Print this page
11210 libm should be cstyle(1ONBLD) clean
*** 20,29 ****
--- 20,30 ----
*/
/*
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
*/
+
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
*** 31,56 ****
#include "libm.h"
#include <sys/isa_defs.h>
#if defined(_BIG_ENDIAN)
! #define H0_WORD(x) ((unsigned *) &x)[0]
! #define H3_WORD(x) ((unsigned *) &x)[3]
! #define CHOPPED(x) (long double) ((double) (x))
#else
! #define H0_WORD(x) ((((int *) &x)[2] << 16) | \
! (0x0000ffff & (((unsigned *) &x)[1] >> 15)))
! #define H3_WORD(x) ((unsigned *) &x)[0]
! #define CHOPPED(x) (long double) ((float) (x))
#endif
struct LDouble {
long double h, l;
};
! /* INDENT OFF */
! /* Primary interval GTi() */
static const long double P1[] = {
+0.709086836199777919037185741507610124611513720557L,
+4.45754781206489035827915969367354835667391606951e-0001L,
+3.21049298735832382311662273882632210062918153852e-0002L,
-5.71296796342106617651765245858289197369688864350e-0003L,
--- 32,58 ----
#include "libm.h"
#include <sys/isa_defs.h>
#if defined(_BIG_ENDIAN)
! #define H0_WORD(x) ((unsigned *)&x)[0]
! #define H3_WORD(x) ((unsigned *)&x)[3]
! #define CHOPPED(x) (long double)((double)(x))
#else
! #define H0_WORD(x) ((((int *)&x)[2] << 16) | (0x0000ffff & \
! (((unsigned *)&x)[1] >> 15)))
! #define H3_WORD(x) ((unsigned *)&x)[0]
! #define CHOPPED(x) (long double)((float)(x))
#endif
struct LDouble {
long double h, l;
};
! /*
! * Primary interval GTi()
! */
static const long double P1[] = {
+0.709086836199777919037185741507610124611513720557L,
+4.45754781206489035827915969367354835667391606951e-0001L,
+3.21049298735832382311662273882632210062918153852e-0002L,
-5.71296796342106617651765245858289197369688864350e-0003L,
*** 59,79 ****
-6.96496846144407741431207008527018441810175568949e-0005L,
+1.52597046118984020814225409300131445070213882429e-0005L,
+5.68521076168495673844711465407432189190681541547e-0007L,
+3.30749673519634895220582062520286565610418952979e-0008L,
};
static const long double Q1[] = {
! +1.0+0000L,
+1.35806511721671070408570853537257079579490650668e+0000L,
+2.97567810153429553405327140096063086994072952961e-0001L,
-1.52956835982588571502954372821681851681118097870e-0001L,
-2.88248519561420109768781615289082053597954521218e-0002L,
+1.03475311719937405219789948456313936302378395955e-0002L,
+4.12310203243891222368965360124391297374822742313e-0004L,
-3.12653708152290867248931925120380729518332507388e-0004L,
+2.36672170850409745237358105667757760527014332458e-0005L,
};
static const long double P2[] = {
+0.428486815855585429730209907810650135255270600668084114L,
+2.62768479103809762805691743305424077975230551176e-0001L,
+3.81187532685392297608310837995193946591425896150e-0002L,
+3.00063075891811043820666846129131255948527925381e-0003L,
--- 61,83 ----
-6.96496846144407741431207008527018441810175568949e-0005L,
+1.52597046118984020814225409300131445070213882429e-0005L,
+5.68521076168495673844711465407432189190681541547e-0007L,
+3.30749673519634895220582062520286565610418952979e-0008L,
};
+
static const long double Q1[] = {
! +1.0 + 0000L,
+1.35806511721671070408570853537257079579490650668e+0000L,
+2.97567810153429553405327140096063086994072952961e-0001L,
-1.52956835982588571502954372821681851681118097870e-0001L,
-2.88248519561420109768781615289082053597954521218e-0002L,
+1.03475311719937405219789948456313936302378395955e-0002L,
+4.12310203243891222368965360124391297374822742313e-0004L,
-3.12653708152290867248931925120380729518332507388e-0004L,
+2.36672170850409745237358105667757760527014332458e-0005L,
};
+
static const long double P2[] = {
+0.428486815855585429730209907810650135255270600668084114L,
+2.62768479103809762805691743305424077975230551176e-0001L,
+3.81187532685392297608310837995193946591425896150e-0002L,
+3.00063075891811043820666846129131255948527925381e-0003L,
*** 82,91 ****
--- 86,96 ----
+3.43991105975492623982725644046473030098172692423e-0006L,
+4.56902151569603272237014240794257659159045432895e-0006L,
+2.13734755837595695602045100675540011352948958453e-0007L,
+9.74123440547918230781670266967882492234877125358e-0009L,
};
+
static const long double Q2[] = {
+1.0L,
+9.18284118632506842664645516830761489700556179701e-0001L,
-6.41430858837830766045202076965923776189154874947e-0003L,
-1.24400885809771073213345747437964149775410921376e-0001L,
*** 94,103 ****
--- 99,109 ----
-8.75812626987894695112722600697653425786166399105e-0004L,
-1.23539972377769277995959339188431498626674835169e-0004L,
+3.10019017590151598732360097849672925448587547746e-0005L,
-1.77260223349332617658921874288026777465782364070e-0006L,
};
+
static const long double P3[] = {
+0.3824094797345675048502747661075355640070439388902L,
+3.42198093076618495415854906335908427159833377774e-0001L,
+9.63828189500585568303961406863153237440702754858e-0002L,
+8.76069421042696384852462044188520252156846768667e-0003L,
*** 106,118 ****
+6.83783483674600322518695090864659381650125625216e-0005L,
-1.10168269719261574708565935172719209272190828456e-0006L,
+9.66243228508380420159234853278906717065629721016e-0007L,
+2.31858885579177250541163820671121664974334728142e-0008L,
};
static const long double Q3[] = {
! +1.0L,
! +8.25479821168813634632437430090376252512793067339e-0001L,
-1.62251363073937769739639623669295110346015576320e-0002L,
-1.10621286905916732758745130629426559691187579852e-0001L,
+3.48309693970985612644446415789230015515365291459e-0003L,
+6.73553737487488333032431261131289672347043401328e-0003L,
-7.63222008393372630162743587811004613050245128051e-0004L,
--- 112,124 ----
+6.83783483674600322518695090864659381650125625216e-0005L,
-1.10168269719261574708565935172719209272190828456e-0006L,
+9.66243228508380420159234853278906717065629721016e-0007L,
+2.31858885579177250541163820671121664974334728142e-0008L,
};
+
static const long double Q3[] = {
! +1.0L, +8.25479821168813634632437430090376252512793067339e-0001L,
-1.62251363073937769739639623669295110346015576320e-0002L,
-1.10621286905916732758745130629426559691187579852e-0001L,
+3.48309693970985612644446415789230015515365291459e-0003L,
+6.73553737487488333032431261131289672347043401328e-0003L,
-7.63222008393372630162743587811004613050245128051e-0004L,
*** 121,225 ****
-1.82096553862822346610109522015129585693354348322e-0006L,
};
static const long double
#if defined(__x86)
! GZ1_h = 0.938204627909682449364570100414084663498215377L,
! GZ1_l = 4.518346116624229420055327632718530617227944106e-20L,
! GZ2_h = 0.885603194410888700264725126309883762587560340L,
! GZ2_l = 1.409077427270497062039119290776508217077297169e-20L,
! GZ3_h = 0.936781411463652321613537060640553022494714241L,
! GZ3_l = 5.309836440284827247897772963887219035221996813e-21L,
#else
! GZ1_h = 0.938204627909682449409753561580326910854647031L,
! GZ1_l = 4.684412162199460089642452580902345976446297037e-35L,
! GZ2_h = 0.885603194410888700278815900582588658192658794L,
! GZ2_l = 7.501529273890253789219935569758713534641074860e-35L,
! GZ3_h = 0.936781411463652321618846897080837818855399840L,
! GZ3_l = 3.088721217404784363585591914529361687403776917e-35L,
#endif
! TZ1 = -0.3517214357852935791015625L,
! TZ3 = 0.280530631542205810546875L;
! /* INDENT ON */
- /* INDENT OFF */
/*
* compute gamma(y=yh+yl) for y in GT1 = [1.0000, 1.2845]
* ...assume yh got 53 or 24(i386) significant bits
*/
- /* INDENT ON */
static struct LDouble
! GT1(long double yh, long double yl) {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
for (t4 = Q1[8], t3 = P1[8] + y * P1[9], i = 7; i >= 0; i--) {
t4 = t4 * y + Q1[i];
t3 = t3 * y + P1[i];
}
t3 = (y * y) * t3 / t4;
t3 += (TZ1 * yl + GZ1_l);
t4 = TZ1 * yh;
r.h = CHOPPED((t4 + GZ1_h + t3));
t3 += (t4 - (r.h - GZ1_h));
r.l = t3;
return (r);
}
! /* INDENT OFF */
/*
* compute gamma(y=yh+yl) for y in GT2 = [1.2844, 1.6374]
* ...assume yh got 53 significant bits
*/
- /* INDENT ON */
static struct LDouble
! GT2(long double yh, long double yl) {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
for (t4 = Q2[9], t3 = P2[9], i = 8; i >= 0; i--) {
t4 = t4 * y + Q2[i];
t3 = t3 * y + P2[i];
}
t3 = GZ2_l + (y * y) * t3 / t4;
r.h = CHOPPED((GZ2_h + t3));
r.l = t3 - (r.h - GZ2_h);
return (r);
}
! /* INDENT OFF */
/*
* compute gamma(y=yh+yl) for y in GT3 = [1.6373, 2.0000]
* ...assume yh got 53 significant bits
*/
- /* INDENT ON */
static struct LDouble
! GT3(long double yh, long double yl) {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
for (t4 = Q3[9], t3 = P3[9], i = 8; i >= 0; i--) {
t4 = t4 * y + Q3[i];
t3 = t3 * y + P3[i];
}
t3 = (y * y) * t3 / t4;
t3 += (TZ3 * yl + GZ3_l);
t4 = TZ3 * yh;
r.h = CHOPPED((t4 + GZ3_h + t3));
t3 += (t4 - (r.h - GZ3_h));
r.l = t3;
return (r);
}
! /* INDENT OFF */
! /* Hex value of GP[0] shoule be 3FB55555 55555555 */
static const long double GP[] = {
+0.083333333333333333333333333333333172839171301L,
-2.77777777777777777777777777492501211999399424104e-0003L,
+7.93650793650793650793635650541638236350020883243e-0004L,
-5.95238095238095238057299772679324503339241961704e-0004L,
--- 127,237 ----
-1.82096553862822346610109522015129585693354348322e-0006L,
};
static const long double
#if defined(__x86)
! GZ1_h = 0.938204627909682449364570100414084663498215377L,
! GZ1_l = 4.518346116624229420055327632718530617227944106e-20L,
! GZ2_h = 0.885603194410888700264725126309883762587560340L,
! GZ2_l = 1.409077427270497062039119290776508217077297169e-20L,
! GZ3_h = 0.936781411463652321613537060640553022494714241L,
! GZ3_l = 5.309836440284827247897772963887219035221996813e-21L,
#else
! GZ1_h = 0.938204627909682449409753561580326910854647031L,
! GZ1_l = 4.684412162199460089642452580902345976446297037e-35L,
! GZ2_h = 0.885603194410888700278815900582588658192658794L,
! GZ2_l = 7.501529273890253789219935569758713534641074860e-35L,
! GZ3_h = 0.936781411463652321618846897080837818855399840L,
! GZ3_l = 3.088721217404784363585591914529361687403776917e-35L,
#endif
! TZ1 = -0.3517214357852935791015625L,
! TZ3 = 0.280530631542205810546875L;
!
/*
* compute gamma(y=yh+yl) for y in GT1 = [1.0000, 1.2845]
* ...assume yh got 53 or 24(i386) significant bits
*/
static struct LDouble
! GT1(long double yh, long double yl)
! {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
+
for (t4 = Q1[8], t3 = P1[8] + y * P1[9], i = 7; i >= 0; i--) {
t4 = t4 * y + Q1[i];
t3 = t3 * y + P1[i];
}
+
t3 = (y * y) * t3 / t4;
t3 += (TZ1 * yl + GZ1_l);
t4 = TZ1 * yh;
r.h = CHOPPED((t4 + GZ1_h + t3));
t3 += (t4 - (r.h - GZ1_h));
r.l = t3;
return (r);
}
!
/*
* compute gamma(y=yh+yl) for y in GT2 = [1.2844, 1.6374]
* ...assume yh got 53 significant bits
*/
static struct LDouble
! GT2(long double yh, long double yl)
! {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
+
for (t4 = Q2[9], t3 = P2[9], i = 8; i >= 0; i--) {
t4 = t4 * y + Q2[i];
t3 = t3 * y + P2[i];
}
+
t3 = GZ2_l + (y * y) * t3 / t4;
r.h = CHOPPED((GZ2_h + t3));
r.l = t3 - (r.h - GZ2_h);
return (r);
}
!
/*
* compute gamma(y=yh+yl) for y in GT3 = [1.6373, 2.0000]
* ...assume yh got 53 significant bits
*/
static struct LDouble
! GT3(long double yh, long double yl)
! {
long double t3, t4, y;
int i;
struct LDouble r;
y = yh + yl;
+
for (t4 = Q3[9], t3 = P3[9], i = 8; i >= 0; i--) {
t4 = t4 * y + Q3[i];
t3 = t3 * y + P3[i];
}
+
t3 = (y * y) * t3 / t4;
t3 += (TZ3 * yl + GZ3_l);
t4 = TZ3 * yh;
r.h = CHOPPED((t4 + GZ3_h + t3));
t3 += (t4 - (r.h - GZ3_h));
r.l = t3;
return (r);
}
! /*
! * Hex value of GP[0] shoule be 3FB55555 55555555
! */
static const long double GP[] = {
+0.083333333333333333333333333333333172839171301L,
-2.77777777777777777777777777492501211999399424104e-0003L,
+7.93650793650793650793635650541638236350020883243e-0004L,
-5.95238095238095238057299772679324503339241961704e-0004L,
*** 248,276 ****
+0.222222222222222225593221101192317258554772129875L, /* T3[3] */
+0.181818181817850192105847183461778186703779262916L, /* T3[4] */
+0.153846169861348633757101285952333369222567014596L, /* T3[5] */
+0.133033462889260193922261296772841229985047571265L, /* T3[6] */
};
!
static const long double c[] = {
! 0.0L,
! 1.0L,
! 2.0L,
! 0.5L,
! 1.0e-4930L, /* tiny */
! 4.18937683105468750000e-01L, /* hln2pim1_h */
! 8.50099203991780329736405617639861397473637783412817152e-07L, /* hln2pim1_l */
! 0.418938533204672741780329736405617639861397473637783412817152L, /* hln2pim1 */
! 2.16608493865351192653179168701171875e-02L, /* ln2_32hi */
! 5.96317165397058692545083025235937919875797669127130e-12L, /* ln2_32lo */
! 46.16624130844682903551758979206054839765267053289554989233L, /* invln2_32 */
#if defined(__x86)
! 1.7555483429044629170023839037639845628291e+03L, /* overflow */
#else
! 1.7555483429044629170038892160702032034177e+03L, /* overflow */
#endif
};
#define zero c[0]
#define one c[1]
#define two c[2]
#define half c[3]
--- 260,289 ----
+0.222222222222222225593221101192317258554772129875L, /* T3[3] */
+0.181818181817850192105847183461778186703779262916L, /* T3[4] */
+0.153846169861348633757101285952333369222567014596L, /* T3[5] */
+0.133033462889260193922261296772841229985047571265L, /* T3[6] */
};
! /* BEGIN CSTYLED */
static const long double c[] = {
! 0.0L,
! 1.0L,
! 2.0L,
! 0.5L,
! 1.0e-4930L, /* tiny */
! 4.18937683105468750000e-01L, /* hln2pim1_h */
! 8.50099203991780329736405617639861397473637783412817152e-07L, /* hln2pim1_l */
! 0.418938533204672741780329736405617639861397473637783412817152L, /* hln2pim1 */
! 2.16608493865351192653179168701171875e-02L, /* ln2_32hi */
! 5.96317165397058692545083025235937919875797669127130e-12L, /* ln2_32lo */
! 46.16624130844682903551758979206054839765267053289554989233L, /* invln2_32 */
#if defined(__x86)
! 1.7555483429044629170023839037639845628291e+03L, /* overflow */
#else
! 1.7555483429044629170038892160702032034177e+03L, /* overflow */
#endif
};
+ /* END CSTYLED */
#define zero c[0]
#define one c[1]
#define two c[2]
#define half c[3]
*** 312,325 ****
* Note
* (1) the leading entries are truncated to 24 binary point.
* (2) Remez error for T3(s) is bounded by 2**(-136.54)
*/
static const long double T1[] = {
! -1.000000000000000000000000000000000000000000e+00L,
+0.000000000000000000000000000000000000000000e+00L,
! -3.068528175354003906250000000000000000000000e-01L,
! -1.904654299957767878541823431924500011926579e-09L,
+3.862943053245544433593750000000000000000000e-01L,
+5.579533617547508924291635313615100141107647e-08L,
+1.079441487789154052734375000000000000000000e+00L,
+5.389068187551732136437452970422650211661470e-08L,
+1.772588670253753662109375000000000000000000e+00L,
--- 325,338 ----
* Note
* (1) the leading entries are truncated to 24 binary point.
* (2) Remez error for T3(s) is bounded by 2**(-136.54)
*/
static const long double T1[] = {
! -1.000000000000000000000000000000000000000000e+00L,
+0.000000000000000000000000000000000000000000e+00L,
! -3.068528175354003906250000000000000000000000e-01L,
! -1.904654299957767878541823431924500011926579e-09L,
+3.862943053245544433593750000000000000000000e-01L,
+5.579533617547508924291635313615100141107647e-08L,
+1.079441487789154052734375000000000000000000e+00L,
+5.389068187551732136437452970422650211661470e-08L,
+1.772588670253753662109375000000000000000000e+00L,
*** 542,551 ****
--- 555,565 ----
+1.87416763411029990132999894995444645e+00L,
+1.91520656139714729387261127029583086e+00L,
+1.95714412417540026901832225162687149e+00L,
#endif
};
+
static const long double S_trail[] = {
#if defined(__x86)
+0.0000000000000000000000000e+00L,
+2.6327965667180882569382524e-20L,
+8.3765863521895191129661899e-20L,
*** 579,638 ****
+5.2352341619805098677422139e-20L,
+5.2578463064010463732242363e-20L,
#else
+0.00000000000000000000000000000000000e+00L,
+1.80506787420330954745573333054573786e-35L,
! -9.37452029228042742195756741973083214e-35L,
! -1.59696844729275877071290963023149997e-35L,
+9.11249341012502297851168610167248666e-35L,
! -6.50422820697854828723037477525938871e-35L,
! -8.14846884452585113732569176748815532e-35L,
! -5.06621457672180031337233074514290335e-35L,
! -1.35983097468881697374987563824591912e-35L,
+9.49742763556319647030771056643324660e-35L,
! -3.28317052317699860161506596533391526e-36L,
! -5.01723570938719041029018653045842895e-35L,
! -2.39147479768910917162283430160264014e-35L,
! -8.35057135763390881529889073794408385e-36L,
+7.03675688907326504242173719067187644e-35L,
! -5.18248485306464645753689301856695619e-35L,
+9.42224254862183206569211673639406488e-35L,
! -3.96750082539886230916730613021641828e-35L,
+7.14352899156330061452327361509276724e-35L,
+1.15987125286798512424651783410044433e-35L,
+4.69693347835811549530973921320187447e-35L,
! -3.38651317599500471079924198499981917e-35L,
! -8.58731877429824706886865593510387445e-35L,
! -9.60595154874935050318549936224606909e-35L,
+9.60973393212801278450755869714178581e-35L,
+6.37839792144002843924476144978084855e-35L,
+7.79243078569586424945646112516927770e-35L,
+7.36133776758845652413193083663393220e-35L,
! -6.47299514791334723003521457561217053e-35L,
+8.58747441795369869427879806229522962e-35L,
+2.37181542282517483569165122830269098e-35L,
! -3.02689168209611877300459737342190031e-37L,
#endif
};
- /* INDENT ON */
! /* INDENT OFF */
/*
* return tgamma(x) scaled by 2**-m for 8<x<=171.62... using Stirling's formula
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
* = L1 + L2 + L3,
*/
- /* INDENT ON */
static struct LDouble
! large_gam(long double x, int *m) {
long double z, t1, t2, t3, z2, t5, w, y, u, r, v;
long double t24 = 16777216.0L, p24 = 1.0L / 16777216.0L;
int n2, j2, k, ix, j, i;
struct LDouble zz;
long double u2, ss_h, ss_l, r_h, w_h, w_l, t4;
! /* INDENT OFF */
/*
* compute ss = ss.h+ss.l = log(x)-1 (see tgamma_log.h for details)
*
* log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y, 1<=y<2,
* j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and
--- 593,651 ----
+5.2352341619805098677422139e-20L,
+5.2578463064010463732242363e-20L,
#else
+0.00000000000000000000000000000000000e+00L,
+1.80506787420330954745573333054573786e-35L,
! -9.37452029228042742195756741973083214e-35L,
! -1.59696844729275877071290963023149997e-35L,
+9.11249341012502297851168610167248666e-35L,
! -6.50422820697854828723037477525938871e-35L,
! -8.14846884452585113732569176748815532e-35L,
! -5.06621457672180031337233074514290335e-35L,
! -1.35983097468881697374987563824591912e-35L,
+9.49742763556319647030771056643324660e-35L,
! -3.28317052317699860161506596533391526e-36L,
! -5.01723570938719041029018653045842895e-35L,
! -2.39147479768910917162283430160264014e-35L,
! -8.35057135763390881529889073794408385e-36L,
+7.03675688907326504242173719067187644e-35L,
! -5.18248485306464645753689301856695619e-35L,
+9.42224254862183206569211673639406488e-35L,
! -3.96750082539886230916730613021641828e-35L,
+7.14352899156330061452327361509276724e-35L,
+1.15987125286798512424651783410044433e-35L,
+4.69693347835811549530973921320187447e-35L,
! -3.38651317599500471079924198499981917e-35L,
! -8.58731877429824706886865593510387445e-35L,
! -9.60595154874935050318549936224606909e-35L,
+9.60973393212801278450755869714178581e-35L,
+6.37839792144002843924476144978084855e-35L,
+7.79243078569586424945646112516927770e-35L,
+7.36133776758845652413193083663393220e-35L,
! -6.47299514791334723003521457561217053e-35L,
+8.58747441795369869427879806229522962e-35L,
+2.37181542282517483569165122830269098e-35L,
! -3.02689168209611877300459737342190031e-37L,
#endif
};
!
/*
* return tgamma(x) scaled by 2**-m for 8<x<=171.62... using Stirling's formula
* log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
* = L1 + L2 + L3,
*/
static struct LDouble
! large_gam(long double x, int *m)
! {
long double z, t1, t2, t3, z2, t5, w, y, u, r, v;
long double t24 = 16777216.0L, p24 = 1.0L / 16777216.0L;
int n2, j2, k, ix, j, i;
struct LDouble zz;
long double u2, ss_h, ss_l, r_h, w_h, w_l, t4;
! /* BEGIN CSTYLED */
/*
* compute ss = ss.h+ss.l = log(x)-1 (see tgamma_log.h for details)
*
* log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y, 1<=y<2,
* j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and
*** 652,734 ****
* __________________________
* + T3(s)-2s: |__________________________|
* -------------------------------------------
* [leading] + [Trailing]
*/
! /* INDENT ON */
ix = H0_WORD(x);
n2 = (ix >> 16) - 0x3fff; /* exponent of x, range:3-10 */
y = scalbnl(x, -n2); /* y = scale x to [1,2] */
n2 += n2; /* 2n */
j = (ix >> 10) & 0x3f; /* j */
! z = 1.0078125L + (long double) j * 0.015625L; /* z[j]=1+j/64+1/128 */
j2 = j + j;
t1 = y + z;
t2 = y - z;
r = one / t1;
u = r * t2; /* u = (y-z)/(y+z) */
t1 = CHOPPED(t1);
t4 = T2[j2 + 1] + T1[n2 + 1];
z2 = u * u;
k = H0_WORD(u) & 0x7fffffff;
t3 = T2[j2] + T1[n2];
for (t5 = T3[6], i = 5; i >= 0; i--)
t5 = z2 * t5 + T3[i];
if ((k >> 16) < 0x3fec) { /* |u|<2**-19 */
t2 = t4 + u * (two + z2 * t5);
} else {
t5 = t4 + (u * z2) * t5;
u2 = u + u;
! v = (long double) ((int) (u2 * t24)) * p24;
t2 = t5 + r * ((two * t2 - v * t1) - v * (y - (t1 - z)));
t3 += v;
}
ss_h = CHOPPED((t2 + t3));
ss_l = t2 - (ss_h - t3);
! /* INDENT OFF */
/*
* compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2)))
* where ss = log(x) - 1 in already in extra precision
*/
- /* INDENT ON */
z = one / x;
r = x - half;
r_h = CHOPPED((r));
w_h = r_h * ss_h + hln2pim1_h;
z2 = z * z;
w = (r - r_h) * ss_h + r * ss_l;
t1 = GP[19];
for (i = 18; i > 0; i--)
t1 = z2 * t1 + GP[i];
w += hln2pim1_l;
w_l = z * (GP[0] + z2 * t1) + w;
! k = (int) ((w_h + w_l) * invln2_32 + half);
/* compute the exponential of w_h+w_l */
j = k & 0x1f;
*m = k >> 5;
! t3 = (long double) k;
/* perform w - k*ln2_32 (represent as w_h - w_l) */
t1 = w_h - t3 * ln2_32hi;
t2 = t3 * ln2_32lo;
w = t2 - w_l;
w_h = t1 - w;
w_l = w - (t1 - w_h);
/* compute exp(w_h-w_l) */
z = w_h - w_l;
for (t1 = Et[10], i = 9; i >= 0; i--)
t1 = z * t1 + Et[i];
t3 = w_h - (w_l - (z * z) * t1); /* t3 = expm1(z) */
zz.l = S_trail[j] * (one + t3) + S[j] * t3;
zz.h = S[j];
return (zz);
}
! /* INDENT OFF */
/*
* kpsin(x)= sin(pi*x)/pi
* 3 5 7 9 11 27
* = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x +ks[4]*x + ... + ks[12]*x
*/
--- 665,753 ----
* __________________________
* + T3(s)-2s: |__________________________|
* -------------------------------------------
* [leading] + [Trailing]
*/
! /* END CSTYLED */
ix = H0_WORD(x);
n2 = (ix >> 16) - 0x3fff; /* exponent of x, range:3-10 */
y = scalbnl(x, -n2); /* y = scale x to [1,2] */
n2 += n2; /* 2n */
j = (ix >> 10) & 0x3f; /* j */
! z = 1.0078125L + (long double)j * 0.015625L; /* z[j]=1+j/64+1/128 */
j2 = j + j;
t1 = y + z;
t2 = y - z;
r = one / t1;
u = r * t2; /* u = (y-z)/(y+z) */
t1 = CHOPPED(t1);
t4 = T2[j2 + 1] + T1[n2 + 1];
z2 = u * u;
k = H0_WORD(u) & 0x7fffffff;
t3 = T2[j2] + T1[n2];
+
for (t5 = T3[6], i = 5; i >= 0; i--)
t5 = z2 * t5 + T3[i];
+
if ((k >> 16) < 0x3fec) { /* |u|<2**-19 */
t2 = t4 + u * (two + z2 * t5);
} else {
t5 = t4 + (u * z2) * t5;
u2 = u + u;
! v = (long double)((int)(u2 * t24)) * p24;
t2 = t5 + r * ((two * t2 - v * t1) - v * (y - (t1 - z)));
t3 += v;
}
+
ss_h = CHOPPED((t2 + t3));
ss_l = t2 - (ss_h - t3);
!
/*
* compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2)))
* where ss = log(x) - 1 in already in extra precision
*/
z = one / x;
r = x - half;
r_h = CHOPPED((r));
w_h = r_h * ss_h + hln2pim1_h;
z2 = z * z;
w = (r - r_h) * ss_h + r * ss_l;
t1 = GP[19];
+
for (i = 18; i > 0; i--)
t1 = z2 * t1 + GP[i];
+
w += hln2pim1_l;
w_l = z * (GP[0] + z2 * t1) + w;
! k = (int)((w_h + w_l) * invln2_32 + half);
/* compute the exponential of w_h+w_l */
j = k & 0x1f;
*m = k >> 5;
! t3 = (long double)k;
/* perform w - k*ln2_32 (represent as w_h - w_l) */
t1 = w_h - t3 * ln2_32hi;
t2 = t3 * ln2_32lo;
w = t2 - w_l;
w_h = t1 - w;
w_l = w - (t1 - w_h);
/* compute exp(w_h-w_l) */
z = w_h - w_l;
+
for (t1 = Et[10], i = 9; i >= 0; i--)
t1 = z * t1 + Et[i];
+
t3 = w_h - (w_l - (z * z) * t1); /* t3 = expm1(z) */
zz.l = S_trail[j] * (one + t3) + S[j] * t3;
zz.h = S[j];
return (zz);
}
!
/*
* kpsin(x)= sin(pi*x)/pi
* 3 5 7 9 11 27
* = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x +ks[4]*x + ... + ks[12]*x
*/
*** 745,776 ****
+1.71653847451163495739958249695549313987973589884e-0010L,
-3.34813314714560776122245796929054813458341420565e-0012L,
+5.50724992262622033449487808306969135431411753047e-0014L,
-7.67678132753577998601234393215802221104236979928e-0016L,
};
- /* INDENT ON */
/*
* assume x is not tiny and positive
*/
static struct LDouble
! kpsin(long double x) {
long double z, t1, t2;
struct LDouble xx;
int i;
z = x * x;
xx.h = x;
for (t2 = ks[12], i = 11; i > 0; i--)
t2 = z * t2 + ks[i];
t1 = z * x;
t2 *= z * t1;
xx.l = t1 * ks[0] + t2;
return (xx);
}
! /* INDENT OFF */
/*
* kpcos(x)= cos(pi*x)/pi
* 2 4 6 8 10 12
* = 1/pi +kc[0]*x +kc[1]*x +kc[2]*x +kc[3]*x +kc[4]*x +kc[5]*x
*
--- 764,797 ----
+1.71653847451163495739958249695549313987973589884e-0010L,
-3.34813314714560776122245796929054813458341420565e-0012L,
+5.50724992262622033449487808306969135431411753047e-0014L,
-7.67678132753577998601234393215802221104236979928e-0016L,
};
/*
* assume x is not tiny and positive
*/
static struct LDouble
! kpsin(long double x)
! {
long double z, t1, t2;
struct LDouble xx;
int i;
z = x * x;
xx.h = x;
+
for (t2 = ks[12], i = 11; i > 0; i--)
t2 = z * t2 + ks[i];
+
t1 = z * x;
t2 *= z * t1;
xx.l = t1 * ks[0] + t2;
return (xx);
}
!
/*
* kpcos(x)= cos(pi*x)/pi
* 2 4 6 8 10 12
* = 1/pi +kc[0]*x +kc[1]*x +kc[2]*x +kc[3]*x +kc[4]*x +kc[5]*x
*
*** 797,815 ****
* one_pi_l = .0000000000000A94FE13ABE8FA9A6EE06DB14ACC9E21C820FF28B1D5EF5DE2B
*/
static const long double
#if defined(__x86)
! one_pi_h = 0.3183098861481994390487670898437500L, /* 31 bits */
! one_pi_l = 3.559123248900043690127872406891929148e-11L,
#else
! one_pi_h = 0.31830988618379052468299050815403461456298828125L,
! one_pi_l = 1.46854777018590994109505931010230912897495334688117e-16L,
#endif
! npi_2_h = -1.570796310901641845703125000000000L,
! npi_2_l = -1.5893254773528196691639751442098584699687552910e-8L;
!
static const long double kc[] = {
+1.29192819501249250731151312779548918765320728489e+0000L,
-4.25027339979557573976029596929319207009444090366e-0001L,
+7.49080661650990096109672954618317623888421628613e-0002L,
-8.21458866111282287985539464173976555436050215120e-0003L,
--- 818,835 ----
* one_pi_l = .0000000000000A94FE13ABE8FA9A6EE06DB14ACC9E21C820FF28B1D5EF5DE2B
*/
static const long double
#if defined(__x86)
! one_pi_h = 0.3183098861481994390487670898437500L, /* 31 bits */
! one_pi_l = 3.559123248900043690127872406891929148e-11L,
#else
! one_pi_h = 0.31830988618379052468299050815403461456298828125L,
! one_pi_l = 1.46854777018590994109505931010230912897495334688117e-16L,
#endif
! npi_2_h = -1.570796310901641845703125000000000L,
! npi_2_l = -1.5893254773528196691639751442098584699687552910e-8L;
static const long double kc[] = {
+1.29192819501249250731151312779548918765320728489e+0000L,
-4.25027339979557573976029596929319207009444090366e-0001L,
+7.49080661650990096109672954618317623888421628613e-0002L,
-8.21458866111282287985539464173976555436050215120e-0003L,
*** 818,887 ****
+1.36970959047832085796809745461530865597993680204e-0006L,
-4.41780774262583514450246512727201806217271097336e-0008L,
+1.14741409212381858820016567664488123478660705759e-0009L,
-2.44261236114707374558437500654381006300502749632e-0011L,
};
- /* INDENT ON */
/*
* assume x is not tiny and positive
*/
static struct LDouble
! kpcos(long double x) {
long double z, t1, t2, t3, t4, x4, x8;
int i;
struct LDouble xx;
z = x * x;
xx.h = one_pi_h;
! t1 = (long double) ((float) x);
x4 = z * z;
t2 = npi_2_l * z + npi_2_h * (x + t1) * (x - t1);
for (i = 8, t3 = kc[9]; i >= 0; i--)
t3 = z * t3 + kc[i];
t3 = one_pi_l + x4 * t3;
t4 = t1 * t1 * npi_2_h;
x8 = t2 + t3;
xx.l = x8 + t4;
return (xx);
}
- /* INDENT OFF */
static const long double
! /* 0.13486180573279076968979393577465291700642511139552429398233 */
#if defined(__x86)
! t0z1 = 0.1348618057327907696779385054997035808810L,
! t0z1_l = 1.1855430274949336125392717150257379614654e-20L,
#else
! t0z1 = 0.1348618057327907696897939357746529168654L,
! t0z1_l = 1.4102088588676879418739164486159514674310e-37L,
#endif
! /* 0.46163214496836234126265954232572132846819620400644635129599 */
#if defined(__x86)
! t0z2 = 0.4616321449683623412538115843295472018326L,
! t0z2_l = 8.84795799617412663558532305039261747030640e-21L,
#else
! t0z2 = 0.46163214496836234126265954232572132343318L,
! t0z2_l = 5.03501162329616380465302666480916271611101e-36L,
#endif
! /* 0.81977310110050060178786870492160699631174407846245179119586 */
#if defined(__x86)
! t0z3 = 0.81977310110050060178773362329351925836817L,
! t0z3_l = 1.350816280877379435658077052534574556256230e-22L
#else
! t0z3 = 0.8197731011005006017878687049216069516957449L,
! t0z3_l = 4.461599916947014419045492615933551648857380e-35L
#endif
;
- /* INDENT ON */
/*
* gamma(x+i) for 0 <= x < 1
*/
static struct LDouble
! gam_n(int i, long double x) {
! struct LDouble rr = {0.0L, 0.0L}, yy;
long double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;
/* compute yy = gamma(x+1) */
if (x > 0.2845L) {
if (x > 0.6374L) {
--- 838,908 ----
+1.36970959047832085796809745461530865597993680204e-0006L,
-4.41780774262583514450246512727201806217271097336e-0008L,
+1.14741409212381858820016567664488123478660705759e-0009L,
-2.44261236114707374558437500654381006300502749632e-0011L,
};
/*
* assume x is not tiny and positive
*/
static struct LDouble
! kpcos(long double x)
! {
long double z, t1, t2, t3, t4, x4, x8;
int i;
struct LDouble xx;
z = x * x;
xx.h = one_pi_h;
! t1 = (long double)((float)x);
x4 = z * z;
t2 = npi_2_l * z + npi_2_h * (x + t1) * (x - t1);
+
for (i = 8, t3 = kc[9]; i >= 0; i--)
t3 = z * t3 + kc[i];
+
t3 = one_pi_l + x4 * t3;
t4 = t1 * t1 * npi_2_h;
x8 = t2 + t3;
xx.l = x8 + t4;
return (xx);
}
static const long double
! /* 0.13486180573279076968979393577465291700642511139552429398233 */
#if defined(__x86)
! t0z1 = 0.1348618057327907696779385054997035808810L,
! t0z1_l = 1.1855430274949336125392717150257379614654e-20L,
#else
! t0z1 = 0.1348618057327907696897939357746529168654L,
! t0z1_l = 1.4102088588676879418739164486159514674310e-37L,
#endif
! /* 0.46163214496836234126265954232572132846819620400644635129599 */
#if defined(__x86)
! t0z2 = 0.4616321449683623412538115843295472018326L,
! t0z2_l = 8.84795799617412663558532305039261747030640e-21L,
#else
! t0z2 = 0.46163214496836234126265954232572132343318L,
! t0z2_l = 5.03501162329616380465302666480916271611101e-36L,
#endif
! /* 0.81977310110050060178786870492160699631174407846245179119586 */
#if defined(__x86)
! t0z3 = 0.81977310110050060178773362329351925836817L,
! t0z3_l = 1.350816280877379435658077052534574556256230e-22L
#else
! t0z3 = 0.8197731011005006017878687049216069516957449L,
! t0z3_l = 4.461599916947014419045492615933551648857380e-35L
#endif
;
/*
* gamma(x+i) for 0 <= x < 1
*/
static struct LDouble
! gam_n(int i, long double x)
! {
! struct LDouble rr = { 0.0L, 0.0L }, yy;
long double r1, r2, t2, z, xh, xl, yh, yl, zh, z1, z2, zl, x5, wh, wl;
/* compute yy = gamma(x+1) */
if (x > 0.2845L) {
if (x > 0.6374L) {
*** 899,916 ****
r1 = x - t0z1;
r2 = CHOPPED((r1 - t0z1_l));
t2 = r1 - r2;
yy = GT1(r2, t2 - t0z1_l);
}
/* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
switch (i) {
case 0: /* yy/x */
r1 = one / x;
xh = CHOPPED((x)); /* x is not tiny */
rr.h = CHOPPED(((yy.h + yy.l) * r1));
! rr.l = r1 * (yy.h - rr.h * xh) - ((r1 * rr.h) * (x - xh) -
! r1 * yy.l);
break;
case 1: /* yy */
rr.h = yy.h;
rr.l = yy.l;
break;
--- 920,938 ----
r1 = x - t0z1;
r2 = CHOPPED((r1 - t0z1_l));
t2 = r1 - r2;
yy = GT1(r2, t2 - t0z1_l);
}
+
/* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
switch (i) {
case 0: /* yy/x */
r1 = one / x;
xh = CHOPPED((x)); /* x is not tiny */
rr.h = CHOPPED(((yy.h + yy.l) * r1));
! rr.l = r1 * (yy.h - rr.h * xh) - ((r1 * rr.h) * (x - xh) - r1 *
! yy.l);
break;
case 1: /* yy */
rr.h = yy.h;
rr.l = yy.l;
break;
*** 974,985 ****
x5 = x + 5.0L;
z *= z2;
xh = CHOPPED(z);
zh += 3.0;
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
! /* xh+xl=(x+1)*...*(x+4) */
! /* wh+wl=(x+5)*yy */
wh = CHOPPED((x5 * (yy.h + yy.l)));
wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
break;
--- 996,1010 ----
x5 = x + 5.0L;
z *= z2;
xh = CHOPPED(z);
zh += 3.0;
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
!
! /*
! * xh+xl=(x+1)*...*(x+4)
! * wh+wl=(x+5)*yy
! */
wh = CHOPPED((x5 * (yy.h + yy.l)));
wl = (z1 * yy.h + x5 * yy.l) - (wh - zh * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
break;
*** 993,1052 ****
z1 = x + 6.0L;
z2 = z - 2.0L; /* z2 = (x+2)*(x+5) */
z *= z2;
xh = CHOPPED((z));
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
! /* xh+xl=(x+2)*...*(x+5) */
! /* wh+wl=(x+1)(x+6)*yy */
z2 -= 4.0L; /* z2 = (x+1)(x+6) */
wh = CHOPPED((z2 * (yy.h + yy.l)));
wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0L) * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
}
return (rr);
}
long double
! tgammal(long double x) {
struct LDouble ss, ww;
long double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
int i, j, m, ix, hx, xk;
unsigned lx;
hx = H0_WORD(x);
lx = H3_WORD(x);
ix = hx & 0x7fffffff;
y = x;
! if (ix < 0x3f8e0000) { /* x < 2**-113 */
return (one / x);
! }
if (ix >= 0x7fff0000)
! return (x * ((hx < 0)? zero : x)); /* Inf or NaN */
if (x > overflow) /* overflow threshold */
return (x * 1.0e4932L);
if (hx >= 0x40020000) { /* x >= 8 */
ww = large_gam(x, &m);
w = ww.h + ww.l;
return (scalbnl(w, m));
}
if (hx > 0) { /* 0 < x < 8 */
! i = (int) x;
! ww = gam_n(i, x - (long double) i);
return (ww.h + ww.l);
}
! /* INDENT OFF */
! /* negative x */
/*
* compute xk =
* -2 ... x is an even int (-inf is considered an even #)
* -1 ... x is an odd int
* +0 ... x is not an int but chopped to an even int
* +1 ... x is not an int but chopped to an odd int
*/
- /* INDENT ON */
xk = 0;
#if defined(__x86)
if (ix >= 0x403e0000) { /* x >= 2**63 } */
if (ix >= 0x403f0000)
xk = -2;
--- 1018,1087 ----
z1 = x + 6.0L;
z2 = z - 2.0L; /* z2 = (x+2)*(x+5) */
z *= z2;
xh = CHOPPED((z));
xl = yl * (z2 + yh) - (xh - yh * (yh - 2.0L));
!
! /*
! * xh+xl=(x+2)*...*(x+5)
! * wh+wl=(x+1)(x+6)*yy
! */
z2 -= 4.0L; /* z2 = (x+1)(x+6) */
wh = CHOPPED((z2 * (yy.h + yy.l)));
wl = (z2 * yy.l + yl * yy.h) - (wh - (yh - 6.0L) * yy.h);
rr.h = wh * xh;
rr.l = z * wl + xl * wh;
}
+
return (rr);
}
long double
! tgammal(long double x)
! {
struct LDouble ss, ww;
long double t, t1, t2, t3, t4, t5, w, y, z, z1, z2, z3, z5;
int i, j, m, ix, hx, xk;
unsigned lx;
hx = H0_WORD(x);
lx = H3_WORD(x);
ix = hx & 0x7fffffff;
y = x;
!
! if (ix < 0x3f8e0000) /* x < 2**-113 */
return (one / x);
!
if (ix >= 0x7fff0000)
! return (x * ((hx < 0) ? zero : x)); /* Inf or NaN */
!
if (x > overflow) /* overflow threshold */
return (x * 1.0e4932L);
+
if (hx >= 0x40020000) { /* x >= 8 */
ww = large_gam(x, &m);
w = ww.h + ww.l;
return (scalbnl(w, m));
}
if (hx > 0) { /* 0 < x < 8 */
! i = (int)x;
! ww = gam_n(i, x - (long double)i);
return (ww.h + ww.l);
}
!
! /*
! * negative x
! */
!
/*
* compute xk =
* -2 ... x is an even int (-inf is considered an even #)
* -1 ... x is an odd int
* +0 ... x is not an int but chopped to an even int
* +1 ... x is not an int but chopped to an odd int
*/
xk = 0;
#if defined(__x86)
if (ix >= 0x403e0000) { /* x >= 2**63 } */
if (ix >= 0x403f0000)
xk = -2;
*** 1062,1071 ****
--- 1097,1107 ----
} else if (ix >= 0x3fff0000) {
w = -x;
t1 = floorl(w);
t2 = t1 * half;
t3 = floorl(t2);
+
if (t1 == w) {
if (t2 == t3)
xk = -2;
else
xk = -1;
*** 1077,1140 ****
}
}
if (xk < 0) {
/* return NaN. Ideally gamma(-n)= (-1)**(n+1) * inf */
! return (x - x) / (x - x);
}
/*
* negative underflow thresold -(1774+9ulp)
*/
if (x < -1774.0000000000000000000000000000017749370L) {
z = tiny / x;
if (xk == 1)
z = -z;
return (z * tiny);
}
! /* INDENT OFF */
/*
* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x
*/
/*
* First compute ss = -sin(pi*y)/pi so that
* gamma(x) = 1/(ss*gamma(1+y))
*/
- /* INDENT ON */
y = -x;
! j = (int) y;
! z = y - (long double) j;
! if (z > 0.3183098861837906715377675L)
if (z > 0.6816901138162093284622325L)
ss = kpsin(one - z);
else
ss = kpcos(0.5L - z);
! else
ss = kpsin(z);
if (xk == 0) {
ss.h = -ss.h;
ss.l = -ss.l;
}
/* Then compute ww = gamma(1+y), note that result scale to 2**m */
m = 0;
if (j < 7) {
ww = gam_n(j + 1, z);
} else {
w = y + one;
if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */
ww = large_gam(w, &m);
} else {
t = w - one;
if (t == y) { /* y+one exact */
ww = large_gam(w, &m);
} else { /* use y*gamma(y) */
if (j == 7)
ww = gam_n(j, z);
else
ww = large_gam(y, &m);
t4 = ww.h + ww.l;
t1 = CHOPPED((y));
t2 = CHOPPED((t4));
/* t4 will not be too large */
ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;
--- 1113,1185 ----
}
}
if (xk < 0) {
/* return NaN. Ideally gamma(-n)= (-1)**(n+1) * inf */
! return ((x - x) / (x - x));
}
/*
* negative underflow thresold -(1774+9ulp)
*/
if (x < -1774.0000000000000000000000000000017749370L) {
z = tiny / x;
+
if (xk == 1)
z = -z;
+
return (z * tiny);
}
!
/*
* now compute gamma(x) by -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x
*/
+
/*
* First compute ss = -sin(pi*y)/pi so that
* gamma(x) = 1/(ss*gamma(1+y))
*/
y = -x;
! j = (int)y;
! z = y - (long double)j;
!
! if (z > 0.3183098861837906715377675L) {
if (z > 0.6816901138162093284622325L)
ss = kpsin(one - z);
else
ss = kpcos(0.5L - z);
! } else {
ss = kpsin(z);
+ }
+
if (xk == 0) {
ss.h = -ss.h;
ss.l = -ss.l;
}
/* Then compute ww = gamma(1+y), note that result scale to 2**m */
m = 0;
+
if (j < 7) {
ww = gam_n(j + 1, z);
} else {
w = y + one;
+
if ((lx & 1) == 0) { /* y+1 exact (note that y<184) */
ww = large_gam(w, &m);
} else {
t = w - one;
+
if (t == y) { /* y+one exact */
ww = large_gam(w, &m);
} else { /* use y*gamma(y) */
if (j == 7)
ww = gam_n(j, z);
else
ww = large_gam(y, &m);
+
t4 = ww.h + ww.l;
t1 = CHOPPED((y));
t2 = CHOPPED((t4));
/* t4 will not be too large */
ww.l = y * (ww.l - (t2 - ww.h)) + (y - t1) * t2;