1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 #include <sys/stropts.h>
27 #include <sys/debug.h>
28 #include <sys/isa_defs.h>
29 #include <sys/int_limits.h>
30 #include <sys/nvpair.h>
31 #include <sys/nvpair_impl.h>
32 #include <rpc/types.h>
33 #include <rpc/xdr.h>
34
35 #if defined(_KERNEL) && !defined(_BOOT)
36 #include <sys/varargs.h>
37 #include <sys/ddi.h>
38 #include <sys/sunddi.h>
39 #else
40 #include <stdarg.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <strings.h>
44 #endif
45
46 #ifndef offsetof
47 #define offsetof(s, m) ((size_t)(&(((s *)0)->m)))
48 #endif
49 #define skip_whitespace(p) while ((*(p) == ' ') || (*(p) == '\t')) p++
50
51 /*
52 * nvpair.c - Provides kernel & userland interfaces for manipulating
53 * name-value pairs.
54 *
55 * Overview Diagram
56 *
57 * +--------------+
58 * | nvlist_t |
59 * |--------------|
60 * | nvl_version |
61 * | nvl_nvflag |
62 * | nvl_priv -+-+
63 * | nvl_flag | |
64 * | nvl_pad | |
65 * +--------------+ |
66 * V
67 * +--------------+ last i_nvp in list
68 * | nvpriv_t | +--------------------->
69 * |--------------| |
70 * +--+- nvp_list | | +------------+
71 * | | nvp_last -+--+ + nv_alloc_t |
72 * | | nvp_curr | |------------|
73 * | | nvp_nva -+----> | nva_ops |
74 * | | nvp_stat | | nva_arg |
75 * | +--------------+ +------------+
76 * |
77 * +-------+
78 * V
79 * +---------------------+ +-------------------+
80 * | i_nvp_t | +-->| i_nvp_t | +-->
81 * |---------------------| | |-------------------| |
82 * | nvi_next -+--+ | nvi_next -+--+
83 * | nvi_prev (NULL) | <----+ nvi_prev |
84 * | . . . . . . . . . . | | . . . . . . . . . |
85 * | nvp (nvpair_t) | | nvp (nvpair_t) |
86 * | - nvp_size | | - nvp_size |
87 * | - nvp_name_sz | | - nvp_name_sz |
88 * | - nvp_value_elem | | - nvp_value_elem |
89 * | - nvp_type | | - nvp_type |
90 * | - data ... | | - data ... |
91 * +---------------------+ +-------------------+
92 *
93 *
94 *
95 * +---------------------+ +---------------------+
96 * | i_nvp_t | +--> +-->| i_nvp_t (last) |
97 * |---------------------| | | |---------------------|
98 * | nvi_next -+--+ ... --+ | nvi_next (NULL) |
99 * <-+- nvi_prev |<-- ... <----+ nvi_prev |
100 * | . . . . . . . . . | | . . . . . . . . . |
101 * | nvp (nvpair_t) | | nvp (nvpair_t) |
102 * | - nvp_size | | - nvp_size |
103 * | - nvp_name_sz | | - nvp_name_sz |
104 * | - nvp_value_elem | | - nvp_value_elem |
105 * | - DATA_TYPE_NVLIST | | - nvp_type |
106 * | - data (embedded) | | - data ... |
107 * | nvlist name | +---------------------+
108 * | +--------------+ |
109 * | | nvlist_t | |
110 * | |--------------| |
111 * | | nvl_version | |
112 * | | nvl_nvflag | |
113 * | | nvl_priv --+---+---->
114 * | | nvl_flag | |
115 * | | nvl_pad | |
116 * | +--------------+ |
117 * +---------------------+
118 *
119 *
120 * N.B. nvpair_t may be aligned on 4 byte boundary, so +4 will
121 * allow value to be aligned on 8 byte boundary
122 *
123 * name_len is the length of the name string including the null terminator
124 * so it must be >= 1
125 */
126 #define NVP_SIZE_CALC(name_len, data_len) \
127 (NV_ALIGN((sizeof (nvpair_t)) + name_len) + NV_ALIGN(data_len))
128
129 static int i_get_value_size(data_type_t type, const void *data, uint_t nelem);
130 static int nvlist_add_common(nvlist_t *nvl, const char *name, data_type_t type,
131 uint_t nelem, const void *data);
132
133 #define NV_STAT_EMBEDDED 0x1
134 #define EMBEDDED_NVL(nvp) ((nvlist_t *)(void *)NVP_VALUE(nvp))
135 #define EMBEDDED_NVL_ARRAY(nvp) ((nvlist_t **)(void *)NVP_VALUE(nvp))
136
137 #define NVP_VALOFF(nvp) (NV_ALIGN(sizeof (nvpair_t) + (nvp)->nvp_name_sz))
138 #define NVPAIR2I_NVP(nvp) \
139 ((i_nvp_t *)((size_t)(nvp) - offsetof(i_nvp_t, nvi_nvp)))
140
141
142 int
143 nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /* args */ ...)
144 {
145 va_list valist;
146 int err = 0;
147
148 nva->nva_ops = nvo;
149 nva->nva_arg = NULL;
150
151 va_start(valist, nvo);
152 if (nva->nva_ops->nv_ao_init != NULL)
153 err = nva->nva_ops->nv_ao_init(nva, valist);
154 va_end(valist);
155
156 return (err);
157 }
158
159 void
160 nv_alloc_reset(nv_alloc_t *nva)
161 {
162 if (nva->nva_ops->nv_ao_reset != NULL)
163 nva->nva_ops->nv_ao_reset(nva);
164 }
165
166 void
167 nv_alloc_fini(nv_alloc_t *nva)
168 {
169 if (nva->nva_ops->nv_ao_fini != NULL)
170 nva->nva_ops->nv_ao_fini(nva);
171 }
172
173 nv_alloc_t *
174 nvlist_lookup_nv_alloc(nvlist_t *nvl)
175 {
176 nvpriv_t *priv;
177
178 if (nvl == NULL ||
179 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
180 return (NULL);
181
182 return (priv->nvp_nva);
183 }
184
185 static void *
186 nv_mem_zalloc(nvpriv_t *nvp, size_t size)
187 {
188 nv_alloc_t *nva = nvp->nvp_nva;
189 void *buf;
190
191 if ((buf = nva->nva_ops->nv_ao_alloc(nva, size)) != NULL)
192 bzero(buf, size);
193
194 return (buf);
195 }
196
197 static void
198 nv_mem_free(nvpriv_t *nvp, void *buf, size_t size)
199 {
200 nv_alloc_t *nva = nvp->nvp_nva;
201
202 nva->nva_ops->nv_ao_free(nva, buf, size);
203 }
204
205 static void
206 nv_priv_init(nvpriv_t *priv, nv_alloc_t *nva, uint32_t stat)
207 {
208 bzero(priv, sizeof (nvpriv_t));
209
210 priv->nvp_nva = nva;
211 priv->nvp_stat = stat;
212 }
213
214 static nvpriv_t *
215 nv_priv_alloc(nv_alloc_t *nva)
216 {
217 nvpriv_t *priv;
218
219 /*
220 * nv_mem_alloc() cannot called here because it needs the priv
221 * argument.
222 */
223 if ((priv = nva->nva_ops->nv_ao_alloc(nva, sizeof (nvpriv_t))) == NULL)
224 return (NULL);
225
226 nv_priv_init(priv, nva, 0);
227
228 return (priv);
229 }
230
231 /*
232 * Embedded lists need their own nvpriv_t's. We create a new
233 * nvpriv_t using the parameters and allocator from the parent
234 * list's nvpriv_t.
235 */
236 static nvpriv_t *
237 nv_priv_alloc_embedded(nvpriv_t *priv)
238 {
239 nvpriv_t *emb_priv;
240
241 if ((emb_priv = nv_mem_zalloc(priv, sizeof (nvpriv_t))) == NULL)
242 return (NULL);
243
244 nv_priv_init(emb_priv, priv->nvp_nva, NV_STAT_EMBEDDED);
245
246 return (emb_priv);
247 }
248
249 static void
250 nvlist_init(nvlist_t *nvl, uint32_t nvflag, nvpriv_t *priv)
251 {
252 nvl->nvl_version = NV_VERSION;
253 nvl->nvl_nvflag = nvflag & (NV_UNIQUE_NAME|NV_UNIQUE_NAME_TYPE);
254 nvl->nvl_priv = (uint64_t)(uintptr_t)priv;
255 nvl->nvl_flag = 0;
256 nvl->nvl_pad = 0;
257 }
258
259 uint_t
260 nvlist_nvflag(nvlist_t *nvl)
261 {
262 return (nvl->nvl_nvflag);
263 }
264
265 /*
266 * nvlist_alloc - Allocate nvlist.
267 */
268 /*ARGSUSED1*/
269 int
270 nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int kmflag)
271 {
272 #if defined(_KERNEL) && !defined(_BOOT)
273 return (nvlist_xalloc(nvlp, nvflag,
274 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
275 #else
276 return (nvlist_xalloc(nvlp, nvflag, nv_alloc_nosleep));
277 #endif
278 }
279
280 int
281 nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t *nva)
282 {
283 nvpriv_t *priv;
284
285 if (nvlp == NULL || nva == NULL)
286 return (EINVAL);
287
288 if ((priv = nv_priv_alloc(nva)) == NULL)
289 return (ENOMEM);
290
291 if ((*nvlp = nv_mem_zalloc(priv,
292 NV_ALIGN(sizeof (nvlist_t)))) == NULL) {
293 nv_mem_free(priv, priv, sizeof (nvpriv_t));
294 return (ENOMEM);
295 }
296
297 nvlist_init(*nvlp, nvflag, priv);
298
299 return (0);
300 }
301
302 /*
303 * nvp_buf_alloc - Allocate i_nvp_t for storing a new nv pair.
304 */
305 static nvpair_t *
306 nvp_buf_alloc(nvlist_t *nvl, size_t len)
307 {
308 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
309 i_nvp_t *buf;
310 nvpair_t *nvp;
311 size_t nvsize;
312
313 /*
314 * Allocate the buffer
315 */
316 nvsize = len + offsetof(i_nvp_t, nvi_nvp);
317
318 if ((buf = nv_mem_zalloc(priv, nvsize)) == NULL)
319 return (NULL);
320
321 nvp = &buf->nvi_nvp;
322 nvp->nvp_size = len;
323
324 return (nvp);
325 }
326
327 /*
328 * nvp_buf_free - de-Allocate an i_nvp_t.
329 */
330 static void
331 nvp_buf_free(nvlist_t *nvl, nvpair_t *nvp)
332 {
333 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
334 size_t nvsize = nvp->nvp_size + offsetof(i_nvp_t, nvi_nvp);
335
336 nv_mem_free(priv, NVPAIR2I_NVP(nvp), nvsize);
337 }
338
339 /*
340 * nvp_buf_link - link a new nv pair into the nvlist.
341 */
342 static void
343 nvp_buf_link(nvlist_t *nvl, nvpair_t *nvp)
344 {
345 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
346 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
347
348 /* Put element at end of nvlist */
349 if (priv->nvp_list == NULL) {
350 priv->nvp_list = priv->nvp_last = curr;
351 } else {
352 curr->nvi_prev = priv->nvp_last;
353 priv->nvp_last->nvi_next = curr;
354 priv->nvp_last = curr;
355 }
356 }
357
358 /*
359 * nvp_buf_unlink - unlink an removed nvpair out of the nvlist.
360 */
361 static void
362 nvp_buf_unlink(nvlist_t *nvl, nvpair_t *nvp)
363 {
364 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
365 i_nvp_t *curr = NVPAIR2I_NVP(nvp);
366
367 /*
368 * protect nvlist_next_nvpair() against walking on freed memory.
369 */
370 if (priv->nvp_curr == curr)
371 priv->nvp_curr = curr->nvi_next;
372
373 if (curr == priv->nvp_list)
374 priv->nvp_list = curr->nvi_next;
375 else
376 curr->nvi_prev->nvi_next = curr->nvi_next;
377
378 if (curr == priv->nvp_last)
379 priv->nvp_last = curr->nvi_prev;
380 else
381 curr->nvi_next->nvi_prev = curr->nvi_prev;
382 }
383
384 /*
385 * take a nvpair type and number of elements and make sure the are valid
386 */
387 static int
388 i_validate_type_nelem(data_type_t type, uint_t nelem)
389 {
390 switch (type) {
391 case DATA_TYPE_BOOLEAN:
392 if (nelem != 0)
393 return (EINVAL);
394 break;
395 case DATA_TYPE_BOOLEAN_VALUE:
396 case DATA_TYPE_BYTE:
397 case DATA_TYPE_INT8:
398 case DATA_TYPE_UINT8:
399 case DATA_TYPE_INT16:
400 case DATA_TYPE_UINT16:
401 case DATA_TYPE_INT32:
402 case DATA_TYPE_UINT32:
403 case DATA_TYPE_INT64:
404 case DATA_TYPE_UINT64:
405 case DATA_TYPE_STRING:
406 case DATA_TYPE_HRTIME:
407 case DATA_TYPE_NVLIST:
408 #if !defined(_KERNEL)
409 case DATA_TYPE_DOUBLE:
410 #endif
411 if (nelem != 1)
412 return (EINVAL);
413 break;
414 case DATA_TYPE_BOOLEAN_ARRAY:
415 case DATA_TYPE_BYTE_ARRAY:
416 case DATA_TYPE_INT8_ARRAY:
417 case DATA_TYPE_UINT8_ARRAY:
418 case DATA_TYPE_INT16_ARRAY:
419 case DATA_TYPE_UINT16_ARRAY:
420 case DATA_TYPE_INT32_ARRAY:
421 case DATA_TYPE_UINT32_ARRAY:
422 case DATA_TYPE_INT64_ARRAY:
423 case DATA_TYPE_UINT64_ARRAY:
424 case DATA_TYPE_STRING_ARRAY:
425 case DATA_TYPE_NVLIST_ARRAY:
426 /* we allow arrays with 0 elements */
427 break;
428 default:
429 return (EINVAL);
430 }
431 return (0);
432 }
433
434 /*
435 * Verify nvp_name_sz and check the name string length.
436 */
437 static int
438 i_validate_nvpair_name(nvpair_t *nvp)
439 {
440 if ((nvp->nvp_name_sz <= 0) ||
441 (nvp->nvp_size < NVP_SIZE_CALC(nvp->nvp_name_sz, 0)))
442 return (EFAULT);
443
444 /* verify the name string, make sure its terminated */
445 if (NVP_NAME(nvp)[nvp->nvp_name_sz - 1] != '\0')
446 return (EFAULT);
447
448 return (strlen(NVP_NAME(nvp)) == nvp->nvp_name_sz - 1 ? 0 : EFAULT);
449 }
450
451 static int
452 i_validate_nvpair_value(data_type_t type, uint_t nelem, const void *data)
453 {
454 switch (type) {
455 case DATA_TYPE_BOOLEAN_VALUE:
456 if (*(boolean_t *)data != B_TRUE &&
457 *(boolean_t *)data != B_FALSE)
458 return (EINVAL);
459 break;
460 case DATA_TYPE_BOOLEAN_ARRAY: {
461 int i;
462
463 for (i = 0; i < nelem; i++)
464 if (((boolean_t *)data)[i] != B_TRUE &&
465 ((boolean_t *)data)[i] != B_FALSE)
466 return (EINVAL);
467 break;
468 }
469 default:
470 break;
471 }
472
473 return (0);
474 }
475
476 /*
477 * This function takes a pointer to what should be a nvpair and it's size
478 * and then verifies that all the nvpair fields make sense and can be
479 * trusted. This function is used when decoding packed nvpairs.
480 */
481 static int
482 i_validate_nvpair(nvpair_t *nvp)
483 {
484 data_type_t type = NVP_TYPE(nvp);
485 int size1, size2;
486
487 /* verify nvp_name_sz, check the name string length */
488 if (i_validate_nvpair_name(nvp) != 0)
489 return (EFAULT);
490
491 if (i_validate_nvpair_value(type, NVP_NELEM(nvp), NVP_VALUE(nvp)) != 0)
492 return (EFAULT);
493
494 /*
495 * verify nvp_type, nvp_value_elem, and also possibly
496 * verify string values and get the value size.
497 */
498 size2 = i_get_value_size(type, NVP_VALUE(nvp), NVP_NELEM(nvp));
499 size1 = nvp->nvp_size - NVP_VALOFF(nvp);
500 if (size2 < 0 || size1 != NV_ALIGN(size2))
501 return (EFAULT);
502
503 return (0);
504 }
505
506 static int
507 nvlist_copy_pairs(nvlist_t *snvl, nvlist_t *dnvl)
508 {
509 nvpriv_t *priv;
510 i_nvp_t *curr;
511
512 if ((priv = (nvpriv_t *)(uintptr_t)snvl->nvl_priv) == NULL)
513 return (EINVAL);
514
515 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
516 nvpair_t *nvp = &curr->nvi_nvp;
517 int err;
518
519 if ((err = nvlist_add_common(dnvl, NVP_NAME(nvp), NVP_TYPE(nvp),
520 NVP_NELEM(nvp), NVP_VALUE(nvp))) != 0)
521 return (err);
522 }
523
524 return (0);
525 }
526
527 /*
528 * Frees all memory allocated for an nvpair (like embedded lists) with
529 * the exception of the nvpair buffer itself.
530 */
531 static void
532 nvpair_free(nvpair_t *nvp)
533 {
534 switch (NVP_TYPE(nvp)) {
535 case DATA_TYPE_NVLIST:
536 nvlist_free(EMBEDDED_NVL(nvp));
537 break;
538 case DATA_TYPE_NVLIST_ARRAY: {
539 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
540 int i;
541
542 for (i = 0; i < NVP_NELEM(nvp); i++)
543 if (nvlp[i] != NULL)
544 nvlist_free(nvlp[i]);
545 break;
546 }
547 default:
548 break;
549 }
550 }
551
552 /*
553 * nvlist_free - free an unpacked nvlist
554 */
555 void
556 nvlist_free(nvlist_t *nvl)
557 {
558 nvpriv_t *priv;
559 i_nvp_t *curr;
560
561 if (nvl == NULL ||
562 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
563 return;
564
565 /*
566 * Unpacked nvlist are linked through i_nvp_t
567 */
568 curr = priv->nvp_list;
569 while (curr != NULL) {
570 nvpair_t *nvp = &curr->nvi_nvp;
571 curr = curr->nvi_next;
572
573 nvpair_free(nvp);
574 nvp_buf_free(nvl, nvp);
575 }
576
577 if (!(priv->nvp_stat & NV_STAT_EMBEDDED))
578 nv_mem_free(priv, nvl, NV_ALIGN(sizeof (nvlist_t)));
579 else
580 nvl->nvl_priv = 0;
581
582 nv_mem_free(priv, priv, sizeof (nvpriv_t));
583 }
584
585 static int
586 nvlist_contains_nvp(nvlist_t *nvl, nvpair_t *nvp)
587 {
588 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
589 i_nvp_t *curr;
590
591 if (nvp == NULL)
592 return (0);
593
594 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
595 if (&curr->nvi_nvp == nvp)
596 return (1);
597
598 return (0);
599 }
600
601 /*
602 * Make a copy of nvlist
603 */
604 /*ARGSUSED1*/
605 int
606 nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int kmflag)
607 {
608 #if defined(_KERNEL) && !defined(_BOOT)
609 return (nvlist_xdup(nvl, nvlp,
610 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
611 #else
612 return (nvlist_xdup(nvl, nvlp, nv_alloc_nosleep));
613 #endif
614 }
615
616 int
617 nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t *nva)
618 {
619 int err;
620 nvlist_t *ret;
621
622 if (nvl == NULL || nvlp == NULL)
623 return (EINVAL);
624
625 if ((err = nvlist_xalloc(&ret, nvl->nvl_nvflag, nva)) != 0)
626 return (err);
627
628 if ((err = nvlist_copy_pairs(nvl, ret)) != 0)
629 nvlist_free(ret);
630 else
631 *nvlp = ret;
632
633 return (err);
634 }
635
636 /*
637 * Remove all with matching name
638 */
639 int
640 nvlist_remove_all(nvlist_t *nvl, const char *name)
641 {
642 nvpriv_t *priv;
643 i_nvp_t *curr;
644 int error = ENOENT;
645
646 if (nvl == NULL || name == NULL ||
647 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
648 return (EINVAL);
649
650 curr = priv->nvp_list;
651 while (curr != NULL) {
652 nvpair_t *nvp = &curr->nvi_nvp;
653
654 curr = curr->nvi_next;
655 if (strcmp(name, NVP_NAME(nvp)) != 0)
656 continue;
657
658 nvp_buf_unlink(nvl, nvp);
659 nvpair_free(nvp);
660 nvp_buf_free(nvl, nvp);
661
662 error = 0;
663 }
664
665 return (error);
666 }
667
668 /*
669 * Remove first one with matching name and type
670 */
671 int
672 nvlist_remove(nvlist_t *nvl, const char *name, data_type_t type)
673 {
674 nvpriv_t *priv;
675 i_nvp_t *curr;
676
677 if (nvl == NULL || name == NULL ||
678 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
679 return (EINVAL);
680
681 curr = priv->nvp_list;
682 while (curr != NULL) {
683 nvpair_t *nvp = &curr->nvi_nvp;
684
685 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type) {
686 nvp_buf_unlink(nvl, nvp);
687 nvpair_free(nvp);
688 nvp_buf_free(nvl, nvp);
689
690 return (0);
691 }
692 curr = curr->nvi_next;
693 }
694
695 return (ENOENT);
696 }
697
698 int
699 nvlist_remove_nvpair(nvlist_t *nvl, nvpair_t *nvp)
700 {
701 if (nvl == NULL || nvp == NULL)
702 return (EINVAL);
703
704 nvp_buf_unlink(nvl, nvp);
705 nvpair_free(nvp);
706 nvp_buf_free(nvl, nvp);
707 return (0);
708 }
709
710 /*
711 * This function calculates the size of an nvpair value.
712 *
713 * The data argument controls the behavior in case of the data types
714 * DATA_TYPE_STRING and
715 * DATA_TYPE_STRING_ARRAY
716 * Is data == NULL then the size of the string(s) is excluded.
717 */
718 static int
719 i_get_value_size(data_type_t type, const void *data, uint_t nelem)
720 {
721 uint64_t value_sz;
722
723 if (i_validate_type_nelem(type, nelem) != 0)
724 return (-1);
725
726 /* Calculate required size for holding value */
727 switch (type) {
728 case DATA_TYPE_BOOLEAN:
729 value_sz = 0;
730 break;
731 case DATA_TYPE_BOOLEAN_VALUE:
732 value_sz = sizeof (boolean_t);
733 break;
734 case DATA_TYPE_BYTE:
735 value_sz = sizeof (uchar_t);
736 break;
737 case DATA_TYPE_INT8:
738 value_sz = sizeof (int8_t);
739 break;
740 case DATA_TYPE_UINT8:
741 value_sz = sizeof (uint8_t);
742 break;
743 case DATA_TYPE_INT16:
744 value_sz = sizeof (int16_t);
745 break;
746 case DATA_TYPE_UINT16:
747 value_sz = sizeof (uint16_t);
748 break;
749 case DATA_TYPE_INT32:
750 value_sz = sizeof (int32_t);
751 break;
752 case DATA_TYPE_UINT32:
753 value_sz = sizeof (uint32_t);
754 break;
755 case DATA_TYPE_INT64:
756 value_sz = sizeof (int64_t);
757 break;
758 case DATA_TYPE_UINT64:
759 value_sz = sizeof (uint64_t);
760 break;
761 #if !defined(_KERNEL)
762 case DATA_TYPE_DOUBLE:
763 value_sz = sizeof (double);
764 break;
765 #endif
766 case DATA_TYPE_STRING:
767 if (data == NULL)
768 value_sz = 0;
769 else
770 value_sz = strlen(data) + 1;
771 break;
772 case DATA_TYPE_BOOLEAN_ARRAY:
773 value_sz = (uint64_t)nelem * sizeof (boolean_t);
774 break;
775 case DATA_TYPE_BYTE_ARRAY:
776 value_sz = (uint64_t)nelem * sizeof (uchar_t);
777 break;
778 case DATA_TYPE_INT8_ARRAY:
779 value_sz = (uint64_t)nelem * sizeof (int8_t);
780 break;
781 case DATA_TYPE_UINT8_ARRAY:
782 value_sz = (uint64_t)nelem * sizeof (uint8_t);
783 break;
784 case DATA_TYPE_INT16_ARRAY:
785 value_sz = (uint64_t)nelem * sizeof (int16_t);
786 break;
787 case DATA_TYPE_UINT16_ARRAY:
788 value_sz = (uint64_t)nelem * sizeof (uint16_t);
789 break;
790 case DATA_TYPE_INT32_ARRAY:
791 value_sz = (uint64_t)nelem * sizeof (int32_t);
792 break;
793 case DATA_TYPE_UINT32_ARRAY:
794 value_sz = (uint64_t)nelem * sizeof (uint32_t);
795 break;
796 case DATA_TYPE_INT64_ARRAY:
797 value_sz = (uint64_t)nelem * sizeof (int64_t);
798 break;
799 case DATA_TYPE_UINT64_ARRAY:
800 value_sz = (uint64_t)nelem * sizeof (uint64_t);
801 break;
802 case DATA_TYPE_STRING_ARRAY:
803 value_sz = (uint64_t)nelem * sizeof (uint64_t);
804
805 if (data != NULL) {
806 char *const *strs = data;
807 uint_t i;
808
809 /* no alignment requirement for strings */
810 for (i = 0; i < nelem; i++) {
811 if (strs[i] == NULL)
812 return (-1);
813 value_sz += strlen(strs[i]) + 1;
814 }
815 }
816 break;
817 case DATA_TYPE_HRTIME:
818 value_sz = sizeof (hrtime_t);
819 break;
820 case DATA_TYPE_NVLIST:
821 value_sz = NV_ALIGN(sizeof (nvlist_t));
822 break;
823 case DATA_TYPE_NVLIST_ARRAY:
824 value_sz = (uint64_t)nelem * sizeof (uint64_t) +
825 (uint64_t)nelem * NV_ALIGN(sizeof (nvlist_t));
826 break;
827 default:
828 return (-1);
829 }
830
831 return (value_sz > INT32_MAX ? -1 : (int)value_sz);
832 }
833
834 static int
835 nvlist_copy_embedded(nvlist_t *nvl, nvlist_t *onvl, nvlist_t *emb_nvl)
836 {
837 nvpriv_t *priv;
838 int err;
839
840 if ((priv = nv_priv_alloc_embedded((nvpriv_t *)(uintptr_t)
841 nvl->nvl_priv)) == NULL)
842 return (ENOMEM);
843
844 nvlist_init(emb_nvl, onvl->nvl_nvflag, priv);
845
846 if ((err = nvlist_copy_pairs(onvl, emb_nvl)) != 0) {
847 nvlist_free(emb_nvl);
848 emb_nvl->nvl_priv = 0;
849 }
850
851 return (err);
852 }
853
854 /*
855 * nvlist_add_common - Add new <name,value> pair to nvlist
856 */
857 static int
858 nvlist_add_common(nvlist_t *nvl, const char *name,
859 data_type_t type, uint_t nelem, const void *data)
860 {
861 nvpair_t *nvp;
862 uint_t i;
863
864 int nvp_sz, name_sz, value_sz;
865 int err = 0;
866
867 if (name == NULL || nvl == NULL || nvl->nvl_priv == 0)
868 return (EINVAL);
869
870 if (nelem != 0 && data == NULL)
871 return (EINVAL);
872
873 /*
874 * Verify type and nelem and get the value size.
875 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
876 * is the size of the string(s) included.
877 */
878 if ((value_sz = i_get_value_size(type, data, nelem)) < 0)
879 return (EINVAL);
880
881 if (i_validate_nvpair_value(type, nelem, data) != 0)
882 return (EINVAL);
883
884 /*
885 * If we're adding an nvlist or nvlist array, ensure that we are not
886 * adding the input nvlist to itself, which would cause recursion,
887 * and ensure that no NULL nvlist pointers are present.
888 */
889 switch (type) {
890 case DATA_TYPE_NVLIST:
891 if (data == nvl || data == NULL)
892 return (EINVAL);
893 break;
894 case DATA_TYPE_NVLIST_ARRAY: {
895 nvlist_t **onvlp = (nvlist_t **)data;
896 for (i = 0; i < nelem; i++) {
897 if (onvlp[i] == nvl || onvlp[i] == NULL)
898 return (EINVAL);
899 }
900 break;
901 }
902 default:
903 break;
904 }
905
906 /* calculate sizes of the nvpair elements and the nvpair itself */
907 name_sz = strlen(name) + 1;
908
909 nvp_sz = NVP_SIZE_CALC(name_sz, value_sz);
910
911 if ((nvp = nvp_buf_alloc(nvl, nvp_sz)) == NULL)
912 return (ENOMEM);
913
914 ASSERT(nvp->nvp_size == nvp_sz);
915 nvp->nvp_name_sz = name_sz;
916 nvp->nvp_value_elem = nelem;
917 nvp->nvp_type = type;
918 bcopy(name, NVP_NAME(nvp), name_sz);
919
920 switch (type) {
921 case DATA_TYPE_BOOLEAN:
922 break;
923 case DATA_TYPE_STRING_ARRAY: {
924 char *const *strs = data;
925 char *buf = NVP_VALUE(nvp);
926 char **cstrs = (void *)buf;
927
928 /* skip pre-allocated space for pointer array */
929 buf += nelem * sizeof (uint64_t);
930 for (i = 0; i < nelem; i++) {
931 int slen = strlen(strs[i]) + 1;
932 bcopy(strs[i], buf, slen);
933 cstrs[i] = buf;
934 buf += slen;
935 }
936 break;
937 }
938 case DATA_TYPE_NVLIST: {
939 nvlist_t *nnvl = EMBEDDED_NVL(nvp);
940 nvlist_t *onvl = (nvlist_t *)data;
941
942 if ((err = nvlist_copy_embedded(nvl, onvl, nnvl)) != 0) {
943 nvp_buf_free(nvl, nvp);
944 return (err);
945 }
946 break;
947 }
948 case DATA_TYPE_NVLIST_ARRAY: {
949 nvlist_t **onvlp = (nvlist_t **)data;
950 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
951 nvlist_t *embedded = (nvlist_t *)
952 ((uintptr_t)nvlp + nelem * sizeof (uint64_t));
953
954 for (i = 0; i < nelem; i++) {
955 if ((err = nvlist_copy_embedded(nvl,
956 onvlp[i], embedded)) != 0) {
957 /*
958 * Free any successfully created lists
959 */
960 nvpair_free(nvp);
961 nvp_buf_free(nvl, nvp);
962 return (err);
963 }
964
965 nvlp[i] = embedded++;
966 }
967 break;
968 }
969 default:
970 bcopy(data, NVP_VALUE(nvp), value_sz);
971 }
972
973 /* if unique name, remove before add */
974 if (nvl->nvl_nvflag & NV_UNIQUE_NAME)
975 (void) nvlist_remove_all(nvl, name);
976 else if (nvl->nvl_nvflag & NV_UNIQUE_NAME_TYPE)
977 (void) nvlist_remove(nvl, name, type);
978
979 nvp_buf_link(nvl, nvp);
980
981 return (0);
982 }
983
984 int
985 nvlist_add_boolean(nvlist_t *nvl, const char *name)
986 {
987 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN, 0, NULL));
988 }
989
990 int
991 nvlist_add_boolean_value(nvlist_t *nvl, const char *name, boolean_t val)
992 {
993 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_VALUE, 1, &val));
994 }
995
996 int
997 nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val)
998 {
999 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE, 1, &val));
1000 }
1001
1002 int
1003 nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val)
1004 {
1005 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8, 1, &val));
1006 }
1007
1008 int
1009 nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val)
1010 {
1011 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8, 1, &val));
1012 }
1013
1014 int
1015 nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val)
1016 {
1017 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16, 1, &val));
1018 }
1019
1020 int
1021 nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t val)
1022 {
1023 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16, 1, &val));
1024 }
1025
1026 int
1027 nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val)
1028 {
1029 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32, 1, &val));
1030 }
1031
1032 int
1033 nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t val)
1034 {
1035 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32, 1, &val));
1036 }
1037
1038 int
1039 nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val)
1040 {
1041 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64, 1, &val));
1042 }
1043
1044 int
1045 nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t val)
1046 {
1047 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64, 1, &val));
1048 }
1049
1050 #if !defined(_KERNEL)
1051 int
1052 nvlist_add_double(nvlist_t *nvl, const char *name, double val)
1053 {
1054 return (nvlist_add_common(nvl, name, DATA_TYPE_DOUBLE, 1, &val));
1055 }
1056 #endif
1057
1058 int
1059 nvlist_add_string(nvlist_t *nvl, const char *name, const char *val)
1060 {
1061 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING, 1, (void *)val));
1062 }
1063
1064 int
1065 nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
1066 boolean_t *a, uint_t n)
1067 {
1068 return (nvlist_add_common(nvl, name, DATA_TYPE_BOOLEAN_ARRAY, n, a));
1069 }
1070
1071 int
1072 nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t *a, uint_t n)
1073 {
1074 return (nvlist_add_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1075 }
1076
1077 int
1078 nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t *a, uint_t n)
1079 {
1080 return (nvlist_add_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1081 }
1082
1083 int
1084 nvlist_add_uint8_array(nvlist_t *nvl, const char *name, uint8_t *a, uint_t n)
1085 {
1086 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1087 }
1088
1089 int
1090 nvlist_add_int16_array(nvlist_t *nvl, const char *name, int16_t *a, uint_t n)
1091 {
1092 return (nvlist_add_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1093 }
1094
1095 int
1096 nvlist_add_uint16_array(nvlist_t *nvl, const char *name, uint16_t *a, uint_t n)
1097 {
1098 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1099 }
1100
1101 int
1102 nvlist_add_int32_array(nvlist_t *nvl, const char *name, int32_t *a, uint_t n)
1103 {
1104 return (nvlist_add_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1105 }
1106
1107 int
1108 nvlist_add_uint32_array(nvlist_t *nvl, const char *name, uint32_t *a, uint_t n)
1109 {
1110 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1111 }
1112
1113 int
1114 nvlist_add_int64_array(nvlist_t *nvl, const char *name, int64_t *a, uint_t n)
1115 {
1116 return (nvlist_add_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1117 }
1118
1119 int
1120 nvlist_add_uint64_array(nvlist_t *nvl, const char *name, uint64_t *a, uint_t n)
1121 {
1122 return (nvlist_add_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1123 }
1124
1125 int
1126 nvlist_add_string_array(nvlist_t *nvl, const char *name,
1127 char *const *a, uint_t n)
1128 {
1129 return (nvlist_add_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1130 }
1131
1132 int
1133 nvlist_add_hrtime(nvlist_t *nvl, const char *name, hrtime_t val)
1134 {
1135 return (nvlist_add_common(nvl, name, DATA_TYPE_HRTIME, 1, &val));
1136 }
1137
1138 int
1139 nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t *val)
1140 {
1141 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST, 1, val));
1142 }
1143
1144 int
1145 nvlist_add_nvlist_array(nvlist_t *nvl, const char *name, nvlist_t **a, uint_t n)
1146 {
1147 return (nvlist_add_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1148 }
1149
1150 /* reading name-value pairs */
1151 nvpair_t *
1152 nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1153 {
1154 nvpriv_t *priv;
1155 i_nvp_t *curr;
1156
1157 if (nvl == NULL ||
1158 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1159 return (NULL);
1160
1161 curr = NVPAIR2I_NVP(nvp);
1162
1163 /*
1164 * Ensure that nvp is a valid nvpair on this nvlist.
1165 * NB: nvp_curr is used only as a hint so that we don't always
1166 * have to walk the list to determine if nvp is still on the list.
1167 */
1168 if (nvp == NULL)
1169 curr = priv->nvp_list;
1170 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1171 curr = curr->nvi_next;
1172 else
1173 curr = NULL;
1174
1175 priv->nvp_curr = curr;
1176
1177 return (curr != NULL ? &curr->nvi_nvp : NULL);
1178 }
1179
1180 nvpair_t *
1181 nvlist_prev_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1182 {
1183 nvpriv_t *priv;
1184 i_nvp_t *curr;
1185
1186 if (nvl == NULL ||
1187 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1188 return (NULL);
1189
1190 curr = NVPAIR2I_NVP(nvp);
1191
1192 if (nvp == NULL)
1193 curr = priv->nvp_last;
1194 else if (priv->nvp_curr == curr || nvlist_contains_nvp(nvl, nvp))
1195 curr = curr->nvi_prev;
1196 else
1197 curr = NULL;
1198
1199 priv->nvp_curr = curr;
1200
1201 return (curr != NULL ? &curr->nvi_nvp : NULL);
1202 }
1203
1204 boolean_t
1205 nvlist_empty(nvlist_t *nvl)
1206 {
1207 nvpriv_t *priv;
1208
1209 if (nvl == NULL ||
1210 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1211 return (B_TRUE);
1212
1213 return (priv->nvp_list == NULL);
1214 }
1215
1216 char *
1217 nvpair_name(nvpair_t *nvp)
1218 {
1219 return (NVP_NAME(nvp));
1220 }
1221
1222 data_type_t
1223 nvpair_type(nvpair_t *nvp)
1224 {
1225 return (NVP_TYPE(nvp));
1226 }
1227
1228 int
1229 nvpair_type_is_array(nvpair_t *nvp)
1230 {
1231 data_type_t type = NVP_TYPE(nvp);
1232
1233 if ((type == DATA_TYPE_BYTE_ARRAY) ||
1234 (type == DATA_TYPE_INT8_ARRAY) ||
1235 (type == DATA_TYPE_UINT8_ARRAY) ||
1236 (type == DATA_TYPE_INT16_ARRAY) ||
1237 (type == DATA_TYPE_UINT16_ARRAY) ||
1238 (type == DATA_TYPE_INT32_ARRAY) ||
1239 (type == DATA_TYPE_UINT32_ARRAY) ||
1240 (type == DATA_TYPE_INT64_ARRAY) ||
1241 (type == DATA_TYPE_UINT64_ARRAY) ||
1242 (type == DATA_TYPE_BOOLEAN_ARRAY) ||
1243 (type == DATA_TYPE_STRING_ARRAY) ||
1244 (type == DATA_TYPE_NVLIST_ARRAY))
1245 return (1);
1246 return (0);
1247
1248 }
1249
1250 static int
1251 nvpair_value_common(nvpair_t *nvp, data_type_t type, uint_t *nelem, void *data)
1252 {
1253 if (nvp == NULL || nvpair_type(nvp) != type)
1254 return (EINVAL);
1255
1256 /*
1257 * For non-array types, we copy the data.
1258 * For array types (including string), we set a pointer.
1259 */
1260 switch (type) {
1261 case DATA_TYPE_BOOLEAN:
1262 if (nelem != NULL)
1263 *nelem = 0;
1264 break;
1265
1266 case DATA_TYPE_BOOLEAN_VALUE:
1267 case DATA_TYPE_BYTE:
1268 case DATA_TYPE_INT8:
1269 case DATA_TYPE_UINT8:
1270 case DATA_TYPE_INT16:
1271 case DATA_TYPE_UINT16:
1272 case DATA_TYPE_INT32:
1273 case DATA_TYPE_UINT32:
1274 case DATA_TYPE_INT64:
1275 case DATA_TYPE_UINT64:
1276 case DATA_TYPE_HRTIME:
1277 #if !defined(_KERNEL)
1278 case DATA_TYPE_DOUBLE:
1279 #endif
1280 if (data == NULL)
1281 return (EINVAL);
1282 bcopy(NVP_VALUE(nvp), data,
1283 (size_t)i_get_value_size(type, NULL, 1));
1284 if (nelem != NULL)
1285 *nelem = 1;
1286 break;
1287
1288 case DATA_TYPE_NVLIST:
1289 case DATA_TYPE_STRING:
1290 if (data == NULL)
1291 return (EINVAL);
1292 *(void **)data = (void *)NVP_VALUE(nvp);
1293 if (nelem != NULL)
1294 *nelem = 1;
1295 break;
1296
1297 case DATA_TYPE_BOOLEAN_ARRAY:
1298 case DATA_TYPE_BYTE_ARRAY:
1299 case DATA_TYPE_INT8_ARRAY:
1300 case DATA_TYPE_UINT8_ARRAY:
1301 case DATA_TYPE_INT16_ARRAY:
1302 case DATA_TYPE_UINT16_ARRAY:
1303 case DATA_TYPE_INT32_ARRAY:
1304 case DATA_TYPE_UINT32_ARRAY:
1305 case DATA_TYPE_INT64_ARRAY:
1306 case DATA_TYPE_UINT64_ARRAY:
1307 case DATA_TYPE_STRING_ARRAY:
1308 case DATA_TYPE_NVLIST_ARRAY:
1309 if (nelem == NULL || data == NULL)
1310 return (EINVAL);
1311 if ((*nelem = NVP_NELEM(nvp)) != 0)
1312 *(void **)data = (void *)NVP_VALUE(nvp);
1313 else
1314 *(void **)data = NULL;
1315 break;
1316
1317 default:
1318 return (ENOTSUP);
1319 }
1320
1321 return (0);
1322 }
1323
1324 static int
1325 nvlist_lookup_common(nvlist_t *nvl, const char *name, data_type_t type,
1326 uint_t *nelem, void *data)
1327 {
1328 nvpriv_t *priv;
1329 nvpair_t *nvp;
1330 i_nvp_t *curr;
1331
1332 if (name == NULL || nvl == NULL ||
1333 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1334 return (EINVAL);
1335
1336 if (!(nvl->nvl_nvflag & (NV_UNIQUE_NAME | NV_UNIQUE_NAME_TYPE)))
1337 return (ENOTSUP);
1338
1339 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1340 nvp = &curr->nvi_nvp;
1341
1342 if (strcmp(name, NVP_NAME(nvp)) == 0 && NVP_TYPE(nvp) == type)
1343 return (nvpair_value_common(nvp, type, nelem, data));
1344 }
1345
1346 return (ENOENT);
1347 }
1348
1349 int
1350 nvlist_lookup_boolean(nvlist_t *nvl, const char *name)
1351 {
1352 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BOOLEAN, NULL, NULL));
1353 }
1354
1355 int
1356 nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name, boolean_t *val)
1357 {
1358 return (nvlist_lookup_common(nvl, name,
1359 DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1360 }
1361
1362 int
1363 nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t *val)
1364 {
1365 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE, NULL, val));
1366 }
1367
1368 int
1369 nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t *val)
1370 {
1371 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8, NULL, val));
1372 }
1373
1374 int
1375 nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t *val)
1376 {
1377 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8, NULL, val));
1378 }
1379
1380 int
1381 nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t *val)
1382 {
1383 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16, NULL, val));
1384 }
1385
1386 int
1387 nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t *val)
1388 {
1389 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16, NULL, val));
1390 }
1391
1392 int
1393 nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t *val)
1394 {
1395 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32, NULL, val));
1396 }
1397
1398 int
1399 nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t *val)
1400 {
1401 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32, NULL, val));
1402 }
1403
1404 int
1405 nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t *val)
1406 {
1407 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64, NULL, val));
1408 }
1409
1410 int
1411 nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t *val)
1412 {
1413 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64, NULL, val));
1414 }
1415
1416 #if !defined(_KERNEL)
1417 int
1418 nvlist_lookup_double(nvlist_t *nvl, const char *name, double *val)
1419 {
1420 return (nvlist_lookup_common(nvl, name, DATA_TYPE_DOUBLE, NULL, val));
1421 }
1422 #endif
1423
1424 int
1425 nvlist_lookup_string(nvlist_t *nvl, const char *name, char **val)
1426 {
1427 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING, NULL, val));
1428 }
1429
1430 int
1431 nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t **val)
1432 {
1433 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST, NULL, val));
1434 }
1435
1436 int
1437 nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
1438 boolean_t **a, uint_t *n)
1439 {
1440 return (nvlist_lookup_common(nvl, name,
1441 DATA_TYPE_BOOLEAN_ARRAY, n, a));
1442 }
1443
1444 int
1445 nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
1446 uchar_t **a, uint_t *n)
1447 {
1448 return (nvlist_lookup_common(nvl, name, DATA_TYPE_BYTE_ARRAY, n, a));
1449 }
1450
1451 int
1452 nvlist_lookup_int8_array(nvlist_t *nvl, const char *name, int8_t **a, uint_t *n)
1453 {
1454 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT8_ARRAY, n, a));
1455 }
1456
1457 int
1458 nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
1459 uint8_t **a, uint_t *n)
1460 {
1461 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT8_ARRAY, n, a));
1462 }
1463
1464 int
1465 nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
1466 int16_t **a, uint_t *n)
1467 {
1468 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT16_ARRAY, n, a));
1469 }
1470
1471 int
1472 nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
1473 uint16_t **a, uint_t *n)
1474 {
1475 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT16_ARRAY, n, a));
1476 }
1477
1478 int
1479 nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
1480 int32_t **a, uint_t *n)
1481 {
1482 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT32_ARRAY, n, a));
1483 }
1484
1485 int
1486 nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
1487 uint32_t **a, uint_t *n)
1488 {
1489 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT32_ARRAY, n, a));
1490 }
1491
1492 int
1493 nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
1494 int64_t **a, uint_t *n)
1495 {
1496 return (nvlist_lookup_common(nvl, name, DATA_TYPE_INT64_ARRAY, n, a));
1497 }
1498
1499 int
1500 nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
1501 uint64_t **a, uint_t *n)
1502 {
1503 return (nvlist_lookup_common(nvl, name, DATA_TYPE_UINT64_ARRAY, n, a));
1504 }
1505
1506 int
1507 nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
1508 char ***a, uint_t *n)
1509 {
1510 return (nvlist_lookup_common(nvl, name, DATA_TYPE_STRING_ARRAY, n, a));
1511 }
1512
1513 int
1514 nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
1515 nvlist_t ***a, uint_t *n)
1516 {
1517 return (nvlist_lookup_common(nvl, name, DATA_TYPE_NVLIST_ARRAY, n, a));
1518 }
1519
1520 int
1521 nvlist_lookup_hrtime(nvlist_t *nvl, const char *name, hrtime_t *val)
1522 {
1523 return (nvlist_lookup_common(nvl, name, DATA_TYPE_HRTIME, NULL, val));
1524 }
1525
1526 int
1527 nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...)
1528 {
1529 va_list ap;
1530 char *name;
1531 int noentok = (flag & NV_FLAG_NOENTOK ? 1 : 0);
1532 int ret = 0;
1533
1534 va_start(ap, flag);
1535 while (ret == 0 && (name = va_arg(ap, char *)) != NULL) {
1536 data_type_t type;
1537 void *val;
1538 uint_t *nelem;
1539
1540 switch (type = va_arg(ap, data_type_t)) {
1541 case DATA_TYPE_BOOLEAN:
1542 ret = nvlist_lookup_common(nvl, name, type, NULL, NULL);
1543 break;
1544
1545 case DATA_TYPE_BOOLEAN_VALUE:
1546 case DATA_TYPE_BYTE:
1547 case DATA_TYPE_INT8:
1548 case DATA_TYPE_UINT8:
1549 case DATA_TYPE_INT16:
1550 case DATA_TYPE_UINT16:
1551 case DATA_TYPE_INT32:
1552 case DATA_TYPE_UINT32:
1553 case DATA_TYPE_INT64:
1554 case DATA_TYPE_UINT64:
1555 case DATA_TYPE_HRTIME:
1556 case DATA_TYPE_STRING:
1557 case DATA_TYPE_NVLIST:
1558 #if !defined(_KERNEL)
1559 case DATA_TYPE_DOUBLE:
1560 #endif
1561 val = va_arg(ap, void *);
1562 ret = nvlist_lookup_common(nvl, name, type, NULL, val);
1563 break;
1564
1565 case DATA_TYPE_BYTE_ARRAY:
1566 case DATA_TYPE_BOOLEAN_ARRAY:
1567 case DATA_TYPE_INT8_ARRAY:
1568 case DATA_TYPE_UINT8_ARRAY:
1569 case DATA_TYPE_INT16_ARRAY:
1570 case DATA_TYPE_UINT16_ARRAY:
1571 case DATA_TYPE_INT32_ARRAY:
1572 case DATA_TYPE_UINT32_ARRAY:
1573 case DATA_TYPE_INT64_ARRAY:
1574 case DATA_TYPE_UINT64_ARRAY:
1575 case DATA_TYPE_STRING_ARRAY:
1576 case DATA_TYPE_NVLIST_ARRAY:
1577 val = va_arg(ap, void *);
1578 nelem = va_arg(ap, uint_t *);
1579 ret = nvlist_lookup_common(nvl, name, type, nelem, val);
1580 break;
1581
1582 default:
1583 ret = EINVAL;
1584 }
1585
1586 if (ret == ENOENT && noentok)
1587 ret = 0;
1588 }
1589 va_end(ap);
1590
1591 return (ret);
1592 }
1593
1594 /*
1595 * Find the 'name'ed nvpair in the nvlist 'nvl'. If 'name' found, the function
1596 * returns zero and a pointer to the matching nvpair is returned in '*ret'
1597 * (given 'ret' is non-NULL). If 'sep' is specified then 'name' will penitrate
1598 * multiple levels of embedded nvlists, with 'sep' as the separator. As an
1599 * example, if sep is '.', name might look like: "a" or "a.b" or "a.c[3]" or
1600 * "a.d[3].e[1]". This matches the C syntax for array embed (for convience,
1601 * code also supports "a.d[3]e[1]" syntax).
1602 *
1603 * If 'ip' is non-NULL and the last name component is an array, return the
1604 * value of the "...[index]" array index in *ip. For an array reference that
1605 * is not indexed, *ip will be returned as -1. If there is a syntax error in
1606 * 'name', and 'ep' is non-NULL then *ep will be set to point to the location
1607 * inside the 'name' string where the syntax error was detected.
1608 */
1609 static int
1610 nvlist_lookup_nvpair_ei_sep(nvlist_t *nvl, const char *name, const char sep,
1611 nvpair_t **ret, int *ip, char **ep)
1612 {
1613 nvpair_t *nvp;
1614 const char *np;
1615 char *sepp;
1616 char *idxp, *idxep;
1617 nvlist_t **nva;
1618 long idx;
1619 int n;
1620
1621 if (ip)
1622 *ip = -1; /* not indexed */
1623 if (ep)
1624 *ep = NULL;
1625
1626 if ((nvl == NULL) || (name == NULL))
1627 return (EINVAL);
1628
1629 sepp = NULL;
1630 idx = 0;
1631 /* step through components of name */
1632 for (np = name; np && *np; np = sepp) {
1633 /* ensure unique names */
1634 if (!(nvl->nvl_nvflag & NV_UNIQUE_NAME))
1635 return (ENOTSUP);
1636
1637 /* skip white space */
1638 skip_whitespace(np);
1639 if (*np == 0)
1640 break;
1641
1642 /* set 'sepp' to end of current component 'np' */
1643 if (sep)
1644 sepp = strchr(np, sep);
1645 else
1646 sepp = NULL;
1647
1648 /* find start of next "[ index ]..." */
1649 idxp = strchr(np, '[');
1650
1651 /* if sepp comes first, set idxp to NULL */
1652 if (sepp && idxp && (sepp < idxp))
1653 idxp = NULL;
1654
1655 /*
1656 * At this point 'idxp' is set if there is an index
1657 * expected for the current component.
1658 */
1659 if (idxp) {
1660 /* set 'n' to length of current 'np' name component */
1661 n = idxp++ - np;
1662
1663 /* keep sepp up to date for *ep use as we advance */
1664 skip_whitespace(idxp);
1665 sepp = idxp;
1666
1667 /* determine the index value */
1668 #if defined(_KERNEL) && !defined(_BOOT)
1669 if (ddi_strtol(idxp, &idxep, 0, &idx))
1670 goto fail;
1671 #else
1672 idx = strtol(idxp, &idxep, 0);
1673 #endif
1674 if (idxep == idxp)
1675 goto fail;
1676
1677 /* keep sepp up to date for *ep use as we advance */
1678 sepp = idxep;
1679
1680 /* skip white space index value and check for ']' */
1681 skip_whitespace(sepp);
1682 if (*sepp++ != ']')
1683 goto fail;
1684
1685 /* for embedded arrays, support C syntax: "a[1].b" */
1686 skip_whitespace(sepp);
1687 if (sep && (*sepp == sep))
1688 sepp++;
1689 } else if (sepp) {
1690 n = sepp++ - np;
1691 } else {
1692 n = strlen(np);
1693 }
1694
1695 /* trim trailing whitespace by reducing length of 'np' */
1696 if (n == 0)
1697 goto fail;
1698 for (n--; (np[n] == ' ') || (np[n] == '\t'); n--)
1699 ;
1700 n++;
1701
1702 /* skip whitespace, and set sepp to NULL if complete */
1703 if (sepp) {
1704 skip_whitespace(sepp);
1705 if (*sepp == 0)
1706 sepp = NULL;
1707 }
1708
1709 /*
1710 * At this point:
1711 * o 'n' is the length of current 'np' component.
1712 * o 'idxp' is set if there was an index, and value 'idx'.
1713 * o 'sepp' is set to the beginning of the next component,
1714 * and set to NULL if we have no more components.
1715 *
1716 * Search for nvpair with matching component name.
1717 */
1718 for (nvp = nvlist_next_nvpair(nvl, NULL); nvp != NULL;
1719 nvp = nvlist_next_nvpair(nvl, nvp)) {
1720
1721 /* continue if no match on name */
1722 if (strncmp(np, nvpair_name(nvp), n) ||
1723 (strlen(nvpair_name(nvp)) != n))
1724 continue;
1725
1726 /* if indexed, verify type is array oriented */
1727 if (idxp && !nvpair_type_is_array(nvp))
1728 goto fail;
1729
1730 /*
1731 * Full match found, return nvp and idx if this
1732 * was the last component.
1733 */
1734 if (sepp == NULL) {
1735 if (ret)
1736 *ret = nvp;
1737 if (ip && idxp)
1738 *ip = (int)idx; /* return index */
1739 return (0); /* found */
1740 }
1741
1742 /*
1743 * More components: current match must be
1744 * of DATA_TYPE_NVLIST or DATA_TYPE_NVLIST_ARRAY
1745 * to support going deeper.
1746 */
1747 if (nvpair_type(nvp) == DATA_TYPE_NVLIST) {
1748 nvl = EMBEDDED_NVL(nvp);
1749 break;
1750 } else if (nvpair_type(nvp) == DATA_TYPE_NVLIST_ARRAY) {
1751 (void) nvpair_value_nvlist_array(nvp,
1752 &nva, (uint_t *)&n);
1753 if ((n < 0) || (idx >= n))
1754 goto fail;
1755 nvl = nva[idx];
1756 break;
1757 }
1758
1759 /* type does not support more levels */
1760 goto fail;
1761 }
1762 if (nvp == NULL)
1763 goto fail; /* 'name' not found */
1764
1765 /* search for match of next component in embedded 'nvl' list */
1766 }
1767
1768 fail: if (ep && sepp)
1769 *ep = sepp;
1770 return (EINVAL);
1771 }
1772
1773 /*
1774 * Return pointer to nvpair with specified 'name'.
1775 */
1776 int
1777 nvlist_lookup_nvpair(nvlist_t *nvl, const char *name, nvpair_t **ret)
1778 {
1779 return (nvlist_lookup_nvpair_ei_sep(nvl, name, 0, ret, NULL, NULL));
1780 }
1781
1782 /*
1783 * Determine if named nvpair exists in nvlist (use embedded separator of '.'
1784 * and return array index). See nvlist_lookup_nvpair_ei_sep for more detailed
1785 * description.
1786 */
1787 int nvlist_lookup_nvpair_embedded_index(nvlist_t *nvl,
1788 const char *name, nvpair_t **ret, int *ip, char **ep)
1789 {
1790 return (nvlist_lookup_nvpair_ei_sep(nvl, name, '.', ret, ip, ep));
1791 }
1792
1793 boolean_t
1794 nvlist_exists(nvlist_t *nvl, const char *name)
1795 {
1796 nvpriv_t *priv;
1797 nvpair_t *nvp;
1798 i_nvp_t *curr;
1799
1800 if (name == NULL || nvl == NULL ||
1801 (priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
1802 return (B_FALSE);
1803
1804 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
1805 nvp = &curr->nvi_nvp;
1806
1807 if (strcmp(name, NVP_NAME(nvp)) == 0)
1808 return (B_TRUE);
1809 }
1810
1811 return (B_FALSE);
1812 }
1813
1814 int
1815 nvpair_value_boolean_value(nvpair_t *nvp, boolean_t *val)
1816 {
1817 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_VALUE, NULL, val));
1818 }
1819
1820 int
1821 nvpair_value_byte(nvpair_t *nvp, uchar_t *val)
1822 {
1823 return (nvpair_value_common(nvp, DATA_TYPE_BYTE, NULL, val));
1824 }
1825
1826 int
1827 nvpair_value_int8(nvpair_t *nvp, int8_t *val)
1828 {
1829 return (nvpair_value_common(nvp, DATA_TYPE_INT8, NULL, val));
1830 }
1831
1832 int
1833 nvpair_value_uint8(nvpair_t *nvp, uint8_t *val)
1834 {
1835 return (nvpair_value_common(nvp, DATA_TYPE_UINT8, NULL, val));
1836 }
1837
1838 int
1839 nvpair_value_int16(nvpair_t *nvp, int16_t *val)
1840 {
1841 return (nvpair_value_common(nvp, DATA_TYPE_INT16, NULL, val));
1842 }
1843
1844 int
1845 nvpair_value_uint16(nvpair_t *nvp, uint16_t *val)
1846 {
1847 return (nvpair_value_common(nvp, DATA_TYPE_UINT16, NULL, val));
1848 }
1849
1850 int
1851 nvpair_value_int32(nvpair_t *nvp, int32_t *val)
1852 {
1853 return (nvpair_value_common(nvp, DATA_TYPE_INT32, NULL, val));
1854 }
1855
1856 int
1857 nvpair_value_uint32(nvpair_t *nvp, uint32_t *val)
1858 {
1859 return (nvpair_value_common(nvp, DATA_TYPE_UINT32, NULL, val));
1860 }
1861
1862 int
1863 nvpair_value_int64(nvpair_t *nvp, int64_t *val)
1864 {
1865 return (nvpair_value_common(nvp, DATA_TYPE_INT64, NULL, val));
1866 }
1867
1868 int
1869 nvpair_value_uint64(nvpair_t *nvp, uint64_t *val)
1870 {
1871 return (nvpair_value_common(nvp, DATA_TYPE_UINT64, NULL, val));
1872 }
1873
1874 #if !defined(_KERNEL)
1875 int
1876 nvpair_value_double(nvpair_t *nvp, double *val)
1877 {
1878 return (nvpair_value_common(nvp, DATA_TYPE_DOUBLE, NULL, val));
1879 }
1880 #endif
1881
1882 int
1883 nvpair_value_string(nvpair_t *nvp, char **val)
1884 {
1885 return (nvpair_value_common(nvp, DATA_TYPE_STRING, NULL, val));
1886 }
1887
1888 int
1889 nvpair_value_nvlist(nvpair_t *nvp, nvlist_t **val)
1890 {
1891 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST, NULL, val));
1892 }
1893
1894 int
1895 nvpair_value_boolean_array(nvpair_t *nvp, boolean_t **val, uint_t *nelem)
1896 {
1897 return (nvpair_value_common(nvp, DATA_TYPE_BOOLEAN_ARRAY, nelem, val));
1898 }
1899
1900 int
1901 nvpair_value_byte_array(nvpair_t *nvp, uchar_t **val, uint_t *nelem)
1902 {
1903 return (nvpair_value_common(nvp, DATA_TYPE_BYTE_ARRAY, nelem, val));
1904 }
1905
1906 int
1907 nvpair_value_int8_array(nvpair_t *nvp, int8_t **val, uint_t *nelem)
1908 {
1909 return (nvpair_value_common(nvp, DATA_TYPE_INT8_ARRAY, nelem, val));
1910 }
1911
1912 int
1913 nvpair_value_uint8_array(nvpair_t *nvp, uint8_t **val, uint_t *nelem)
1914 {
1915 return (nvpair_value_common(nvp, DATA_TYPE_UINT8_ARRAY, nelem, val));
1916 }
1917
1918 int
1919 nvpair_value_int16_array(nvpair_t *nvp, int16_t **val, uint_t *nelem)
1920 {
1921 return (nvpair_value_common(nvp, DATA_TYPE_INT16_ARRAY, nelem, val));
1922 }
1923
1924 int
1925 nvpair_value_uint16_array(nvpair_t *nvp, uint16_t **val, uint_t *nelem)
1926 {
1927 return (nvpair_value_common(nvp, DATA_TYPE_UINT16_ARRAY, nelem, val));
1928 }
1929
1930 int
1931 nvpair_value_int32_array(nvpair_t *nvp, int32_t **val, uint_t *nelem)
1932 {
1933 return (nvpair_value_common(nvp, DATA_TYPE_INT32_ARRAY, nelem, val));
1934 }
1935
1936 int
1937 nvpair_value_uint32_array(nvpair_t *nvp, uint32_t **val, uint_t *nelem)
1938 {
1939 return (nvpair_value_common(nvp, DATA_TYPE_UINT32_ARRAY, nelem, val));
1940 }
1941
1942 int
1943 nvpair_value_int64_array(nvpair_t *nvp, int64_t **val, uint_t *nelem)
1944 {
1945 return (nvpair_value_common(nvp, DATA_TYPE_INT64_ARRAY, nelem, val));
1946 }
1947
1948 int
1949 nvpair_value_uint64_array(nvpair_t *nvp, uint64_t **val, uint_t *nelem)
1950 {
1951 return (nvpair_value_common(nvp, DATA_TYPE_UINT64_ARRAY, nelem, val));
1952 }
1953
1954 int
1955 nvpair_value_string_array(nvpair_t *nvp, char ***val, uint_t *nelem)
1956 {
1957 return (nvpair_value_common(nvp, DATA_TYPE_STRING_ARRAY, nelem, val));
1958 }
1959
1960 int
1961 nvpair_value_nvlist_array(nvpair_t *nvp, nvlist_t ***val, uint_t *nelem)
1962 {
1963 return (nvpair_value_common(nvp, DATA_TYPE_NVLIST_ARRAY, nelem, val));
1964 }
1965
1966 int
1967 nvpair_value_hrtime(nvpair_t *nvp, hrtime_t *val)
1968 {
1969 return (nvpair_value_common(nvp, DATA_TYPE_HRTIME, NULL, val));
1970 }
1971
1972 /*
1973 * Add specified pair to the list.
1974 */
1975 int
1976 nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp)
1977 {
1978 if (nvl == NULL || nvp == NULL)
1979 return (EINVAL);
1980
1981 return (nvlist_add_common(nvl, NVP_NAME(nvp), NVP_TYPE(nvp),
1982 NVP_NELEM(nvp), NVP_VALUE(nvp)));
1983 }
1984
1985 /*
1986 * Merge the supplied nvlists and put the result in dst.
1987 * The merged list will contain all names specified in both lists,
1988 * the values are taken from nvl in the case of duplicates.
1989 * Return 0 on success.
1990 */
1991 /*ARGSUSED*/
1992 int
1993 nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag)
1994 {
1995 if (nvl == NULL || dst == NULL)
1996 return (EINVAL);
1997
1998 if (dst != nvl)
1999 return (nvlist_copy_pairs(nvl, dst));
2000
2001 return (0);
2002 }
2003
2004 /*
2005 * Encoding related routines
2006 */
2007 #define NVS_OP_ENCODE 0
2008 #define NVS_OP_DECODE 1
2009 #define NVS_OP_GETSIZE 2
2010
2011 typedef struct nvs_ops nvs_ops_t;
2012
2013 typedef struct {
2014 int nvs_op;
2015 const nvs_ops_t *nvs_ops;
2016 void *nvs_private;
2017 nvpriv_t *nvs_priv;
2018 } nvstream_t;
2019
2020 /*
2021 * nvs operations are:
2022 * - nvs_nvlist
2023 * encoding / decoding of a nvlist header (nvlist_t)
2024 * calculates the size used for header and end detection
2025 *
2026 * - nvs_nvpair
2027 * responsible for the first part of encoding / decoding of an nvpair
2028 * calculates the decoded size of an nvpair
2029 *
2030 * - nvs_nvp_op
2031 * second part of encoding / decoding of an nvpair
2032 *
2033 * - nvs_nvp_size
2034 * calculates the encoding size of an nvpair
2035 *
2036 * - nvs_nvl_fini
2037 * encodes the end detection mark (zeros).
2038 */
2039 struct nvs_ops {
2040 int (*nvs_nvlist)(nvstream_t *, nvlist_t *, size_t *);
2041 int (*nvs_nvpair)(nvstream_t *, nvpair_t *, size_t *);
2042 int (*nvs_nvp_op)(nvstream_t *, nvpair_t *);
2043 int (*nvs_nvp_size)(nvstream_t *, nvpair_t *, size_t *);
2044 int (*nvs_nvl_fini)(nvstream_t *);
2045 };
2046
2047 typedef struct {
2048 char nvh_encoding; /* nvs encoding method */
2049 char nvh_endian; /* nvs endian */
2050 char nvh_reserved1; /* reserved for future use */
2051 char nvh_reserved2; /* reserved for future use */
2052 } nvs_header_t;
2053
2054 static int
2055 nvs_encode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2056 {
2057 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2058 i_nvp_t *curr;
2059
2060 /*
2061 * Walk nvpair in list and encode each nvpair
2062 */
2063 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next)
2064 if (nvs->nvs_ops->nvs_nvpair(nvs, &curr->nvi_nvp, NULL) != 0)
2065 return (EFAULT);
2066
2067 return (nvs->nvs_ops->nvs_nvl_fini(nvs));
2068 }
2069
2070 static int
2071 nvs_decode_pairs(nvstream_t *nvs, nvlist_t *nvl)
2072 {
2073 nvpair_t *nvp;
2074 size_t nvsize;
2075 int err;
2076
2077 /*
2078 * Get decoded size of next pair in stream, alloc
2079 * memory for nvpair_t, then decode the nvpair
2080 */
2081 while ((err = nvs->nvs_ops->nvs_nvpair(nvs, NULL, &nvsize)) == 0) {
2082 if (nvsize == 0) /* end of list */
2083 break;
2084
2085 /* make sure len makes sense */
2086 if (nvsize < NVP_SIZE_CALC(1, 0))
2087 return (EFAULT);
2088
2089 if ((nvp = nvp_buf_alloc(nvl, nvsize)) == NULL)
2090 return (ENOMEM);
2091
2092 if ((err = nvs->nvs_ops->nvs_nvp_op(nvs, nvp)) != 0) {
2093 nvp_buf_free(nvl, nvp);
2094 return (err);
2095 }
2096
2097 if (i_validate_nvpair(nvp) != 0) {
2098 nvpair_free(nvp);
2099 nvp_buf_free(nvl, nvp);
2100 return (EFAULT);
2101 }
2102
2103 nvp_buf_link(nvl, nvp);
2104 }
2105 return (err);
2106 }
2107
2108 static int
2109 nvs_getsize_pairs(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2110 {
2111 nvpriv_t *priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv;
2112 i_nvp_t *curr;
2113 uint64_t nvsize = *buflen;
2114 size_t size;
2115
2116 /*
2117 * Get encoded size of nvpairs in nvlist
2118 */
2119 for (curr = priv->nvp_list; curr != NULL; curr = curr->nvi_next) {
2120 if (nvs->nvs_ops->nvs_nvp_size(nvs, &curr->nvi_nvp, &size) != 0)
2121 return (EINVAL);
2122
2123 if ((nvsize += size) > INT32_MAX)
2124 return (EINVAL);
2125 }
2126
2127 *buflen = nvsize;
2128 return (0);
2129 }
2130
2131 static int
2132 nvs_operation(nvstream_t *nvs, nvlist_t *nvl, size_t *buflen)
2133 {
2134 int err;
2135
2136 if (nvl->nvl_priv == 0)
2137 return (EFAULT);
2138
2139 /*
2140 * Perform the operation, starting with header, then each nvpair
2141 */
2142 if ((err = nvs->nvs_ops->nvs_nvlist(nvs, nvl, buflen)) != 0)
2143 return (err);
2144
2145 switch (nvs->nvs_op) {
2146 case NVS_OP_ENCODE:
2147 err = nvs_encode_pairs(nvs, nvl);
2148 break;
2149
2150 case NVS_OP_DECODE:
2151 err = nvs_decode_pairs(nvs, nvl);
2152 break;
2153
2154 case NVS_OP_GETSIZE:
2155 err = nvs_getsize_pairs(nvs, nvl, buflen);
2156 break;
2157
2158 default:
2159 err = EINVAL;
2160 }
2161
2162 return (err);
2163 }
2164
2165 static int
2166 nvs_embedded(nvstream_t *nvs, nvlist_t *embedded)
2167 {
2168 switch (nvs->nvs_op) {
2169 case NVS_OP_ENCODE:
2170 return (nvs_operation(nvs, embedded, NULL));
2171
2172 case NVS_OP_DECODE: {
2173 nvpriv_t *priv;
2174 int err;
2175
2176 if (embedded->nvl_version != NV_VERSION)
2177 return (ENOTSUP);
2178
2179 if ((priv = nv_priv_alloc_embedded(nvs->nvs_priv)) == NULL)
2180 return (ENOMEM);
2181
2182 nvlist_init(embedded, embedded->nvl_nvflag, priv);
2183
2184 if ((err = nvs_operation(nvs, embedded, NULL)) != 0)
2185 nvlist_free(embedded);
2186 return (err);
2187 }
2188 default:
2189 break;
2190 }
2191
2192 return (EINVAL);
2193 }
2194
2195 static int
2196 nvs_embedded_nvl_array(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2197 {
2198 size_t nelem = NVP_NELEM(nvp);
2199 nvlist_t **nvlp = EMBEDDED_NVL_ARRAY(nvp);
2200 int i;
2201
2202 switch (nvs->nvs_op) {
2203 case NVS_OP_ENCODE:
2204 for (i = 0; i < nelem; i++)
2205 if (nvs_embedded(nvs, nvlp[i]) != 0)
2206 return (EFAULT);
2207 break;
2208
2209 case NVS_OP_DECODE: {
2210 size_t len = nelem * sizeof (uint64_t);
2211 nvlist_t *embedded = (nvlist_t *)((uintptr_t)nvlp + len);
2212
2213 bzero(nvlp, len); /* don't trust packed data */
2214 for (i = 0; i < nelem; i++) {
2215 if (nvs_embedded(nvs, embedded) != 0) {
2216 nvpair_free(nvp);
2217 return (EFAULT);
2218 }
2219
2220 nvlp[i] = embedded++;
2221 }
2222 break;
2223 }
2224 case NVS_OP_GETSIZE: {
2225 uint64_t nvsize = 0;
2226
2227 for (i = 0; i < nelem; i++) {
2228 size_t nvp_sz = 0;
2229
2230 if (nvs_operation(nvs, nvlp[i], &nvp_sz) != 0)
2231 return (EINVAL);
2232
2233 if ((nvsize += nvp_sz) > INT32_MAX)
2234 return (EINVAL);
2235 }
2236
2237 *size = nvsize;
2238 break;
2239 }
2240 default:
2241 return (EINVAL);
2242 }
2243
2244 return (0);
2245 }
2246
2247 static int nvs_native(nvstream_t *, nvlist_t *, char *, size_t *);
2248 static int nvs_xdr(nvstream_t *, nvlist_t *, char *, size_t *);
2249
2250 /*
2251 * Common routine for nvlist operations:
2252 * encode, decode, getsize (encoded size).
2253 */
2254 static int
2255 nvlist_common(nvlist_t *nvl, char *buf, size_t *buflen, int encoding,
2256 int nvs_op)
2257 {
2258 int err = 0;
2259 nvstream_t nvs;
2260 int nvl_endian;
2261 #ifdef _LITTLE_ENDIAN
2262 int host_endian = 1;
2263 #else
2264 int host_endian = 0;
2265 #endif /* _LITTLE_ENDIAN */
2266 nvs_header_t *nvh = (void *)buf;
2267
2268 if (buflen == NULL || nvl == NULL ||
2269 (nvs.nvs_priv = (nvpriv_t *)(uintptr_t)nvl->nvl_priv) == NULL)
2270 return (EINVAL);
2271
2272 nvs.nvs_op = nvs_op;
2273
2274 /*
2275 * For NVS_OP_ENCODE and NVS_OP_DECODE make sure an nvlist and
2276 * a buffer is allocated. The first 4 bytes in the buffer are
2277 * used for encoding method and host endian.
2278 */
2279 switch (nvs_op) {
2280 case NVS_OP_ENCODE:
2281 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2282 return (EINVAL);
2283
2284 nvh->nvh_encoding = encoding;
2285 nvh->nvh_endian = nvl_endian = host_endian;
2286 nvh->nvh_reserved1 = 0;
2287 nvh->nvh_reserved2 = 0;
2288 break;
2289
2290 case NVS_OP_DECODE:
2291 if (buf == NULL || *buflen < sizeof (nvs_header_t))
2292 return (EINVAL);
2293
2294 /* get method of encoding from first byte */
2295 encoding = nvh->nvh_encoding;
2296 nvl_endian = nvh->nvh_endian;
2297 break;
2298
2299 case NVS_OP_GETSIZE:
2300 nvl_endian = host_endian;
2301
2302 /*
2303 * add the size for encoding
2304 */
2305 *buflen = sizeof (nvs_header_t);
2306 break;
2307
2308 default:
2309 return (ENOTSUP);
2310 }
2311
2312 /*
2313 * Create an nvstream with proper encoding method
2314 */
2315 switch (encoding) {
2316 case NV_ENCODE_NATIVE:
2317 /*
2318 * check endianness, in case we are unpacking
2319 * from a file
2320 */
2321 if (nvl_endian != host_endian)
2322 return (ENOTSUP);
2323 err = nvs_native(&nvs, nvl, buf, buflen);
2324 break;
2325 case NV_ENCODE_XDR:
2326 err = nvs_xdr(&nvs, nvl, buf, buflen);
2327 break;
2328 default:
2329 err = ENOTSUP;
2330 break;
2331 }
2332
2333 return (err);
2334 }
2335
2336 int
2337 nvlist_size(nvlist_t *nvl, size_t *size, int encoding)
2338 {
2339 return (nvlist_common(nvl, NULL, size, encoding, NVS_OP_GETSIZE));
2340 }
2341
2342 /*
2343 * Pack nvlist into contiguous memory
2344 */
2345 /*ARGSUSED1*/
2346 int
2347 nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2348 int kmflag)
2349 {
2350 #if defined(_KERNEL) && !defined(_BOOT)
2351 return (nvlist_xpack(nvl, bufp, buflen, encoding,
2352 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2353 #else
2354 return (nvlist_xpack(nvl, bufp, buflen, encoding, nv_alloc_nosleep));
2355 #endif
2356 }
2357
2358 int
2359 nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int encoding,
2360 nv_alloc_t *nva)
2361 {
2362 nvpriv_t nvpriv;
2363 size_t alloc_size;
2364 char *buf;
2365 int err;
2366
2367 if (nva == NULL || nvl == NULL || bufp == NULL || buflen == NULL)
2368 return (EINVAL);
2369
2370 if (*bufp != NULL)
2371 return (nvlist_common(nvl, *bufp, buflen, encoding,
2372 NVS_OP_ENCODE));
2373
2374 /*
2375 * Here is a difficult situation:
2376 * 1. The nvlist has fixed allocator properties.
2377 * All other nvlist routines (like nvlist_add_*, ...) use
2378 * these properties.
2379 * 2. When using nvlist_pack() the user can specify his own
2380 * allocator properties (e.g. by using KM_NOSLEEP).
2381 *
2382 * We use the user specified properties (2). A clearer solution
2383 * will be to remove the kmflag from nvlist_pack(), but we will
2384 * not change the interface.
2385 */
2386 nv_priv_init(&nvpriv, nva, 0);
2387
2388 if ((err = nvlist_size(nvl, &alloc_size, encoding)))
2389 return (err);
2390
2391 if ((buf = nv_mem_zalloc(&nvpriv, alloc_size)) == NULL)
2392 return (ENOMEM);
2393
2394 if ((err = nvlist_common(nvl, buf, &alloc_size, encoding,
2395 NVS_OP_ENCODE)) != 0) {
2396 nv_mem_free(&nvpriv, buf, alloc_size);
2397 } else {
2398 *buflen = alloc_size;
2399 *bufp = buf;
2400 }
2401
2402 return (err);
2403 }
2404
2405 /*
2406 * Unpack buf into an nvlist_t
2407 */
2408 /*ARGSUSED1*/
2409 int
2410 nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int kmflag)
2411 {
2412 #if defined(_KERNEL) && !defined(_BOOT)
2413 return (nvlist_xunpack(buf, buflen, nvlp,
2414 (kmflag == KM_SLEEP ? nv_alloc_sleep : nv_alloc_nosleep)));
2415 #else
2416 return (nvlist_xunpack(buf, buflen, nvlp, nv_alloc_nosleep));
2417 #endif
2418 }
2419
2420 int
2421 nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp, nv_alloc_t *nva)
2422 {
2423 nvlist_t *nvl;
2424 int err;
2425
2426 if (nvlp == NULL)
2427 return (EINVAL);
2428
2429 if ((err = nvlist_xalloc(&nvl, 0, nva)) != 0)
2430 return (err);
2431
2432 if ((err = nvlist_common(nvl, buf, &buflen, 0, NVS_OP_DECODE)) != 0)
2433 nvlist_free(nvl);
2434 else
2435 *nvlp = nvl;
2436
2437 return (err);
2438 }
2439
2440 /*
2441 * Native encoding functions
2442 */
2443 typedef struct {
2444 /*
2445 * This structure is used when decoding a packed nvpair in
2446 * the native format. n_base points to a buffer containing the
2447 * packed nvpair. n_end is a pointer to the end of the buffer.
2448 * (n_end actually points to the first byte past the end of the
2449 * buffer.) n_curr is a pointer that lies between n_base and n_end.
2450 * It points to the current data that we are decoding.
2451 * The amount of data left in the buffer is equal to n_end - n_curr.
2452 * n_flag is used to recognize a packed embedded list.
2453 */
2454 caddr_t n_base;
2455 caddr_t n_end;
2456 caddr_t n_curr;
2457 uint_t n_flag;
2458 } nvs_native_t;
2459
2460 static int
2461 nvs_native_create(nvstream_t *nvs, nvs_native_t *native, char *buf,
2462 size_t buflen)
2463 {
2464 switch (nvs->nvs_op) {
2465 case NVS_OP_ENCODE:
2466 case NVS_OP_DECODE:
2467 nvs->nvs_private = native;
2468 native->n_curr = native->n_base = buf;
2469 native->n_end = buf + buflen;
2470 native->n_flag = 0;
2471 return (0);
2472
2473 case NVS_OP_GETSIZE:
2474 nvs->nvs_private = native;
2475 native->n_curr = native->n_base = native->n_end = NULL;
2476 native->n_flag = 0;
2477 return (0);
2478 default:
2479 return (EINVAL);
2480 }
2481 }
2482
2483 /*ARGSUSED*/
2484 static void
2485 nvs_native_destroy(nvstream_t *nvs)
2486 {
2487 }
2488
2489 static int
2490 native_cp(nvstream_t *nvs, void *buf, size_t size)
2491 {
2492 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2493
2494 if (native->n_curr + size > native->n_end)
2495 return (EFAULT);
2496
2497 /*
2498 * The bcopy() below eliminates alignment requirement
2499 * on the buffer (stream) and is preferred over direct access.
2500 */
2501 switch (nvs->nvs_op) {
2502 case NVS_OP_ENCODE:
2503 bcopy(buf, native->n_curr, size);
2504 break;
2505 case NVS_OP_DECODE:
2506 bcopy(native->n_curr, buf, size);
2507 break;
2508 default:
2509 return (EINVAL);
2510 }
2511
2512 native->n_curr += size;
2513 return (0);
2514 }
2515
2516 /*
2517 * operate on nvlist_t header
2518 */
2519 static int
2520 nvs_native_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2521 {
2522 nvs_native_t *native = nvs->nvs_private;
2523
2524 switch (nvs->nvs_op) {
2525 case NVS_OP_ENCODE:
2526 case NVS_OP_DECODE:
2527 if (native->n_flag)
2528 return (0); /* packed embedded list */
2529
2530 native->n_flag = 1;
2531
2532 /* copy version and nvflag of the nvlist_t */
2533 if (native_cp(nvs, &nvl->nvl_version, sizeof (int32_t)) != 0 ||
2534 native_cp(nvs, &nvl->nvl_nvflag, sizeof (int32_t)) != 0)
2535 return (EFAULT);
2536
2537 return (0);
2538
2539 case NVS_OP_GETSIZE:
2540 /*
2541 * if calculate for packed embedded list
2542 * 4 for end of the embedded list
2543 * else
2544 * 2 * sizeof (int32_t) for nvl_version and nvl_nvflag
2545 * and 4 for end of the entire list
2546 */
2547 if (native->n_flag) {
2548 *size += 4;
2549 } else {
2550 native->n_flag = 1;
2551 *size += 2 * sizeof (int32_t) + 4;
2552 }
2553
2554 return (0);
2555
2556 default:
2557 return (EINVAL);
2558 }
2559 }
2560
2561 static int
2562 nvs_native_nvl_fini(nvstream_t *nvs)
2563 {
2564 if (nvs->nvs_op == NVS_OP_ENCODE) {
2565 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2566 /*
2567 * Add 4 zero bytes at end of nvlist. They are used
2568 * for end detection by the decode routine.
2569 */
2570 if (native->n_curr + sizeof (int) > native->n_end)
2571 return (EFAULT);
2572
2573 bzero(native->n_curr, sizeof (int));
2574 native->n_curr += sizeof (int);
2575 }
2576
2577 return (0);
2578 }
2579
2580 static int
2581 nvpair_native_embedded(nvstream_t *nvs, nvpair_t *nvp)
2582 {
2583 if (nvs->nvs_op == NVS_OP_ENCODE) {
2584 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2585 nvlist_t *packed = (void *)
2586 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2587 /*
2588 * Null out the pointer that is meaningless in the packed
2589 * structure. The address may not be aligned, so we have
2590 * to use bzero.
2591 */
2592 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2593 }
2594
2595 return (nvs_embedded(nvs, EMBEDDED_NVL(nvp)));
2596 }
2597
2598 static int
2599 nvpair_native_embedded_array(nvstream_t *nvs, nvpair_t *nvp)
2600 {
2601 if (nvs->nvs_op == NVS_OP_ENCODE) {
2602 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2603 char *value = native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp);
2604 size_t len = NVP_NELEM(nvp) * sizeof (uint64_t);
2605 nvlist_t *packed = (nvlist_t *)((uintptr_t)value + len);
2606 int i;
2607 /*
2608 * Null out pointers that are meaningless in the packed
2609 * structure. The addresses may not be aligned, so we have
2610 * to use bzero.
2611 */
2612 bzero(value, len);
2613
2614 for (i = 0; i < NVP_NELEM(nvp); i++, packed++)
2615 /*
2616 * Null out the pointer that is meaningless in the
2617 * packed structure. The address may not be aligned,
2618 * so we have to use bzero.
2619 */
2620 bzero(&packed->nvl_priv, sizeof (packed->nvl_priv));
2621 }
2622
2623 return (nvs_embedded_nvl_array(nvs, nvp, NULL));
2624 }
2625
2626 static void
2627 nvpair_native_string_array(nvstream_t *nvs, nvpair_t *nvp)
2628 {
2629 switch (nvs->nvs_op) {
2630 case NVS_OP_ENCODE: {
2631 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2632 uint64_t *strp = (void *)
2633 (native->n_curr - nvp->nvp_size + NVP_VALOFF(nvp));
2634 /*
2635 * Null out pointers that are meaningless in the packed
2636 * structure. The addresses may not be aligned, so we have
2637 * to use bzero.
2638 */
2639 bzero(strp, NVP_NELEM(nvp) * sizeof (uint64_t));
2640 break;
2641 }
2642 case NVS_OP_DECODE: {
2643 char **strp = (void *)NVP_VALUE(nvp);
2644 char *buf = ((char *)strp + NVP_NELEM(nvp) * sizeof (uint64_t));
2645 int i;
2646
2647 for (i = 0; i < NVP_NELEM(nvp); i++) {
2648 strp[i] = buf;
2649 buf += strlen(buf) + 1;
2650 }
2651 break;
2652 }
2653 }
2654 }
2655
2656 static int
2657 nvs_native_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2658 {
2659 data_type_t type;
2660 int value_sz;
2661 int ret = 0;
2662
2663 /*
2664 * We do the initial bcopy of the data before we look at
2665 * the nvpair type, because when we're decoding, we won't
2666 * have the correct values for the pair until we do the bcopy.
2667 */
2668 switch (nvs->nvs_op) {
2669 case NVS_OP_ENCODE:
2670 case NVS_OP_DECODE:
2671 if (native_cp(nvs, nvp, nvp->nvp_size) != 0)
2672 return (EFAULT);
2673 break;
2674 default:
2675 return (EINVAL);
2676 }
2677
2678 /* verify nvp_name_sz, check the name string length */
2679 if (i_validate_nvpair_name(nvp) != 0)
2680 return (EFAULT);
2681
2682 type = NVP_TYPE(nvp);
2683
2684 /*
2685 * Verify type and nelem and get the value size.
2686 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2687 * is the size of the string(s) excluded.
2688 */
2689 if ((value_sz = i_get_value_size(type, NULL, NVP_NELEM(nvp))) < 0)
2690 return (EFAULT);
2691
2692 if (NVP_SIZE_CALC(nvp->nvp_name_sz, value_sz) > nvp->nvp_size)
2693 return (EFAULT);
2694
2695 switch (type) {
2696 case DATA_TYPE_NVLIST:
2697 ret = nvpair_native_embedded(nvs, nvp);
2698 break;
2699 case DATA_TYPE_NVLIST_ARRAY:
2700 ret = nvpair_native_embedded_array(nvs, nvp);
2701 break;
2702 case DATA_TYPE_STRING_ARRAY:
2703 nvpair_native_string_array(nvs, nvp);
2704 break;
2705 default:
2706 break;
2707 }
2708
2709 return (ret);
2710 }
2711
2712 static int
2713 nvs_native_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2714 {
2715 uint64_t nvp_sz = nvp->nvp_size;
2716
2717 switch (NVP_TYPE(nvp)) {
2718 case DATA_TYPE_NVLIST: {
2719 size_t nvsize = 0;
2720
2721 if (nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize) != 0)
2722 return (EINVAL);
2723
2724 nvp_sz += nvsize;
2725 break;
2726 }
2727 case DATA_TYPE_NVLIST_ARRAY: {
2728 size_t nvsize;
2729
2730 if (nvs_embedded_nvl_array(nvs, nvp, &nvsize) != 0)
2731 return (EINVAL);
2732
2733 nvp_sz += nvsize;
2734 break;
2735 }
2736 default:
2737 break;
2738 }
2739
2740 if (nvp_sz > INT32_MAX)
2741 return (EINVAL);
2742
2743 *size = nvp_sz;
2744
2745 return (0);
2746 }
2747
2748 static int
2749 nvs_native_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
2750 {
2751 switch (nvs->nvs_op) {
2752 case NVS_OP_ENCODE:
2753 return (nvs_native_nvp_op(nvs, nvp));
2754
2755 case NVS_OP_DECODE: {
2756 nvs_native_t *native = (nvs_native_t *)nvs->nvs_private;
2757 int32_t decode_len;
2758
2759 /* try to read the size value from the stream */
2760 if (native->n_curr + sizeof (int32_t) > native->n_end)
2761 return (EFAULT);
2762 bcopy(native->n_curr, &decode_len, sizeof (int32_t));
2763
2764 /* sanity check the size value */
2765 if (decode_len < 0 ||
2766 decode_len > native->n_end - native->n_curr)
2767 return (EFAULT);
2768
2769 *size = decode_len;
2770
2771 /*
2772 * If at the end of the stream then move the cursor
2773 * forward, otherwise nvpair_native_op() will read
2774 * the entire nvpair at the same cursor position.
2775 */
2776 if (*size == 0)
2777 native->n_curr += sizeof (int32_t);
2778 break;
2779 }
2780
2781 default:
2782 return (EINVAL);
2783 }
2784
2785 return (0);
2786 }
2787
2788 static const nvs_ops_t nvs_native_ops = {
2789 nvs_native_nvlist,
2790 nvs_native_nvpair,
2791 nvs_native_nvp_op,
2792 nvs_native_nvp_size,
2793 nvs_native_nvl_fini
2794 };
2795
2796 static int
2797 nvs_native(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
2798 {
2799 nvs_native_t native;
2800 int err;
2801
2802 nvs->nvs_ops = &nvs_native_ops;
2803
2804 if ((err = nvs_native_create(nvs, &native, buf + sizeof (nvs_header_t),
2805 *buflen - sizeof (nvs_header_t))) != 0)
2806 return (err);
2807
2808 err = nvs_operation(nvs, nvl, buflen);
2809
2810 nvs_native_destroy(nvs);
2811
2812 return (err);
2813 }
2814
2815 /*
2816 * XDR encoding functions
2817 *
2818 * An xdr packed nvlist is encoded as:
2819 *
2820 * - encoding methode and host endian (4 bytes)
2821 * - nvl_version (4 bytes)
2822 * - nvl_nvflag (4 bytes)
2823 *
2824 * - encoded nvpairs, the format of one xdr encoded nvpair is:
2825 * - encoded size of the nvpair (4 bytes)
2826 * - decoded size of the nvpair (4 bytes)
2827 * - name string, (4 + sizeof(NV_ALIGN4(string))
2828 * a string is coded as size (4 bytes) and data
2829 * - data type (4 bytes)
2830 * - number of elements in the nvpair (4 bytes)
2831 * - data
2832 *
2833 * - 2 zero's for end of the entire list (8 bytes)
2834 */
2835 static int
2836 nvs_xdr_create(nvstream_t *nvs, XDR *xdr, char *buf, size_t buflen)
2837 {
2838 /* xdr data must be 4 byte aligned */
2839 if ((ulong_t)buf % 4 != 0)
2840 return (EFAULT);
2841
2842 switch (nvs->nvs_op) {
2843 case NVS_OP_ENCODE:
2844 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_ENCODE);
2845 nvs->nvs_private = xdr;
2846 return (0);
2847 case NVS_OP_DECODE:
2848 xdrmem_create(xdr, buf, (uint_t)buflen, XDR_DECODE);
2849 nvs->nvs_private = xdr;
2850 return (0);
2851 case NVS_OP_GETSIZE:
2852 nvs->nvs_private = NULL;
2853 return (0);
2854 default:
2855 return (EINVAL);
2856 }
2857 }
2858
2859 static void
2860 nvs_xdr_destroy(nvstream_t *nvs)
2861 {
2862 switch (nvs->nvs_op) {
2863 case NVS_OP_ENCODE:
2864 case NVS_OP_DECODE:
2865 xdr_destroy((XDR *)nvs->nvs_private);
2866 break;
2867 default:
2868 break;
2869 }
2870 }
2871
2872 static int
2873 nvs_xdr_nvlist(nvstream_t *nvs, nvlist_t *nvl, size_t *size)
2874 {
2875 switch (nvs->nvs_op) {
2876 case NVS_OP_ENCODE:
2877 case NVS_OP_DECODE: {
2878 XDR *xdr = nvs->nvs_private;
2879
2880 if (!xdr_int(xdr, &nvl->nvl_version) ||
2881 !xdr_u_int(xdr, &nvl->nvl_nvflag))
2882 return (EFAULT);
2883 break;
2884 }
2885 case NVS_OP_GETSIZE: {
2886 /*
2887 * 2 * 4 for nvl_version + nvl_nvflag
2888 * and 8 for end of the entire list
2889 */
2890 *size += 2 * 4 + 8;
2891 break;
2892 }
2893 default:
2894 return (EINVAL);
2895 }
2896 return (0);
2897 }
2898
2899 static int
2900 nvs_xdr_nvl_fini(nvstream_t *nvs)
2901 {
2902 if (nvs->nvs_op == NVS_OP_ENCODE) {
2903 XDR *xdr = nvs->nvs_private;
2904 int zero = 0;
2905
2906 if (!xdr_int(xdr, &zero) || !xdr_int(xdr, &zero))
2907 return (EFAULT);
2908 }
2909
2910 return (0);
2911 }
2912
2913 /*
2914 * The format of xdr encoded nvpair is:
2915 * encode_size, decode_size, name string, data type, nelem, data
2916 */
2917 static int
2918 nvs_xdr_nvp_op(nvstream_t *nvs, nvpair_t *nvp)
2919 {
2920 data_type_t type;
2921 char *buf;
2922 char *buf_end = (char *)nvp + nvp->nvp_size;
2923 int value_sz;
2924 uint_t nelem, buflen;
2925 bool_t ret = FALSE;
2926 XDR *xdr = nvs->nvs_private;
2927
2928 ASSERT(xdr != NULL && nvp != NULL);
2929
2930 /* name string */
2931 if ((buf = NVP_NAME(nvp)) >= buf_end)
2932 return (EFAULT);
2933 buflen = buf_end - buf;
2934
2935 if (!xdr_string(xdr, &buf, buflen - 1))
2936 return (EFAULT);
2937 nvp->nvp_name_sz = strlen(buf) + 1;
2938
2939 /* type and nelem */
2940 if (!xdr_int(xdr, (int *)&nvp->nvp_type) ||
2941 !xdr_int(xdr, &nvp->nvp_value_elem))
2942 return (EFAULT);
2943
2944 type = NVP_TYPE(nvp);
2945 nelem = nvp->nvp_value_elem;
2946
2947 /*
2948 * Verify type and nelem and get the value size.
2949 * In case of data types DATA_TYPE_STRING and DATA_TYPE_STRING_ARRAY
2950 * is the size of the string(s) excluded.
2951 */
2952 if ((value_sz = i_get_value_size(type, NULL, nelem)) < 0)
2953 return (EFAULT);
2954
2955 /* if there is no data to extract then return */
2956 if (nelem == 0)
2957 return (0);
2958
2959 /* value */
2960 if ((buf = NVP_VALUE(nvp)) >= buf_end)
2961 return (EFAULT);
2962 buflen = buf_end - buf;
2963
2964 if (buflen < value_sz)
2965 return (EFAULT);
2966
2967 switch (type) {
2968 case DATA_TYPE_NVLIST:
2969 if (nvs_embedded(nvs, (void *)buf) == 0)
2970 return (0);
2971 break;
2972
2973 case DATA_TYPE_NVLIST_ARRAY:
2974 if (nvs_embedded_nvl_array(nvs, nvp, NULL) == 0)
2975 return (0);
2976 break;
2977
2978 case DATA_TYPE_BOOLEAN:
2979 ret = TRUE;
2980 break;
2981
2982 case DATA_TYPE_BYTE:
2983 case DATA_TYPE_INT8:
2984 case DATA_TYPE_UINT8:
2985 ret = xdr_char(xdr, buf);
2986 break;
2987
2988 case DATA_TYPE_INT16:
2989 ret = xdr_short(xdr, (void *)buf);
2990 break;
2991
2992 case DATA_TYPE_UINT16:
2993 ret = xdr_u_short(xdr, (void *)buf);
2994 break;
2995
2996 case DATA_TYPE_BOOLEAN_VALUE:
2997 case DATA_TYPE_INT32:
2998 ret = xdr_int(xdr, (void *)buf);
2999 break;
3000
3001 case DATA_TYPE_UINT32:
3002 ret = xdr_u_int(xdr, (void *)buf);
3003 break;
3004
3005 case DATA_TYPE_INT64:
3006 ret = xdr_longlong_t(xdr, (void *)buf);
3007 break;
3008
3009 case DATA_TYPE_UINT64:
3010 ret = xdr_u_longlong_t(xdr, (void *)buf);
3011 break;
3012
3013 case DATA_TYPE_HRTIME:
3014 /*
3015 * NOTE: must expose the definition of hrtime_t here
3016 */
3017 ret = xdr_longlong_t(xdr, (void *)buf);
3018 break;
3019 #if !defined(_KERNEL)
3020 case DATA_TYPE_DOUBLE:
3021 ret = xdr_double(xdr, (void *)buf);
3022 break;
3023 #endif
3024 case DATA_TYPE_STRING:
3025 ret = xdr_string(xdr, &buf, buflen - 1);
3026 break;
3027
3028 case DATA_TYPE_BYTE_ARRAY:
3029 ret = xdr_opaque(xdr, buf, nelem);
3030 break;
3031
3032 case DATA_TYPE_INT8_ARRAY:
3033 case DATA_TYPE_UINT8_ARRAY:
3034 ret = xdr_array(xdr, &buf, &nelem, buflen, sizeof (int8_t),
3035 (xdrproc_t)xdr_char);
3036 break;
3037
3038 case DATA_TYPE_INT16_ARRAY:
3039 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int16_t),
3040 sizeof (int16_t), (xdrproc_t)xdr_short);
3041 break;
3042
3043 case DATA_TYPE_UINT16_ARRAY:
3044 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint16_t),
3045 sizeof (uint16_t), (xdrproc_t)xdr_u_short);
3046 break;
3047
3048 case DATA_TYPE_BOOLEAN_ARRAY:
3049 case DATA_TYPE_INT32_ARRAY:
3050 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int32_t),
3051 sizeof (int32_t), (xdrproc_t)xdr_int);
3052 break;
3053
3054 case DATA_TYPE_UINT32_ARRAY:
3055 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint32_t),
3056 sizeof (uint32_t), (xdrproc_t)xdr_u_int);
3057 break;
3058
3059 case DATA_TYPE_INT64_ARRAY:
3060 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (int64_t),
3061 sizeof (int64_t), (xdrproc_t)xdr_longlong_t);
3062 break;
3063
3064 case DATA_TYPE_UINT64_ARRAY:
3065 ret = xdr_array(xdr, &buf, &nelem, buflen / sizeof (uint64_t),
3066 sizeof (uint64_t), (xdrproc_t)xdr_u_longlong_t);
3067 break;
3068
3069 case DATA_TYPE_STRING_ARRAY: {
3070 size_t len = nelem * sizeof (uint64_t);
3071 char **strp = (void *)buf;
3072 int i;
3073
3074 if (nvs->nvs_op == NVS_OP_DECODE)
3075 bzero(buf, len); /* don't trust packed data */
3076
3077 for (i = 0; i < nelem; i++) {
3078 if (buflen <= len)
3079 return (EFAULT);
3080
3081 buf += len;
3082 buflen -= len;
3083
3084 if (xdr_string(xdr, &buf, buflen - 1) != TRUE)
3085 return (EFAULT);
3086
3087 if (nvs->nvs_op == NVS_OP_DECODE)
3088 strp[i] = buf;
3089 len = strlen(buf) + 1;
3090 }
3091 ret = TRUE;
3092 break;
3093 }
3094 default:
3095 break;
3096 }
3097
3098 return (ret == TRUE ? 0 : EFAULT);
3099 }
3100
3101 static int
3102 nvs_xdr_nvp_size(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3103 {
3104 data_type_t type = NVP_TYPE(nvp);
3105 /*
3106 * encode_size + decode_size + name string size + data type + nelem
3107 * where name string size = 4 + NV_ALIGN4(strlen(NVP_NAME(nvp)))
3108 */
3109 uint64_t nvp_sz = 4 + 4 + 4 + NV_ALIGN4(strlen(NVP_NAME(nvp))) + 4 + 4;
3110
3111 switch (type) {
3112 case DATA_TYPE_BOOLEAN:
3113 break;
3114
3115 case DATA_TYPE_BOOLEAN_VALUE:
3116 case DATA_TYPE_BYTE:
3117 case DATA_TYPE_INT8:
3118 case DATA_TYPE_UINT8:
3119 case DATA_TYPE_INT16:
3120 case DATA_TYPE_UINT16:
3121 case DATA_TYPE_INT32:
3122 case DATA_TYPE_UINT32:
3123 nvp_sz += 4; /* 4 is the minimum xdr unit */
3124 break;
3125
3126 case DATA_TYPE_INT64:
3127 case DATA_TYPE_UINT64:
3128 case DATA_TYPE_HRTIME:
3129 #if !defined(_KERNEL)
3130 case DATA_TYPE_DOUBLE:
3131 #endif
3132 nvp_sz += 8;
3133 break;
3134
3135 case DATA_TYPE_STRING:
3136 nvp_sz += 4 + NV_ALIGN4(strlen((char *)NVP_VALUE(nvp)));
3137 break;
3138
3139 case DATA_TYPE_BYTE_ARRAY:
3140 nvp_sz += NV_ALIGN4(NVP_NELEM(nvp));
3141 break;
3142
3143 case DATA_TYPE_BOOLEAN_ARRAY:
3144 case DATA_TYPE_INT8_ARRAY:
3145 case DATA_TYPE_UINT8_ARRAY:
3146 case DATA_TYPE_INT16_ARRAY:
3147 case DATA_TYPE_UINT16_ARRAY:
3148 case DATA_TYPE_INT32_ARRAY:
3149 case DATA_TYPE_UINT32_ARRAY:
3150 nvp_sz += 4 + 4 * (uint64_t)NVP_NELEM(nvp);
3151 break;
3152
3153 case DATA_TYPE_INT64_ARRAY:
3154 case DATA_TYPE_UINT64_ARRAY:
3155 nvp_sz += 4 + 8 * (uint64_t)NVP_NELEM(nvp);
3156 break;
3157
3158 case DATA_TYPE_STRING_ARRAY: {
3159 int i;
3160 char **strs = (void *)NVP_VALUE(nvp);
3161
3162 for (i = 0; i < NVP_NELEM(nvp); i++)
3163 nvp_sz += 4 + NV_ALIGN4(strlen(strs[i]));
3164
3165 break;
3166 }
3167
3168 case DATA_TYPE_NVLIST:
3169 case DATA_TYPE_NVLIST_ARRAY: {
3170 size_t nvsize = 0;
3171 int old_nvs_op = nvs->nvs_op;
3172 int err;
3173
3174 nvs->nvs_op = NVS_OP_GETSIZE;
3175 if (type == DATA_TYPE_NVLIST)
3176 err = nvs_operation(nvs, EMBEDDED_NVL(nvp), &nvsize);
3177 else
3178 err = nvs_embedded_nvl_array(nvs, nvp, &nvsize);
3179 nvs->nvs_op = old_nvs_op;
3180
3181 if (err != 0)
3182 return (EINVAL);
3183
3184 nvp_sz += nvsize;
3185 break;
3186 }
3187
3188 default:
3189 return (EINVAL);
3190 }
3191
3192 if (nvp_sz > INT32_MAX)
3193 return (EINVAL);
3194
3195 *size = nvp_sz;
3196
3197 return (0);
3198 }
3199
3200
3201 /*
3202 * The NVS_XDR_MAX_LEN macro takes a packed xdr buffer of size x and estimates
3203 * the largest nvpair that could be encoded in the buffer.
3204 *
3205 * See comments above nvpair_xdr_op() for the format of xdr encoding.
3206 * The size of a xdr packed nvpair without any data is 5 words.
3207 *
3208 * Using the size of the data directly as an estimate would be ok
3209 * in all cases except one. If the data type is of DATA_TYPE_STRING_ARRAY
3210 * then the actual nvpair has space for an array of pointers to index
3211 * the strings. These pointers are not encoded into the packed xdr buffer.
3212 *
3213 * If the data is of type DATA_TYPE_STRING_ARRAY and all the strings are
3214 * of length 0, then each string is endcoded in xdr format as a single word.
3215 * Therefore when expanded to an nvpair there will be 2.25 word used for
3216 * each string. (a int64_t allocated for pointer usage, and a single char
3217 * for the null termination.)
3218 *
3219 * This is the calculation performed by the NVS_XDR_MAX_LEN macro.
3220 */
3221 #define NVS_XDR_HDR_LEN ((size_t)(5 * 4))
3222 #define NVS_XDR_DATA_LEN(y) (((size_t)(y) <= NVS_XDR_HDR_LEN) ? \
3223 0 : ((size_t)(y) - NVS_XDR_HDR_LEN))
3224 #define NVS_XDR_MAX_LEN(x) (NVP_SIZE_CALC(1, 0) + \
3225 (NVS_XDR_DATA_LEN(x) * 2) + \
3226 NV_ALIGN4((NVS_XDR_DATA_LEN(x) / 4)))
3227
3228 static int
3229 nvs_xdr_nvpair(nvstream_t *nvs, nvpair_t *nvp, size_t *size)
3230 {
3231 XDR *xdr = nvs->nvs_private;
3232 int32_t encode_len, decode_len;
3233
3234 switch (nvs->nvs_op) {
3235 case NVS_OP_ENCODE: {
3236 size_t nvsize;
3237
3238 if (nvs_xdr_nvp_size(nvs, nvp, &nvsize) != 0)
3239 return (EFAULT);
3240
3241 decode_len = nvp->nvp_size;
3242 encode_len = nvsize;
3243 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3244 return (EFAULT);
3245
3246 return (nvs_xdr_nvp_op(nvs, nvp));
3247 }
3248 case NVS_OP_DECODE: {
3249 struct xdr_bytesrec bytesrec;
3250
3251 /* get the encode and decode size */
3252 if (!xdr_int(xdr, &encode_len) || !xdr_int(xdr, &decode_len))
3253 return (EFAULT);
3254 *size = decode_len;
3255
3256 /* are we at the end of the stream? */
3257 if (*size == 0)
3258 return (0);
3259
3260 /* sanity check the size parameter */
3261 if (!xdr_control(xdr, XDR_GET_BYTES_AVAIL, &bytesrec))
3262 return (EFAULT);
3263
3264 if (*size > NVS_XDR_MAX_LEN(bytesrec.xc_num_avail))
3265 return (EFAULT);
3266 break;
3267 }
3268
3269 default:
3270 return (EINVAL);
3271 }
3272 return (0);
3273 }
3274
3275 static const struct nvs_ops nvs_xdr_ops = {
3276 nvs_xdr_nvlist,
3277 nvs_xdr_nvpair,
3278 nvs_xdr_nvp_op,
3279 nvs_xdr_nvp_size,
3280 nvs_xdr_nvl_fini
3281 };
3282
3283 static int
3284 nvs_xdr(nvstream_t *nvs, nvlist_t *nvl, char *buf, size_t *buflen)
3285 {
3286 XDR xdr;
3287 int err;
3288
3289 nvs->nvs_ops = &nvs_xdr_ops;
3290
3291 if ((err = nvs_xdr_create(nvs, &xdr, buf + sizeof (nvs_header_t),
3292 *buflen - sizeof (nvs_header_t))) != 0)
3293 return (err);
3294
3295 err = nvs_operation(nvs, nvl, buflen);
3296
3297 nvs_xdr_destroy(nvs);
3298
3299 return (err);
3300 }