860 }
1861 
1862 int
1863 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1864 {
1865         return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1866 }
1867 
1868 int
1869 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1870 {
1871         return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1872 }
1873 
1874 #if !defined(_KERNEL)
1875 int
1876 nvpair_value_double(nvpair_t *nvp, double *val)
1877 {
1878         return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1879 }
1880 #endif
1881 
1882 int
1883 nvpair_value_string(nvpair_t *nvp, char **val)
1884 {
1885         return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1886 }
1887 
1888 int
1889 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1890 {
1891         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1892 }
1893 
1894 int
1895 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1896 {
1897         return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1898 }
1899 
1900 int
1901 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1902 {
1903         return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1904 }
1905 
1906 int
1907 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1908 {
1909         return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1910 }
1911 
1912 int
1913 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1914 {
1915         return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1916 }
1917 
1918 int
1919 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1920 {
1921         return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1922 }
1923 
1924 int
1925 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1926 {
1927         return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1928 }
1929 
1930 int
1931 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1932 {
1933         return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1934 }
1935 
1936 int
1937 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1938 {
1939         return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1940 }
1941 
1942 int
1943 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1944 {
1945         return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1946 }
1947 
1948 int
1949 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1950 {
1951         return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1952 }
1953 
1954 int
1955 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1956 {
1957         return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1958 }
1959 
1960 int
1961 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1962 {
1963         return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1964 }
1965 
1966 int
1967 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1968 {
1969         return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1970 }
1971 
1972 /*
1973  * Add specified pair to the list.
1974  */
1975 int
1976 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1977 {
1978         if (nvl == NULL || nvp == NULL)
1979                 return (EINVAL);
1980 
1981         return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1982             NVP_NELEM(nvp), NVP_VALUE(nvp)));
1983 }
1984 
1985 /*
1986  * Merge the supplied nvlists and put the result in dst.
1987  * The merged list will contain all names specified in both lists,
1988  * the values are taken from nvl in the case of duplicates.
1989  * Return 0 on success.
1990  */
1991 /*ARGSUSED*/
1992 int
1993 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1994 {
1995         if (nvl == NULL || dst == NULL)
1996                 return (EINVAL);
1997 
1998         if (dst != nvl)
1999                 return (nvlist_copy_pairs(nvl, dst));
2000 
2001         return (0);
2002 }
2003 
2004 /*
2005  * Encoding related routines
2006  */
2007 #define NVS_OP_ENCODE   0
2008 #define NVS_OP_DECODE   1
2009 #define NVS_OP_GETSIZE  2
2010 
2011 typedef struct nvs_ops nvs_ops_t;
2012 
2013 typedef struct {
2014         int             nvs_op;
2015         const nvs_ops_t *nvs_ops;
2016         void            *nvs_private;
2017         nvpriv_t        *nvs_priv;
2018 } nvstream_t;
2019 
2020 /*
2021  * nvs operations are:
2022  *   - nvs_nvlist
2023  *     encoding / decoding of a nvlist header (nvlist_t)
2024  *     calculates the size used for header and end detection
2025  *
2026  *   - nvs_nvpair
2027  *     responsible for the first part of encoding / decoding of an nvpair
2028  *     calculates the decoded size of an nvpair
2029  *
2030  *   - nvs_nvp_op
2031  *     second part of encoding / decoding of an nvpair
2032  *
2033  *   - nvs_nvp_size
2034  *     calculates the encoding size of an nvpair
2035  *
2036  *   - nvs_nvl_fini
2037  *     encodes the end detection mark (zeros).
2038  */
2039 struct nvs_ops {
2040         int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2041         int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2042         int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2043         int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2044         int (*nvs_nvl_fini)(nvstream_t *);
2045 };
2046 
2047 typedef struct {
2048         char    nvh_encoding;   /* nvs encoding method */
2049         char    nvh_endian;     /* nvs endian */
2050         char    nvh_reserved1;  /* reserved for future use */
2051         char    nvh_reserved2;  /* reserved for future use */
2052 } nvs_header_t;
2053 
2054 static int
2055 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2056 {
2057         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2058         i_nvp_t *curr;
2059 
2060         /*
2061          * Walk nvpair in list and encode each nvpair
2062          */
2063         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2064                 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2065                         return (EFAULT);
2066 
2067         return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2068 }
2069 
2070 static int
2071 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2072 {
2073         nvpair_t *nvp;
2074         size_t nvsize;
2075         int err;
2076 
2077         /*
2078          * Get decoded size of next pair in stream, alloc
2079          * memory for nvpair_t, then decode the nvpair
2080          */
2081         while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2082                 if (nvsize == 0) /* end of list */
2083                         break;
2084 
2085                 /* make sure len makes sense */
2086                 if (nvsize < NVP_SIZE_CALC(1, 0))
2087                         return (EFAULT);
2088 
2089                 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2090                         return (ENOMEM);
2091 
2092                 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2093                         nvp_buf_free(nvl, nvp);
2094                         return (err);
2095                 }
2096 
2097                 if (i_validate_nvpair(nvp) != 0) {
2098                         nvpair_free(nvp);
2099                         nvp_buf_free(nvl, nvp);
2100                         return (EFAULT);
2101                 }
2102 
2103                 nvp_buf_link(nvl, nvp);
2104         }
2105         return (err);
2106 }
2107 
2108 static int
2109 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2110 {
2111         nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2112         i_nvp_t *curr;
2113         uint64_t nvsize = *buflen;
2114         size_t size;
2115 
2116         /*
2117          * Get encoded size of nvpairs in nvlist
2118          */
2119         for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2120                 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2121                         return (EINVAL);
2122 
2123                 if ((nvsize += size) > INT32_MAX)
2124                         return (EINVAL);
2125         }
2126 
2127         *buflen = nvsize;
2128         return (0);
2129 }
2130 
2131 static int
2132 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2133 {
2134         int err;
2135 
2136         if (nvl->nvl_priv == 0)
2137                 return (EFAULT);
2138 
2139         /*
2140          * Perform the operation, starting with header, then each nvpair
2141          */
2142         if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2143                 return (err);
2144 
2145         switch (nvs->nvs_op) {
2146         case NVS_OP_ENCODE:
2147                 err = nvs_encode_pairs(nvs, nvl);
2148                 break;
2149 
2150         case NVS_OP_DECODE:
2151                 err = nvs_decode_pairs(nvs, nvl);
2152                 break;
2153 
2154         case NVS_OP_GETSIZE:
2155                 err = nvs_getsize_pairs(nvs, nvl, buflen);
2156                 break;
2157 
2158         default:
2159                 err = EINVAL;
2160         }
2161 
2162         return (err);
2163 }
2164 
2165 static int
2166 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2167 {
2168         switch (nvs->nvs_op) {
2169         case NVS_OP_ENCODE:
2170                 return (nvs_operation(nvs, embedded, NULL));
2171 
2172         case NVS_OP_DECODE: {
2173                 nvpriv_t *priv;
2174                 int err;
2175 
2176                 if (embedded->nvl_version != NV_VERSION)
2177                         return (ENOTSUP);
2178 
2179                 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2180                         return (ENOMEM);
2181 
2182                 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2183 
2184                 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2185                         nvlist_free(embedded);
2186                 return (err);
2187         }
2188         default:
2189                 break;
2190         }
2191 
2192         return (EINVAL);
2193 }
2194 
2195 static int
2196 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2197 {
2198         size_t nelem = NVP_NELEM(nvp);
2199         nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2200         int i;
2201 
2202         switch (nvs->nvs_op) {
2203         case NVS_OP_ENCODE:
2204                 for (i = 0; i < nelem; i++)
2205                         if (nvs_embedded(nvs, nvlp[i]) != 0)
2206                                 return (EFAULT);
2207                 break;
2208 
2209         case NVS_OP_DECODE: {
2210                 size_t len = nelem * sizeof (uint64_t);
2211                 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2212 
2213                 bzero(nvlp, len);       /* don't trust packed data */
2214                 for (i = 0; i < nelem; i++) {
2215                         if (nvs_embedded(nvs, embedded) != 0) {
2216                                 nvpair_free(nvp);
2217                                 return (EFAULT);
2218                         }
2219 
2220                         nvlp[i] = embedded++;
2221                 }
2222                 break;
2223         }
2224         case NVS_OP_GETSIZE: {
2225                 uint64_t nvsize = 0;
2226 
2227                 for (i = 0; i < nelem; i++) {
2228                         size_t nvp_sz = 0;
2229 
2230                         if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2231                                 return (EINVAL);
2232 
2233                         if ((nvsize += nvp_sz) > INT32_MAX)
2234                                 return (EINVAL);
2235                 }
2236 
2237                 *size = nvsize;
2238                 break;
2239         }
2240         default:
2241                 return (EINVAL);
2242         }
2243 
2244         return (0);
2245 }
2246 
2247 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2248 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2249 
2250 /*
2251  * Common routine for nvlist operations:
2252  * encode, decode, getsize (encoded size).
2253  */
2254 static int
2255 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2256     int nvs_op)
2257 {
2258         int err = 0;
2259         nvstream_t nvs;
2260         int nvl_endian;
2261 #ifdef  _LITTLE_ENDIAN
2262         int host_endian = 1;
2263 #else
2264         int host_endian = 0;
2265 #endif  /* _LITTLE_ENDIAN */
2266         nvs_header_t *nvh = (void *)buf;
2267 
2268         if (buflen == NULL || nvl == NULL ||
2269             (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2270                 return (EINVAL);
2271 
2272         nvs.nvs_op = nvs_op;
2273 
2274         /*
2275          * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2276          * a buffer is allocated.  The first 4 bytes in the buffer are
2277          * used for encoding method and host endian.
2278          */
2279         switch (nvs_op) {
2280         case NVS_OP_ENCODE:
2281                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2282                         return (EINVAL);
2283 
2284                 nvh->nvh_encoding = encoding;
2285                 nvh->nvh_endian = nvl_endian = host_endian;
2286                 nvh->nvh_reserved1 = 0;
2287                 nvh->nvh_reserved2 = 0;
2288                 break;
2289 
2290         case NVS_OP_DECODE:
2291                 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2292                         return (EINVAL);
2293 
2294                 /* get method of encoding from first byte */
2295                 encoding = nvh->nvh_encoding;
2296                 nvl_endian = nvh->nvh_endian;
2297                 break;
2298 
2299         case NVS_OP_GETSIZE:
2300                 nvl_endian = host_endian;
2301 
2302                 /*
2303                  * add the size for encoding
2304                  */
2305                 *buflen = sizeof (nvs_header_t);
2306                 break;
2307 
2308         default:
2309                 return (ENOTSUP);
2310         }
2311 
2312         /*
2313          * Create an nvstream with proper encoding method
2314          */
2315         switch (encoding) {
2316         case NV_ENCODE_NATIVE:
2317                 /*
2318                  * check endianness, in case we are unpacking
2319                  * from a file
2320                  */
2321                 if (nvl_endian != host_endian)
2322                         return (ENOTSUP);
2323                 err = nvs_native(&nvs, nvl, buf, buflen);
2324                 break;
2325         case NV_ENCODE_XDR:
2326                 err = nvs_xdr(&nvs, nvl, buf, buflen);
2327                 break;
2328         default:
2329                 err = ENOTSUP;
2330                 break;
2331         }
2332 
2333         return (err);
2334 }
2335 
2336 int
2337 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2338 {
2339         return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2340 }
2341 
2342 /*
2343  * Pack nvlist into contiguous memory
2344  */
2345 /*ARGSUSED1*/
2346 int
2347 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2348     int kmflag)
2349 {
2350 #if defined(_KERNEL) && !defined(_BOOT)
2351         return (nvlist_xpack(nvl, bufp, buflen, encoding,
2352             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2353 #else
2354         return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2355 #endif
2356 }
2357 
2358 int
2359 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2360     nv_alloc_t *nva)
2361 {
2362         nvpriv_t nvpriv;
2363         size_t alloc_size;
2364         char *buf;
2365         int err;
2366 
2367         if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2368                 return (EINVAL);
2369 
2370         if (*bufp != NULL)
2371                 return (nvlist_common(nvl, *bufp, buflen, encoding,
2372                     NVS_OP_ENCODE));
2373 
2374         /*
2375          * Here is a difficult situation:
2376          * 1. The nvlist has fixed allocator properties.
2377          *    All other nvlist routines (like nvlist_add_*, ...) use
2378          *    these properties.
2379          * 2. When using nvlist_pack() the user can specify his own
2380          *    allocator properties (e.g. by using KM_NOSLEEP).
2381          *
2382          * We use the user specified properties (2). A clearer solution
2383          * will be to remove the kmflag from nvlist_pack(), but we will
2384          * not change the interface.
2385          */
2386         nv_priv_init(&nvpriv, nva, 0);
2387 
2388         if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2389                 return (err);
2390 
2391         if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2392                 return (ENOMEM);
2393 
2394         if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2395             NVS_OP_ENCODE)) != 0) {
2396                 nv_mem_free(&nvpriv, buf, alloc_size);
2397         } else {
2398                 *buflen = alloc_size;
2399                 *bufp = buf;
2400         }
2401 
2402         return (err);
2403 }
2404 
2405 /*
2406  * Unpack buf into an nvlist_t
2407  */
2408 /*ARGSUSED1*/
2409 int
2410 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2411 {
2412 #if defined(_KERNEL) && !defined(_BOOT)
2413         return (nvlist_xunpack(buf, buflen, nvlp,
2414             (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2415 #else
2416         return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2417 #endif
2418 }
2419 
2420 int
2421 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2422 {
2423         nvlist_t *nvl;
2424         int err;
2425 
2426         if (nvlp == NULL)
2427                 return (EINVAL);
2428 
2429         if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2430                 return (err);
2431 
2432         if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2433                 nvlist_free(nvl);
2434         else
2435                 *nvlp = nvl;
2436 
2437         return (err);
2438 }
2439 
2440 /*
2441  * Native encoding functions
2442  */
2443 typedef struct {
2444         /*
2445          * This structure is used when decoding a packed nvpair in
2446          * the native format.  n_base points to a buffer containing the
2447          * packed nvpair.  n_end is a pointer to the end of the buffer.
2448          * (n_end actually points to the first byte past the end of the
2449          * buffer.)  n_curr is a pointer that lies between n_base and n_end.
2450          * It points to the current data that we are decoding.
2451          * The amount of data left in the buffer is equal to n_end - n_curr.
2452          * n_flag is used to recognize a packed embedded list.
2453          */
2454         caddr_t n_base;
2455         caddr_t n_end;
2456         caddr_t n_curr;
2457         uint_t  n_flag;
2458 } nvs_native_t;
2459 
2460 static int
2461 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2462     size_t buflen)
2463 {
2464         switch (nvs->nvs_op) {
2465         case NVS_OP_ENCODE:
2466         case NVS_OP_DECODE:
2467                 nvs->nvs_private = native;
2468                 native->n_curr = native->n_base = buf;
2469                 native->n_end = buf + buflen;
2470                 native->n_flag = 0;
2471                 return (0);
2472 
2473         case NVS_OP_GETSIZE:
2474                 nvs->nvs_private = native;
2475                 native->n_curr = native->n_base = native->n_end = NULL;
2476                 native->n_flag = 0;
2477                 return (0);
2478         default:
2479                 return (EINVAL);
2480         }
2481 }
2482 
2483 /*ARGSUSED*/
2484 static void
2485 nvs_native_destroy(nvstream_t *nvs)
2486 {
2487 }
2488 
2489 static int
2490 native_cp(nvstream_t *nvs, void *buf, size_t size)
2491 {
2492         nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2493 
2494         if (native->n_curr + size > native->n_end)
2495                 return (EFAULT);
2496 
2497         /*
2498          * The bcopy() below eliminates alignment requirement
2499          * on the buffer (stream) and is preferred over direct access.
2500          */
2501         switch (nvs->nvs_op) {
2502         case NVS_OP_ENCODE:
2503                 bcopy(buf, native->n_curr, size);
2504                 break;
2505         case NVS_OP_DECODE:
2506                 bcopy(native->n_curr, buf, size);
2507                 break;
2508         default:
2509                 return (EINVAL);
2510         }
2511 
2512         native->n_curr += size;
2513         return (0);
2514 }
2515 
2516 /*
2517  * operate on nvlist_t header
2518  */
2519 static int
2520 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2521 {
2522         nvs_native_t *native = nvs->nvs_private;
2523 
2524         switch (nvs->nvs_op) {
2525         case NVS_OP_ENCODE:
2526         case NVS_OP_DECODE:
2527                 if (native->n_flag)
2528                         return (0);     /* packed embedded list */
2529 
2530                 native->n_flag = 1;
2531 
2532                 /* copy version and nvflag of the nvlist_t */
2533                 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2534                     native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2535                         return (EFAULT);
2536 
2537                 return (0);
2538 
2539         case NVS_OP_GETSIZE:
2540                 /*
2541                  * if calculate for packed embedded list
2542                  *      4 for end of the embedded list
2543                  * else
2544                  *      2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2545                  *      and 4 for end of the entire list
2546                  */
2547                 if (native->n_flag) {
2548                         *size += 4;
2549                 } else {
2550                         native->n_flag = 1;
2551                         *size += 2 * sizeof (int32_t) + 4;
2552                 }
2553 
2554                 return (0);
2555 
2556         default:
2557                 return (EINVAL);
2558         }
2559 }
2560 
2561 static int
2562 nvs_native_nvl_fini(nvstream_t *nvs)
2563 {
2564         if (nvs->nvs_op == NVS_OP_ENCODE) {
2565                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2566                 /*
2567                  * Add 4 zero bytes at end of nvlist. They are used
2568                  * for end detection by the decode routine.
2569                  */
2570                 if (native->n_curr + sizeof (int) > native->n_end)
2571                         return (EFAULT);
2572 
2573                 bzero(native->n_curr, sizeof (int));
2574                 native->n_curr += sizeof (int);
2575         }
2576 
2577         return (0);
2578 }
2579 
2580 static int
2581 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2582 {
2583         if (nvs->nvs_op == NVS_OP_ENCODE) {
2584                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2585                 nvlist_t *packed = (void *)
2586                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2587                 /*
2588                  * Null out the pointer that is meaningless in the packed
2589                  * structure. The address may not be aligned, so we have
2590                  * to use bzero.
2591                  */
2592                 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2593         }
2594 
2595         return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2596 }
2597 
2598 static int
2599 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2600 {
2601         if (nvs->nvs_op == NVS_OP_ENCODE) {
2602                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2603                 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2604                 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2605                 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2606                 int i;
2607                 /*
2608                  * Null out pointers that are meaningless in the packed
2609                  * structure. The addresses may not be aligned, so we have
2610                  * to use bzero.
2611                  */
2612                 bzero(value, len);
2613 
2614                 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2615                         /*
2616                          * Null out the pointer that is meaningless in the
2617                          * packed structure. The address may not be aligned,
2618                          * so we have to use bzero.
2619                          */
2620                         bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2621         }
2622 
2623         return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2624 }
2625 
2626 static void
2627 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2628 {
2629         switch (nvs->nvs_op) {
2630         case NVS_OP_ENCODE: {
2631                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2632                 uint64_t *strp = (void *)
2633                     (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2634                 /*
2635                  * Null out pointers that are meaningless in the packed
2636                  * structure. The addresses may not be aligned, so we have
2637                  * to use bzero.
2638                  */
2639                 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2640                 break;
2641         }
2642         case NVS_OP_DECODE: {
2643                 char **strp = (void *)NVP_VALUE(nvp);
2644                 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2645                 int i;
2646 
2647                 for (i = 0; i < NVP_NELEM(nvp); i++) {
2648                         strp[i] = buf;
2649                         buf += strlen(buf) + 1;
2650                 }
2651                 break;
2652         }
2653         }
2654 }
2655 
2656 static int
2657 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2658 {
2659         data_type_t type;
2660         int value_sz;
2661         int ret = 0;
2662 
2663         /*
2664          * We do the initial bcopy of the data before we look at
2665          * the nvpair type, because when we're decoding, we won't
2666          * have the correct values for the pair until we do the bcopy.
2667          */
2668         switch (nvs->nvs_op) {
2669         case NVS_OP_ENCODE:
2670         case NVS_OP_DECODE:
2671                 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2672                         return (EFAULT);
2673                 break;
2674         default:
2675                 return (EINVAL);
2676         }
2677 
2678         /* verify nvp_name_sz, check the name string length */
2679         if (i_validate_nvpair_name(nvp) != 0)
2680                 return (EFAULT);
2681 
2682         type = NVP_TYPE(nvp);
2683 
2684         /*
2685          * Verify type and nelem and get the value size.
2686          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2687          * is the size of the string(s) excluded.
2688          */
2689         if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2690                 return (EFAULT);
2691 
2692         if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2693                 return (EFAULT);
2694 
2695         switch (type) {
2696         case DATA_TYPE_NVLIST:
2697                 ret = nvpair_native_embedded(nvs, nvp);
2698                 break;
2699         case DATA_TYPE_NVLIST_ARRAY:
2700                 ret = nvpair_native_embedded_array(nvs, nvp);
2701                 break;
2702         case DATA_TYPE_STRING_ARRAY:
2703                 nvpair_native_string_array(nvs, nvp);
2704                 break;
2705         default:
2706                 break;
2707         }
2708 
2709         return (ret);
2710 }
2711 
2712 static int
2713 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2714 {
2715         uint64_t nvp_sz = nvp->nvp_size;
2716 
2717         switch (NVP_TYPE(nvp)) {
2718         case DATA_TYPE_NVLIST: {
2719                 size_t nvsize = 0;
2720 
2721                 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2722                         return (EINVAL);
2723 
2724                 nvp_sz += nvsize;
2725                 break;
2726         }
2727         case DATA_TYPE_NVLIST_ARRAY: {
2728                 size_t nvsize;
2729 
2730                 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2731                         return (EINVAL);
2732 
2733                 nvp_sz += nvsize;
2734                 break;
2735         }
2736         default:
2737                 break;
2738         }
2739 
2740         if (nvp_sz > INT32_MAX)
2741                 return (EINVAL);
2742 
2743         *size = nvp_sz;
2744 
2745         return (0);
2746 }
2747 
2748 static int
2749 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2750 {
2751         switch (nvs->nvs_op) {
2752         case NVS_OP_ENCODE:
2753                 return (nvs_native_nvp_op(nvs, nvp));
2754 
2755         case NVS_OP_DECODE: {
2756                 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2757                 int32_t decode_len;
2758 
2759                 /* try to read the size value from the stream */
2760                 if (native->n_curr + sizeof (int32_t) > native->n_end)
2761                         return (EFAULT);
2762                 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2763 
2764                 /* sanity check the size value */
2765                 if (decode_len < 0 ||
2766                     decode_len > native->n_end - native->n_curr)
2767                         return (EFAULT);
2768 
2769                 *size = decode_len;
2770 
2771                 /*
2772                  * If at the end of the stream then move the cursor
2773                  * forward, otherwise nvpair_native_op() will read
2774                  * the entire nvpair at the same cursor position.
2775                  */
2776                 if (*size == 0)
2777                         native->n_curr += sizeof (int32_t);
2778                 break;
2779         }
2780 
2781         default:
2782                 return (EINVAL);
2783         }
2784 
2785         return (0);
2786 }
2787 
2788 static const nvs_ops_t nvs_native_ops = {
2789         nvs_native_nvlist,
2790         nvs_native_nvpair,
2791         nvs_native_nvp_op,
2792         nvs_native_nvp_size,
2793         nvs_native_nvl_fini
2794 };
2795 
2796 static int
2797 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2798 {
2799         nvs_native_t native;
2800         int err;
2801 
2802         nvs->nvs_ops = &nvs_native_ops;
2803 
2804         if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2805             *buflen - sizeof (nvs_header_t))) != 0)
2806                 return (err);
2807 
2808         err = nvs_operation(nvs, nvl, buflen);
2809 
2810         nvs_native_destroy(nvs);
2811 
2812         return (err);
2813 }
2814 
2815 /*
2816  * XDR encoding functions
2817  *
2818  * An xdr packed nvlist is encoded as:
2819  *
2820  *  - encoding methode and host endian (4 bytes)
2821  *  - nvl_version (4 bytes)
2822  *  - nvl_nvflag (4 bytes)
2823  *
2824  *  - encoded nvpairs, the format of one xdr encoded nvpair is:
2825  *      - encoded size of the nvpair (4 bytes)
2826  *      - decoded size of the nvpair (4 bytes)
2827  *      - name string, (4 + sizeof(NV_ALIGN4(string))
2828  *        a string is coded as size (4 bytes) and data
2829  *      - data type (4 bytes)
2830  *      - number of elements in the nvpair (4 bytes)
2831  *      - data
2832  *
2833  *  - 2 zero's for end of the entire list (8 bytes)
2834  */
2835 static int
2836 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2837 {
2838         /* xdr data must be 4 byte aligned */
2839         if ((ulong_t)buf % 4 != 0)
2840                 return (EFAULT);
2841 
2842         switch (nvs->nvs_op) {
2843         case NVS_OP_ENCODE:
2844                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2845                 nvs->nvs_private = xdr;
2846                 return (0);
2847         case NVS_OP_DECODE:
2848                 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2849                 nvs->nvs_private = xdr;
2850                 return (0);
2851         case NVS_OP_GETSIZE:
2852                 nvs->nvs_private = NULL;
2853                 return (0);
2854         default:
2855                 return (EINVAL);
2856         }
2857 }
2858 
2859 static void
2860 nvs_xdr_destroy(nvstream_t *nvs)
2861 {
2862         switch (nvs->nvs_op) {
2863         case NVS_OP_ENCODE:
2864         case NVS_OP_DECODE:
2865                 xdr_destroy((XDR *)nvs->nvs_private);
2866                 break;
2867         default:
2868                 break;
2869         }
2870 }
2871 
2872 static int
2873 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2874 {
2875         switch (nvs->nvs_op) {
2876         case NVS_OP_ENCODE:
2877         case NVS_OP_DECODE: {
2878                 XDR     *xdr = nvs->nvs_private;
2879 
2880                 if (!xdr_int(xdr, &nvl->nvl_version) ||
2881                     !xdr_u_int(xdr, &nvl->nvl_nvflag))
2882                         return (EFAULT);
2883                 break;
2884         }
2885         case NVS_OP_GETSIZE: {
2886                 /*
2887                  * 2 * 4 for nvl_version + nvl_nvflag
2888                  * and 8 for end of the entire list
2889                  */
2890                 *size += 2 * 4 + 8;
2891                 break;
2892         }
2893         default:
2894                 return (EINVAL);
2895         }
2896         return (0);
2897 }
2898 
2899 static int
2900 nvs_xdr_nvl_fini(nvstream_t *nvs)
2901 {
2902         if (nvs->nvs_op == NVS_OP_ENCODE) {
2903                 XDR *xdr = nvs->nvs_private;
2904                 int zero = 0;
2905 
2906                 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2907                         return (EFAULT);
2908         }
2909 
2910         return (0);
2911 }
2912 
2913 /*
2914  * The format of xdr encoded nvpair is:
2915  * encode_size, decode_size, name string, data type, nelem, data
2916  */
2917 static int
2918 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2919 {
2920         data_type_t type;
2921         char    *buf;
2922         char    *buf_end = (char *)nvp + nvp->nvp_size;
2923         int     value_sz;
2924         uint_t  nelem, buflen;
2925         bool_t  ret = FALSE;
2926         XDR     *xdr = nvs->nvs_private;
2927 
2928         ASSERT(xdr != NULL && nvp != NULL);
2929 
2930         /* name string */
2931         if ((buf = NVP_NAME(nvp)) >= buf_end)
2932                 return (EFAULT);
2933         buflen = buf_end - buf;
2934 
2935         if (!xdr_string(xdr, &buf, buflen - 1))
2936                 return (EFAULT);
2937         nvp->nvp_name_sz = strlen(buf) + 1;
2938 
2939         /* type and nelem */
2940         if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2941             !xdr_int(xdr, &nvp->nvp_value_elem))
2942                 return (EFAULT);
2943 
2944         type = NVP_TYPE(nvp);
2945         nelem = nvp->nvp_value_elem;
2946 
2947         /*
2948          * Verify type and nelem and get the value size.
2949          * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2950          * is the size of the string(s) excluded.
2951          */
2952         if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2953                 return (EFAULT);
2954 
2955         /* if there is no data to extract then return */
2956         if (nelem == 0)
2957                 return (0);
2958 
2959         /* value */
2960         if ((buf = NVP_VALUE(nvp)) >= buf_end)
2961                 return (EFAULT);
2962         buflen = buf_end - buf;
2963 
2964         if (buflen < value_sz)
2965                 return (EFAULT);
2966 
2967         switch (type) {
2968         case DATA_TYPE_NVLIST:
2969                 if (nvs_embedded(nvs, (void *)buf) == 0)
2970                         return (0);
2971                 break;
2972 
2973         case DATA_TYPE_NVLIST_ARRAY:
2974                 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2975                         return (0);
2976                 break;
2977 
2978         case DATA_TYPE_BOOLEAN:
2979                 ret = TRUE;
2980                 break;
2981 
2982         case DATA_TYPE_BYTE:
2983         case DATA_TYPE_INT8:
2984         case DATA_TYPE_UINT8:
2985                 ret = xdr_char(xdr, buf);
2986                 break;
2987 
2988         case DATA_TYPE_INT16:
2989                 ret = xdr_short(xdr, (void *)buf);
2990                 break;
2991 
2992         case DATA_TYPE_UINT16:
2993                 ret = xdr_u_short(xdr, (void *)buf);
2994                 break;
2995 
2996         case DATA_TYPE_BOOLEAN_VALUE:
2997         case DATA_TYPE_INT32:
2998                 ret = xdr_int(xdr, (void *)buf);
2999                 break;
3000 
3001         case DATA_TYPE_UINT32:
3002                 ret = xdr_u_int(xdr, (void *)buf);
3003                 break;
3004 
3005         case DATA_TYPE_INT64:
3006                 ret = xdr_longlong_t(xdr, (void *)buf);
3007                 break;
3008 
3009         case DATA_TYPE_UINT64:
3010                 ret = xdr_u_longlong_t(xdr, (void *)buf);
3011                 break;
3012 
3013         case DATA_TYPE_HRTIME:
3014                 /*
3015                  * NOTE: must expose the definition of hrtime_t here
3016                  */
3017                 ret = xdr_longlong_t(xdr, (void *)buf);
3018                 break;
3019 #if !defined(_KERNEL)
3020         case DATA_TYPE_DOUBLE:
3021                 ret = xdr_double(xdr, (void *)buf);
3022                 break;
3023 #endif
3024         case DATA_TYPE_STRING:
3025                 ret = xdr_string(xdr, &buf, buflen - 1);
3026                 break;
3027 
3028         case DATA_TYPE_BYTE_ARRAY:
3029                 ret = xdr_opaque(xdr, buf, nelem);
3030                 break;
3031 
3032         case DATA_TYPE_INT8_ARRAY:
3033         case DATA_TYPE_UINT8_ARRAY:
3034                 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3035                     (xdrproc_t)xdr_char);
3036                 break;
3037 
3038         case DATA_TYPE_INT16_ARRAY:
3039                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3040                     sizeof (int16_t), (xdrproc_t)xdr_short);
3041                 break;
3042 
3043         case DATA_TYPE_UINT16_ARRAY:
3044                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3045                     sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3046                 break;
3047 
3048         case DATA_TYPE_BOOLEAN_ARRAY:
3049         case DATA_TYPE_INT32_ARRAY:
3050                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3051                     sizeof (int32_t), (xdrproc_t)xdr_int);
3052                 break;
3053 
3054         case DATA_TYPE_UINT32_ARRAY:
3055                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3056                     sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3057                 break;
3058 
3059         case DATA_TYPE_INT64_ARRAY:
3060                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3061                     sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3062                 break;
3063 
3064         case DATA_TYPE_UINT64_ARRAY:
3065                 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3066                     sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3067                 break;
3068 
3069         case DATA_TYPE_STRING_ARRAY: {
3070                 size_t len = nelem * sizeof (uint64_t);
3071                 char **strp = (void *)buf;
3072                 int i;
3073 
3074                 if (nvs->nvs_op == NVS_OP_DECODE)
3075                         bzero(buf, len);        /* don't trust packed data */
3076 
3077                 for (i = 0; i < nelem; i++) {
3078                         if (buflen <= len)
3079                                 return (EFAULT);
3080 
3081                         buf += len;
3082                         buflen -= len;
3083 
3084                         if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3085                                 return (EFAULT);
3086 
3087                         if (nvs->nvs_op == NVS_OP_DECODE)
3088                                 strp[i] = buf;
3089                         len = strlen(buf) + 1;
3090                 }
3091                 ret = TRUE;
3092                 break;
3093         }
3094         default:
3095                 break;
3096         }
3097 
3098         return (ret == TRUE ? 0 : EFAULT);
3099 }
3100 
3101 static int
3102 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3103 {
3104         data_type_t type = NVP_TYPE(nvp);
3105         /*
3106          * encode_size + decode_size + name string size + data type + nelem
3107          * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3108          */
3109         uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3110 
3111         switch (type) {
3112         case DATA_TYPE_BOOLEAN:
3113                 break;
3114 
3115         case DATA_TYPE_BOOLEAN_VALUE:
3116         case DATA_TYPE_BYTE:
3117         case DATA_TYPE_INT8:
3118         case DATA_TYPE_UINT8:
3119         case DATA_TYPE_INT16:
3120         case DATA_TYPE_UINT16:
3121         case DATA_TYPE_INT32:
3122         case DATA_TYPE_UINT32:
3123                 nvp_sz += 4;    /* 4 is the minimum xdr unit */
3124                 break;
3125 
3126         case DATA_TYPE_INT64:
3127         case DATA_TYPE_UINT64:
3128         case DATA_TYPE_HRTIME:
3129 #if !defined(_KERNEL)
3130         case DATA_TYPE_DOUBLE:
3131 #endif
3132                 nvp_sz += 8;
3133                 break;
3134 
3135         case DATA_TYPE_STRING:
3136                 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3137                 break;
3138 
3139         case DATA_TYPE_BYTE_ARRAY:
3140                 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3141                 break;
3142 
3143         case DATA_TYPE_BOOLEAN_ARRAY:
3144         case DATA_TYPE_INT8_ARRAY:
3145         case DATA_TYPE_UINT8_ARRAY:
3146         case DATA_TYPE_INT16_ARRAY:
3147         case DATA_TYPE_UINT16_ARRAY:
3148         case DATA_TYPE_INT32_ARRAY:
3149         case DATA_TYPE_UINT32_ARRAY:
3150                 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3151                 break;
3152 
3153         case DATA_TYPE_INT64_ARRAY:
3154         case DATA_TYPE_UINT64_ARRAY:
3155                 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3156                 break;
3157 
3158         case DATA_TYPE_STRING_ARRAY: {
3159                 int i;
3160                 char **strs = (void *)NVP_VALUE(nvp);
3161 
3162                 for (i = 0; i < NVP_NELEM(nvp); i++)
3163                         nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3164 
3165                 break;
3166         }
3167 
3168         case DATA_TYPE_NVLIST:
3169         case DATA_TYPE_NVLIST_ARRAY: {
3170                 size_t nvsize = 0;
3171                 int old_nvs_op = nvs->nvs_op;
3172                 int err;
3173 
3174                 nvs->nvs_op = NVS_OP_GETSIZE;
3175                 if (type == DATA_TYPE_NVLIST)
3176                         err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3177                 else
3178                         err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3179                 nvs->nvs_op = old_nvs_op;
3180 
3181                 if (err != 0)
3182                         return (EINVAL);
3183 
3184                 nvp_sz += nvsize;
3185                 break;
3186         }
3187 
3188         default:
3189                 return (EINVAL);
3190         }
3191 
3192         if (nvp_sz > INT32_MAX)
3193                 return (EINVAL);
3194 
3195         *size = nvp_sz;
3196 
3197         return (0);
3198 }
3199 
3200 
3201 /*
3202  * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3203  * the largest nvpair that could be encoded in the buffer.
3204  *
3205  * See comments above nvpair_xdr_op() for the format of xdr encoding.
3206  * The size of a xdr packed nvpair without any data is 5 words.
3207  *
3208  * Using the size of the data directly as an estimate would be ok
3209  * in all cases except one.  If the data type is of DATA_TYPE_STRING_ARRAY
3210  * then the actual nvpair has space for an array of pointers to index
3211  * the strings.  These pointers are not encoded into the packed xdr buffer.
3212  *
3213  * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3214  * of length 0, then each string is endcoded in xdr format as a single word.
3215  * Therefore when expanded to an nvpair there will be 2.25 word used for
3216  * each string.  (a int64_t allocated for pointer usage, and a single char
3217  * for the null termination.)
3218  *
3219  * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3220  */
3221 #define NVS_XDR_HDR_LEN         ((size_t)(5 * 4))
3222 #define NVS_XDR_DATA_LEN(y)     (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3223                                         0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3224 #define NVS_XDR_MAX_LEN(x)      (NVP_SIZE_CALC(1, 0) + \
3225                                         (NVS_XDR_DATA_LEN(x) * 2) + \
3226                                         NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3227 
3228 static int
3229 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3230 {
3231         XDR     *xdr = nvs->nvs_private;
3232         int32_t encode_len, decode_len;
3233 
3234         switch (nvs->nvs_op) {
3235         case NVS_OP_ENCODE: {
3236                 size_t nvsize;
3237 
3238                 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3239                         return (EFAULT);
3240 
3241                 decode_len = nvp->nvp_size;
3242                 encode_len = nvsize;
3243                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3244                         return (EFAULT);
3245 
3246                 return (nvs_xdr_nvp_op(nvs, nvp));
3247         }
3248         case NVS_OP_DECODE: {
3249                 struct xdr_bytesrec bytesrec;
3250 
3251                 /* get the encode and decode size */
3252                 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3253                         return (EFAULT);
3254                 *size = decode_len;
3255 
3256                 /* are we at the end of the stream? */
3257                 if (*size == 0)
3258                         return (0);
3259 
3260                 /* sanity check the size parameter */
3261                 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3262                         return (EFAULT);
3263 
3264                 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3265                         return (EFAULT);
3266                 break;
3267         }
3268 
3269         default:
3270                 return (EINVAL);
3271         }
3272         return (0);
3273 }
3274 
3275 static const struct nvs_ops nvs_xdr_ops = {
3276         nvs_xdr_nvlist,
3277         nvs_xdr_nvpair,
3278         nvs_xdr_nvp_op,
3279         nvs_xdr_nvp_size,
3280         nvs_xdr_nvl_fini
3281 };
3282 
3283 static int
3284 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3285 {
3286         XDR xdr;
3287         int err;
3288 
3289         nvs->nvs_ops = &nvs_xdr_ops;
3290 
3291         if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3292             *buflen - sizeof (nvs_header_t))) != 0)
3293                 return (err);
3294 
3295         err = nvs_operation(nvs, nvl, buflen);
3296 
3297         nvs_xdr_destroy(nvs);
3298 
3299         return (err);
3300 }