Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,10 +20,11 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 

@@ -31,26 +32,27 @@
 
 #include "libm.h"
 #include <sys/isa_defs.h>
 
 #if defined(_BIG_ENDIAN)
-#define H0_WORD(x)      ((unsigned *) &x)[0]
-#define H3_WORD(x)      ((unsigned *) &x)[3]
-#define CHOPPED(x)      (long double) ((double) (x))
+#define H0_WORD(x)              ((unsigned *)&x)[0]
+#define H3_WORD(x)              ((unsigned *)&x)[3]
+#define CHOPPED(x)              (long double)((double)(x))
 #else
-#define H0_WORD(x)      ((((int *) &x)[2] << 16) | \
-                        (0x0000ffff & (((unsigned *) &x)[1] >> 15)))
-#define H3_WORD(x)      ((unsigned *) &x)[0]
-#define CHOPPED(x)      (long double) ((float) (x))
+#define H0_WORD(x)              ((((int *)&x)[2] << 16) | (0x0000ffff & \
+        (((unsigned *)&x)[1] >> 15)))
+#define H3_WORD(x)              ((unsigned *)&x)[0]
+#define CHOPPED(x)              (long double)((float)(x))
 #endif
 
 struct LDouble {
         long double h, l;
 };
 
-/* INDENT OFF */
-/* Primary interval GTi() */
+/*
+ * Primary interval GTi()
+ */
 static const long double P1[] = {
         +0.709086836199777919037185741507610124611513720557L,
         +4.45754781206489035827915969367354835667391606951e-0001L,
         +3.21049298735832382311662273882632210062918153852e-0002L,
         -5.71296796342106617651765245858289197369688864350e-0003L,

@@ -59,21 +61,23 @@
         -6.96496846144407741431207008527018441810175568949e-0005L,
         +1.52597046118984020814225409300131445070213882429e-0005L,
         +5.68521076168495673844711465407432189190681541547e-0007L,
         +3.30749673519634895220582062520286565610418952979e-0008L,
 };
+
 static const long double Q1[] = {
-        +1.0+0000L,
+        +1.0 + 0000L,
         +1.35806511721671070408570853537257079579490650668e+0000L,
         +2.97567810153429553405327140096063086994072952961e-0001L,
         -1.52956835982588571502954372821681851681118097870e-0001L,
         -2.88248519561420109768781615289082053597954521218e-0002L,
         +1.03475311719937405219789948456313936302378395955e-0002L,
         +4.12310203243891222368965360124391297374822742313e-0004L,
         -3.12653708152290867248931925120380729518332507388e-0004L,
         +2.36672170850409745237358105667757760527014332458e-0005L,
 };
+
 static const long double P2[] = {
         +0.428486815855585429730209907810650135255270600668084114L,
         +2.62768479103809762805691743305424077975230551176e-0001L,
         +3.81187532685392297608310837995193946591425896150e-0002L,
         +3.00063075891811043820666846129131255948527925381e-0003L,

@@ -82,10 +86,11 @@
         +3.43991105975492623982725644046473030098172692423e-0006L,
         +4.56902151569603272237014240794257659159045432895e-0006L,
         +2.13734755837595695602045100675540011352948958453e-0007L,
         +9.74123440547918230781670266967882492234877125358e-0009L,
 };
+
 static const long double Q2[] = {
         +1.0L,
         +9.18284118632506842664645516830761489700556179701e-0001L,
         -6.41430858837830766045202076965923776189154874947e-0003L,
         -1.24400885809771073213345747437964149775410921376e-0001L,

@@ -94,10 +99,11 @@
         -8.75812626987894695112722600697653425786166399105e-0004L,
         -1.23539972377769277995959339188431498626674835169e-0004L,
         +3.10019017590151598732360097849672925448587547746e-0005L,
         -1.77260223349332617658921874288026777465782364070e-0006L,
 };
+
 static const long double P3[] = {
         +0.3824094797345675048502747661075355640070439388902L,
         +3.42198093076618495415854906335908427159833377774e-0001L,
         +9.63828189500585568303961406863153237440702754858e-0002L,
         +8.76069421042696384852462044188520252156846768667e-0003L,

@@ -106,13 +112,13 @@
         +6.83783483674600322518695090864659381650125625216e-0005L,
         -1.10168269719261574708565935172719209272190828456e-0006L,
         +9.66243228508380420159234853278906717065629721016e-0007L,
         +2.31858885579177250541163820671121664974334728142e-0008L,
 };
+
 static const long double Q3[] = {
-        +1.0L,
-        +8.25479821168813634632437430090376252512793067339e-0001L,
+        +1.0L, +8.25479821168813634632437430090376252512793067339e-0001L,
         -1.62251363073937769739639623669295110346015576320e-0002L,
         -1.10621286905916732758745130629426559691187579852e-0001L,
         +3.48309693970985612644446415789230015515365291459e-0003L,
         +6.73553737487488333032431261131289672347043401328e-0003L,
         -7.63222008393372630162743587811004613050245128051e-0004L,

@@ -121,105 +127,111 @@
         -1.82096553862822346610109522015129585693354348322e-0006L,
 };
 
 static const long double
 #if defined(__x86)
-GZ1_h   =  0.938204627909682449364570100414084663498215377L,
-GZ1_l   =  4.518346116624229420055327632718530617227944106e-20L,
-GZ2_h   =  0.885603194410888700264725126309883762587560340L,
-GZ2_l   =  1.409077427270497062039119290776508217077297169e-20L,
-GZ3_h   =  0.936781411463652321613537060640553022494714241L,
-GZ3_l   =  5.309836440284827247897772963887219035221996813e-21L,
+        GZ1_h = 0.938204627909682449364570100414084663498215377L,
+        GZ1_l = 4.518346116624229420055327632718530617227944106e-20L,
+        GZ2_h = 0.885603194410888700264725126309883762587560340L,
+        GZ2_l = 1.409077427270497062039119290776508217077297169e-20L,
+        GZ3_h = 0.936781411463652321613537060640553022494714241L,
+        GZ3_l = 5.309836440284827247897772963887219035221996813e-21L,
 #else
-GZ1_h   =  0.938204627909682449409753561580326910854647031L,
-GZ1_l   =  4.684412162199460089642452580902345976446297037e-35L,
-GZ2_h   =  0.885603194410888700278815900582588658192658794L,
-GZ2_l   =  7.501529273890253789219935569758713534641074860e-35L,
-GZ3_h   =  0.936781411463652321618846897080837818855399840L,
-GZ3_l   =  3.088721217404784363585591914529361687403776917e-35L,
+        GZ1_h = 0.938204627909682449409753561580326910854647031L,
+        GZ1_l = 4.684412162199460089642452580902345976446297037e-35L,
+        GZ2_h = 0.885603194410888700278815900582588658192658794L,
+        GZ2_l = 7.501529273890253789219935569758713534641074860e-35L,
+        GZ3_h = 0.936781411463652321618846897080837818855399840L,
+        GZ3_l = 3.088721217404784363585591914529361687403776917e-35L,
 #endif
-TZ1     = -0.3517214357852935791015625L,
-TZ3     =  0.280530631542205810546875L;
-/* INDENT ON */
+        TZ1 = -0.3517214357852935791015625L,
+        TZ3 = 0.280530631542205810546875L;
+
 
-/* INDENT OFF */
 /*
  * compute gamma(y=yh+yl) for y in GT1 = [1.0000, 1.2845]
  * ...assume yh got 53 or 24(i386) significant bits
  */
-/* INDENT ON */
 static struct LDouble
-GT1(long double yh, long double yl) {
+GT1(long double yh, long double yl)
+{
         long double t3, t4, y;
         int i;
         struct LDouble r;
 
         y = yh + yl;
+
         for (t4 = Q1[8], t3 = P1[8] + y * P1[9], i = 7; i >= 0; i--) {
                 t4 = t4 * y + Q1[i];
                 t3 = t3 * y + P1[i];
         }
+
         t3 = (y * y) * t3 / t4;
         t3 += (TZ1 * yl + GZ1_l);
         t4 = TZ1 * yh;
         r.h = CHOPPED((t4 + GZ1_h + t3));
         t3 += (t4 - (r.h - GZ1_h));
         r.l = t3;
         return (r);
 }
 
-/* INDENT OFF */
+
 /*
  * compute gamma(y=yh+yl) for y in GT2 = [1.2844, 1.6374]
  * ...assume yh got 53 significant bits
  */
-/* INDENT ON */
 static struct LDouble
-GT2(long double yh, long double yl) {
+GT2(long double yh, long double yl)
+{
         long double t3, t4, y;
         int i;
         struct LDouble r;
 
         y = yh + yl;
+
         for (t4 = Q2[9], t3 = P2[9], i = 8; i >= 0; i--) {
                 t4 = t4 * y + Q2[i];
                 t3 = t3 * y + P2[i];
         }
+
         t3 = GZ2_l + (y * y) * t3 / t4;
         r.h = CHOPPED((GZ2_h + t3));
         r.l = t3 - (r.h - GZ2_h);
         return (r);
 }
 
-/* INDENT OFF */
+
 /*
  * compute gamma(y=yh+yl) for y in GT3 = [1.6373, 2.0000]
  * ...assume yh got 53 significant bits
  */
-/* INDENT ON */
 static struct LDouble
-GT3(long double yh, long double yl) {
+GT3(long double yh, long double yl)
+{
         long double t3, t4, y;
         int i;
         struct LDouble r;
 
         y = yh + yl;
+
         for (t4 = Q3[9], t3 = P3[9], i = 8; i >= 0; i--) {
                 t4 = t4 * y + Q3[i];
                 t3 = t3 * y + P3[i];
         }
+
         t3 = (y * y) * t3 / t4;
         t3 += (TZ3 * yl + GZ3_l);
         t4 = TZ3 * yh;
         r.h = CHOPPED((t4 + GZ3_h + t3));
         t3 += (t4 - (r.h - GZ3_h));
         r.l = t3;
         return (r);
 }
 
-/* INDENT OFF */
-/* Hex value of GP[0] shoule be 3FB55555 55555555 */
+/*
+ * Hex value of GP[0] shoule be 3FB55555 55555555
+ */
 static const long double GP[] = {
         +0.083333333333333333333333333333333172839171301L,
         -2.77777777777777777777777777492501211999399424104e-0003L,
         +7.93650793650793650793635650541638236350020883243e-0004L,
         -5.95238095238095238057299772679324503339241961704e-0004L,

@@ -248,29 +260,30 @@
         +0.222222222222222225593221101192317258554772129875L,   /* T3[3] */
         +0.181818181817850192105847183461778186703779262916L,   /* T3[4] */
         +0.153846169861348633757101285952333369222567014596L,   /* T3[5] */
         +0.133033462889260193922261296772841229985047571265L,   /* T3[6] */
 };
-
+/* BEGIN CSTYLED */
 static const long double c[] = {
-0.0L,
-1.0L,
-2.0L,
-0.5L,
-1.0e-4930L,                                                     /* tiny */
-4.18937683105468750000e-01L,                                    /* hln2pim1_h */
-8.50099203991780329736405617639861397473637783412817152e-07L,   /* hln2pim1_l */
-0.418938533204672741780329736405617639861397473637783412817152L, /* hln2pim1 */
-2.16608493865351192653179168701171875e-02L,                     /* ln2_32hi */
-5.96317165397058692545083025235937919875797669127130e-12L,      /* ln2_32lo */
-46.16624130844682903551758979206054839765267053289554989233L,   /* invln2_32 */
+        0.0L,
+        1.0L,
+        2.0L,
+        0.5L,
+        1.0e-4930L,                  /* tiny */
+        4.18937683105468750000e-01L, /* hln2pim1_h */
+        8.50099203991780329736405617639861397473637783412817152e-07L, /* hln2pim1_l */
+        0.418938533204672741780329736405617639861397473637783412817152L, /* hln2pim1 */
+        2.16608493865351192653179168701171875e-02L, /* ln2_32hi */
+        5.96317165397058692545083025235937919875797669127130e-12L, /* ln2_32lo */
+        46.16624130844682903551758979206054839765267053289554989233L, /* invln2_32 */
 #if defined(__x86)
-1.7555483429044629170023839037639845628291e+03L,                /* overflow */
+        1.7555483429044629170023839037639845628291e+03L, /* overflow */
 #else
-1.7555483429044629170038892160702032034177e+03L,                /* overflow */
+        1.7555483429044629170038892160702032034177e+03L, /* overflow */
 #endif
 };
+/* END CSTYLED */
 
 #define zero            c[0]
 #define one             c[1]
 #define two             c[2]
 #define half            c[3]

@@ -312,14 +325,14 @@
  *  Note
  *  (1) the leading entries are truncated to 24 binary point.
  *  (2) Remez error for T3(s) is bounded by 2**(-136.54)
  */
 static const long double T1[] = {
--1.000000000000000000000000000000000000000000e+00L,
+        -1.000000000000000000000000000000000000000000e+00L,
         +0.000000000000000000000000000000000000000000e+00L,
--3.068528175354003906250000000000000000000000e-01L,
--1.904654299957767878541823431924500011926579e-09L,
+        -3.068528175354003906250000000000000000000000e-01L,
+        -1.904654299957767878541823431924500011926579e-09L,
         +3.862943053245544433593750000000000000000000e-01L,
         +5.579533617547508924291635313615100141107647e-08L,
         +1.079441487789154052734375000000000000000000e+00L,
         +5.389068187551732136437452970422650211661470e-08L,
         +1.772588670253753662109375000000000000000000e+00L,

@@ -542,10 +555,11 @@
         +1.87416763411029990132999894995444645e+00L,
         +1.91520656139714729387261127029583086e+00L,
         +1.95714412417540026901832225162687149e+00L,
 #endif
 };
+
 static const long double S_trail[] = {
 #if defined(__x86)
         +0.0000000000000000000000000e+00L,
         +2.6327965667180882569382524e-20L,
         +8.3765863521895191129661899e-20L,

@@ -579,60 +593,59 @@
         +5.2352341619805098677422139e-20L,
         +5.2578463064010463732242363e-20L,
 #else
         +0.00000000000000000000000000000000000e+00L,
         +1.80506787420330954745573333054573786e-35L,
--9.37452029228042742195756741973083214e-35L,
--1.59696844729275877071290963023149997e-35L,
+        -9.37452029228042742195756741973083214e-35L,
+        -1.59696844729275877071290963023149997e-35L,
         +9.11249341012502297851168610167248666e-35L,
--6.50422820697854828723037477525938871e-35L,
--8.14846884452585113732569176748815532e-35L,
--5.06621457672180031337233074514290335e-35L,
--1.35983097468881697374987563824591912e-35L,
+        -6.50422820697854828723037477525938871e-35L,
+        -8.14846884452585113732569176748815532e-35L,
+        -5.06621457672180031337233074514290335e-35L,
+        -1.35983097468881697374987563824591912e-35L,
         +9.49742763556319647030771056643324660e-35L,
--3.28317052317699860161506596533391526e-36L,
--5.01723570938719041029018653045842895e-35L,
--2.39147479768910917162283430160264014e-35L,
--8.35057135763390881529889073794408385e-36L,
+        -3.28317052317699860161506596533391526e-36L,
+        -5.01723570938719041029018653045842895e-35L,
+        -2.39147479768910917162283430160264014e-35L,
+        -8.35057135763390881529889073794408385e-36L,
         +7.03675688907326504242173719067187644e-35L,
--5.18248485306464645753689301856695619e-35L,
+        -5.18248485306464645753689301856695619e-35L,
         +9.42224254862183206569211673639406488e-35L,
--3.96750082539886230916730613021641828e-35L,
+        -3.96750082539886230916730613021641828e-35L,
         +7.14352899156330061452327361509276724e-35L,
         +1.15987125286798512424651783410044433e-35L,
         +4.69693347835811549530973921320187447e-35L,
--3.38651317599500471079924198499981917e-35L,
--8.58731877429824706886865593510387445e-35L,
--9.60595154874935050318549936224606909e-35L,
+        -3.38651317599500471079924198499981917e-35L,
+        -8.58731877429824706886865593510387445e-35L,
+        -9.60595154874935050318549936224606909e-35L,
         +9.60973393212801278450755869714178581e-35L,
         +6.37839792144002843924476144978084855e-35L,
         +7.79243078569586424945646112516927770e-35L,
         +7.36133776758845652413193083663393220e-35L,
--6.47299514791334723003521457561217053e-35L,
+        -6.47299514791334723003521457561217053e-35L,
         +8.58747441795369869427879806229522962e-35L,
         +2.37181542282517483569165122830269098e-35L,
--3.02689168209611877300459737342190031e-37L,
+        -3.02689168209611877300459737342190031e-37L,
 #endif
 };
-/* INDENT ON */
 
-/* INDENT OFF */
+
 /*
  * return tgamma(x) scaled by 2**-m for 8<x<=171.62... using Stirling's formula
  *     log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
  *                = L1 + L2 + L3,
  */
-/* INDENT ON */
 static struct LDouble
-large_gam(long double x, int *m) {
+large_gam(long double x, int *m)
+{
         long double z, t1, t2, t3, z2, t5, w, y, u, r, v;
         long double t24 = 16777216.0L, p24 = 1.0L / 16777216.0L;
         int n2, j2, k, ix, j, i;
         struct LDouble zz;
         long double u2, ss_h, ss_l, r_h, w_h, w_l, t4;
 
-/* INDENT OFF */
+/* BEGIN CSTYLED */
 /*
  * compute ss = ss.h+ss.l = log(x)-1 (see tgamma_log.h for details)
  *
  *  log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y,  1<=y<2,
  *  j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and

@@ -652,83 +665,89 @@
  *                                    __________________________
  *          +    T3(s)-2s:           |__________________________|
  *                       -------------------------------------------
  *                          [leading] + [Trailing]
  */
-        /* INDENT ON */
+        /* END CSTYLED */
         ix = H0_WORD(x);
         n2 = (ix >> 16) - 0x3fff;       /* exponent of x, range:3-10 */
         y = scalbnl(x, -n2);    /* y = scale x to [1,2] */
         n2 += n2;               /* 2n */
         j = (ix >> 10) & 0x3f;  /* j */
-        z = 1.0078125L + (long double) j * 0.015625L;   /* z[j]=1+j/64+1/128 */
+        z = 1.0078125L + (long double)j * 0.015625L;    /* z[j]=1+j/64+1/128 */
         j2 = j + j;
         t1 = y + z;
         t2 = y - z;
         r = one / t1;
         u = r * t2;             /* u = (y-z)/(y+z) */
         t1 = CHOPPED(t1);
         t4 = T2[j2 + 1] + T1[n2 + 1];
         z2 = u * u;
         k = H0_WORD(u) & 0x7fffffff;
         t3 = T2[j2] + T1[n2];
+
         for (t5 = T3[6], i = 5; i >= 0; i--)
                 t5 = z2 * t5 + T3[i];
+
         if ((k >> 16) < 0x3fec) {       /* |u|<2**-19 */
                 t2 = t4 + u * (two + z2 * t5);
         } else {
                 t5 = t4 + (u * z2) * t5;
                 u2 = u + u;
-                v = (long double) ((int) (u2 * t24)) * p24;
+                v = (long double)((int)(u2 * t24)) * p24;
                 t2 = t5 + r * ((two * t2 - v * t1) - v * (y - (t1 - z)));
                 t3 += v;
         }
+
         ss_h = CHOPPED((t2 + t3));
         ss_l = t2 - (ss_h - t3);
-/* INDENT OFF */
+
 /*
  * compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2)))
  * where ss = log(x) - 1 in already in extra precision
  */
-        /* INDENT ON */
         z = one / x;
         r = x - half;
         r_h = CHOPPED((r));
         w_h = r_h * ss_h + hln2pim1_h;
         z2 = z * z;
         w = (r - r_h) * ss_h + r * ss_l;
         t1 = GP[19];
+
         for (i = 18; i > 0; i--)
                 t1 = z2 * t1 + GP[i];
+
         w += hln2pim1_l;
         w_l = z * (GP[0] + z2 * t1) + w;
-        k = (int) ((w_h + w_l) * invln2_32 + half);
+        k = (int)((w_h + w_l) * invln2_32 + half);
 
         /* compute the exponential of w_h+w_l */
 
         j = k & 0x1f;
         *m = k >> 5;
-        t3 = (long double) k;
+        t3 = (long double)k;
 
         /* perform w - k*ln2_32 (represent as w_h - w_l) */
         t1 = w_h - t3 * ln2_32hi;
         t2 = t3 * ln2_32lo;
         w = t2 - w_l;
         w_h = t1 - w;
         w_l = w - (t1 - w_h);
 
         /* compute exp(w_h-w_l) */
         z = w_h - w_l;
+
         for (t1 = Et[10], i = 9; i >= 0; i--)
                 t1 = z * t1 + Et[i];
+
         t3 = w_h - (w_l - (z * z) * t1);        /* t3 = expm1(z) */
         zz.l = S_trail[j] * (one + t3) + S[j] * t3;
         zz.h = S[j];
         return (zz);
 }
 
-/* INDENT OFF */
+
 /*
  * kpsin(x)= sin(pi*x)/pi
  *                 3        5        7        9        11                27
  *      = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x +ks[4]*x  + ... + ks[12]*x
  */

@@ -745,32 +764,34 @@
         +1.71653847451163495739958249695549313987973589884e-0010L,
         -3.34813314714560776122245796929054813458341420565e-0012L,
         +5.50724992262622033449487808306969135431411753047e-0014L,
         -7.67678132753577998601234393215802221104236979928e-0016L,
 };
-/* INDENT ON */
 
 /*
  * assume x is not tiny and positive
  */
 static struct LDouble
-kpsin(long double x) {
+kpsin(long double x)
+{
         long double z, t1, t2;
         struct LDouble xx;
         int i;
 
         z = x * x;
         xx.h = x;
+
         for (t2 = ks[12], i = 11; i > 0; i--)
                 t2 = z * t2 + ks[i];
+
         t1 = z * x;
         t2 *= z * t1;
         xx.l = t1 * ks[0] + t2;
         return (xx);
 }
 
-/* INDENT OFF */
+
 /*
  * kpcos(x)= cos(pi*x)/pi
  *                     2        4        6        8        10        12
  *      = 1/pi +kc[0]*x +kc[1]*x +kc[2]*x +kc[3]*x +kc[4]*x  +kc[5]*x
  *

@@ -797,19 +818,18 @@
  *  one_pi_l = .0000000000000A94FE13ABE8FA9A6EE06DB14ACC9E21C820FF28B1D5EF5DE2B
  */
 
 static const long double
 #if defined(__x86)
-one_pi_h = 0.3183098861481994390487670898437500L,       /* 31 bits */
-one_pi_l = 3.559123248900043690127872406891929148e-11L,
+        one_pi_h = 0.3183098861481994390487670898437500L,       /* 31 bits */
+        one_pi_l = 3.559123248900043690127872406891929148e-11L,
 #else
-one_pi_h = 0.31830988618379052468299050815403461456298828125L,
-one_pi_l = 1.46854777018590994109505931010230912897495334688117e-16L,
+        one_pi_h = 0.31830988618379052468299050815403461456298828125L,
+        one_pi_l = 1.46854777018590994109505931010230912897495334688117e-16L,
 #endif
-npi_2_h = -1.570796310901641845703125000000000L,
-npi_2_l = -1.5893254773528196691639751442098584699687552910e-8L;
-
+        npi_2_h = -1.570796310901641845703125000000000L,
+        npi_2_l = -1.5893254773528196691639751442098584699687552910e-8L;
 static const long double kc[] = {
         +1.29192819501249250731151312779548918765320728489e+0000L,
         -4.25027339979557573976029596929319207009444090366e-0001L,
         +7.49080661650990096109672954618317623888421628613e-0002L,
         -8.21458866111282287985539464173976555436050215120e-0003L,

@@ -818,70 +838,71 @@
         +1.36970959047832085796809745461530865597993680204e-0006L,
         -4.41780774262583514450246512727201806217271097336e-0008L,
         +1.14741409212381858820016567664488123478660705759e-0009L,
         -2.44261236114707374558437500654381006300502749632e-0011L,
 };
-/* INDENT ON */
 
 /*
  * assume x is not tiny and positive
  */
 static struct LDouble
-kpcos(long double x) {
+kpcos(long double x)
+{
         long double z, t1, t2, t3, t4, x4, x8;
         int i;
         struct LDouble xx;
 
         z = x * x;
         xx.h = one_pi_h;
-        t1 = (long double) ((float) x);
+        t1 = (long double)((float)x);
         x4 = z * z;
         t2 = npi_2_l * z + npi_2_h * (x + t1) * (x - t1);
+
         for (i = 8, t3 = kc[9]; i >= 0; i--)
                 t3 = z * t3 + kc[i];
+
         t3 = one_pi_l + x4 * t3;
         t4 = t1 * t1 * npi_2_h;
         x8 = t2 + t3;
         xx.l = x8 + t4;
         return (xx);
 }
 
-/* INDENT OFF */
 static const long double
-        /* 0.13486180573279076968979393577465291700642511139552429398233 */
+/* 0.13486180573279076968979393577465291700642511139552429398233 */
 #if defined(__x86)
-t0z1   =  0.1348618057327907696779385054997035808810L,
-t0z1_l =  1.1855430274949336125392717150257379614654e-20L,
+        t0z1 = 0.1348618057327907696779385054997035808810L,
+        t0z1_l = 1.1855430274949336125392717150257379614654e-20L,
 #else
-t0z1   =  0.1348618057327907696897939357746529168654L,
-t0z1_l =  1.4102088588676879418739164486159514674310e-37L,
+        t0z1 = 0.1348618057327907696897939357746529168654L,
+        t0z1_l = 1.4102088588676879418739164486159514674310e-37L,
 #endif
-        /* 0.46163214496836234126265954232572132846819620400644635129599 */
+/* 0.46163214496836234126265954232572132846819620400644635129599 */
 #if defined(__x86)
-t0z2   =  0.4616321449683623412538115843295472018326L,
-t0z2_l =  8.84795799617412663558532305039261747030640e-21L,
+        t0z2 = 0.4616321449683623412538115843295472018326L,
+        t0z2_l = 8.84795799617412663558532305039261747030640e-21L,
 #else
-t0z2   =  0.46163214496836234126265954232572132343318L,
-t0z2_l =  5.03501162329616380465302666480916271611101e-36L,
+        t0z2 = 0.46163214496836234126265954232572132343318L,
+        t0z2_l = 5.03501162329616380465302666480916271611101e-36L,
 #endif
-        /* 0.81977310110050060178786870492160699631174407846245179119586 */
+/* 0.81977310110050060178786870492160699631174407846245179119586 */
 #if defined(__x86)
-t0z3   =  0.81977310110050060178773362329351925836817L,
-t0z3_l =  1.350816280877379435658077052534574556256230e-22L
+        t0z3 = 0.81977310110050060178773362329351925836817L,
+        t0z3_l = 1.350816280877379435658077052534574556256230e-22L
 #else
-t0z3   =  0.8197731011005006017878687049216069516957449L,
-t0z3_l =  4.461599916947014419045492615933551648857380e-35L
+        t0z3 = 0.8197731011005006017878687049216069516957449L,
+        t0z3_l = 4.461599916947014419045492615933551648857380e-35L
 #endif
 ;
-/* INDENT ON */
 
 /*
  * gamma(x+i) for 0 <= x < 1
  */
 static struct LDouble
-gam_n(int i, long double x) {
-        struct LDouble rr = {0.0L, 0.0L}, yy;
+gam_n(int i, long double x)
+{
+        struct LDouble rr = { 0.0L, 0.0L }, yy;
         long double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;
 
         /* compute yy = gamma(x+1) */
         if (x > 0.2845L) {
                 if (x > 0.6374L) {

@@ -899,18 +920,19 @@
                 r1 = x - t0z1;
                 r2 = CHOPPED((r1 - t0z1_l));
                 t2 = r1 - r2;
                 yy = GT1(r2, t2 - t0z1_l);
         }
+
         /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
         switch (i) {
         case 0:         /* yy/x */
                 r1 = one / x;
                 xh = CHOPPED((x));      /* x is not tiny */
                 rr.h = CHOPPED(((yy.h + yy.l) * r1));
-                rr.l = r1 * (yy.h - rr.h * xh) - ((r1 * rr.h) * (x - xh) -
-                        r1 * yy.l);
+                rr.l = r1 * (yy.h - rr.h * xh) - ((r1 * rr.h) * (x - xh) - r1 *
+                    yy.l);
                 break;
         case 1:         /* yy */
                 rr.h = yy.h;
                 rr.l = yy.l;
                 break;

@@ -974,12 +996,15 @@
                 x5 = x + 5.0L;
                 z *= z2;
                 xh = CHOPPED(z);
                 zh += 3.0;
                 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
-                                                /* xh+xl=(x+1)*...*(x+4) */
-                /* wh+wl=(x+5)*yy */
+
+                /*
+                 * xh+xl=(x+1)*...*(x+4)
+                 * wh+wl=(x+5)*yy
+                 */
                 wh = CHOPPED((x5 * (yy.h + yy.l)));
                 wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
                 rr.h = wh * xh;
                 rr.l = z * wl + xl * wh;
                 break;

@@ -993,60 +1018,70 @@
                 z1 = x + 6.0L;
                 z2 = z - 2.0L;  /* z2 = (x+2)*(x+5) */
                 z *= z2;
                 xh = CHOPPED((z));
                 xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
-                                                /* xh+xl=(x+2)*...*(x+5) */
-                /* wh+wl=(x+1)(x+6)*yy */
+
+                /*
+                 * xh+xl=(x+2)*...*(x+5)
+                 * wh+wl=(x+1)(x+6)*yy
+                 */
                 z2 -= 4.0L;     /* z2 = (x+1)(x+6) */
                 wh = CHOPPED((z2 * (yy.h + yy.l)));
                 wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0L) * yy.h);
                 rr.h = wh * xh;
                 rr.l = z * wl + xl * wh;
         }
+
         return (rr);
 }
 
 long double
-tgammal(long double x) {
+tgammal(long double x)
+{
         struct LDouble ss, ww;
         long double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
         int i, j, m, ix, hx, xk;
         unsigned lx;
 
         hx = H0_WORD(x);
         lx = H3_WORD(x);
         ix = hx & 0x7fffffff;
         y = x;
-        if (ix < 0x3f8e0000) {  /* x < 2**-113 */
+
+        if (ix < 0x3f8e0000)            /* x < 2**-113 */
                 return (one / x);
-        }
+
         if (ix >= 0x7fff0000)
-                return (x * ((hx < 0)? zero : x));      /* Inf or NaN */
+                return (x * ((hx < 0) ? zero : x));     /* Inf or NaN */
+
         if (x > overflow)       /* overflow threshold */
                 return (x * 1.0e4932L);
+
         if (hx >= 0x40020000) { /* x >= 8 */
                 ww = large_gam(x, &m);
                 w = ww.h + ww.l;
                 return (scalbnl(w, m));
         }
 
         if (hx > 0) {           /* 0 < x < 8 */
-                i = (int) x;
-                ww = gam_n(i, x - (long double) i);
+                i = (int)x;
+                ww = gam_n(i, x - (long double)i);
                 return (ww.h + ww.l);
         }
-        /* INDENT OFF */
-        /* negative x */
+
+        /*
+         * negative x
+         */
+
         /*
          * compute xk =
          *      -2 ... x is an even int (-inf is considered an even #)
          *      -1 ... x is an odd int
          *      +0 ... x is not an int but chopped to an even int
          *      +1 ... x is not an int but chopped to an odd int
          */
-        /* INDENT ON */
         xk = 0;
 #if defined(__x86)
         if (ix >= 0x403e0000) { /* x >= 2**63 } */
                 if (ix >= 0x403f0000)
                         xk = -2;

@@ -1062,10 +1097,11 @@
         } else if (ix >= 0x3fff0000) {
                 w = -x;
                 t1 = floorl(w);
                 t2 = t1 * half;
                 t3 = floorl(t2);
+
                 if (t1 == w) {
                         if (t2 == t3)
                                 xk = -2;
                         else
                                 xk = -1;

@@ -1077,64 +1113,73 @@
                 }
         }
 
         if (xk < 0) {
                 /* return NaN. Ideally gamma(-n)= (-1)**(n+1) * inf */
-                return (x - x) / (x - x);
+                return ((x - x) / (x - x));
         }
 
         /*
          * negative underflow thresold -(1774+9ulp)
          */
         if (x < -1774.0000000000000000000000000000017749370L) {
                 z = tiny / x;
+
                 if (xk == 1)
                         z = -z;
+
                 return (z * tiny);
         }
 
-        /* INDENT OFF */
+
         /*
          * now compute gamma(x) by  -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x
          */
+
         /*
          * First compute ss = -sin(pi*y)/pi so that
          * gamma(x) = 1/(ss*gamma(1+y))
          */
-        /* INDENT ON */
         y = -x;
-        j = (int) y;
-        z = y - (long double) j;
-        if (z > 0.3183098861837906715377675L)
+        j = (int)y;
+        z = y - (long double)j;
+
+        if (z > 0.3183098861837906715377675L) {
                 if (z > 0.6816901138162093284622325L)
                         ss = kpsin(one - z);
                 else
                         ss = kpcos(0.5L - z);
-        else
+        } else {
                 ss = kpsin(z);
+        }
+
         if (xk == 0) {
                 ss.h = -ss.h;
                 ss.l = -ss.l;
         }
 
         /* Then compute ww = gamma(1+y), note that result scale to 2**m */
         m = 0;
+
         if (j < 7) {
                 ww = gam_n(j + 1, z);
         } else {
                 w = y + one;
+
                 if ((lx & 1) == 0) {    /* y+1 exact (note that y<184) */
                         ww = large_gam(w, &m);
                 } else {
                         t = w - one;
+
                         if (t == y) {   /* y+one exact */
                                 ww = large_gam(w, &m);
                         } else {        /* use y*gamma(y) */
                                 if (j == 7)
                                         ww = gam_n(j, z);
                                 else
                                         ww = large_gam(y, &m);
+
                                 t4 = ww.h + ww.l;
                                 t1 = CHOPPED((y));
                                 t2 = CHOPPED((t4));
                                                 /* t4 will not be too large */
                                 ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;