Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,10 +20,11 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 

@@ -51,38 +52,35 @@
 #define LOWORD  1
 #else
 #define HIWORD  1
 #define LOWORD  0
 #endif
-#define __HI(x) ((int *) &x)[HIWORD]
-#define __LO(x) ((unsigned *) &x)[LOWORD]
+#define __HI(x)         ((int *)&x)[HIWORD]
+#define __LO(x)         ((unsigned *)&x)[LOWORD]
 
 /* Coefficients for primary intervals GTi() */
 static const double cr[] = {
         /* p1 */
         +7.09087253435088360271451613398019280077561279443e-0001,
         -5.17229560788652108545141978238701790105241761089e-0001,
         +5.23403394528150789405825222323770647162337764327e-0001,
         -4.54586308717075010784041566069480411732634814899e-0001,
         +4.20596490915239085459964590559256913498190955233e-0001,
         -3.57307589712377520978332185838241458642142185789e-0001,
-
         /* p2 */
         +4.28486983980295198166056119223984284434264344578e-0001,
         -1.30704539487709138528680121627899735386650103914e-0001,
         +1.60856285038051955072861219352655851542955430871e-0001,
         -9.22285161346010583774458802067371182158937943507e-0002,
         +7.19240511767225260740890292605070595560626179357e-0002,
         -4.88158265593355093703112238534484636193260459574e-0002,
-
         /* p3 */
         +3.82409531118807759081121479786092134814808872880e-0001,
         +2.65309888180188647956400403013495759365167853426e-0002,
         +8.06815109775079171923561169415370309376296739835e-0002,
         -1.54821591666137613928840890835174351674007764799e-0002,
         +1.76308239242717268530498313416899188157165183405e-0002,
-
         /* GZi and TZi */
         +0.9382046279096824494097535615803269576988,    /* GZ1 */
         +0.8856031944108887002788159005825887332080,    /* GZ2 */
         +0.9367814114636523216188468970808378497426,    /* GZ3 */
         -0.3517214357852935791015625,   /* TZ1 */

@@ -112,55 +110,57 @@
 #define TZ1     cr[20]
 #define TZ3     cr[21]
 
 /* compute gamma(y) for y in GT1 = [1.0000, 1.2845] */
 static double
-GT1(double y) {
+GT1(double y)
+{
         double z, r;
 
         z = y * y;
         r = TZ1 * y + z * ((P10 + y * P11 + z * P12) + (z * y) * (P13 + y *
                 P14 + z * P15));
         return (GZ1 + r);
 }
 
 /* compute gamma(y) for y in GT2 = [1.2844, 1.6374] */
 static double
-GT2(double y) {
+GT2(double y)
+{
         double z;
 
         z = y * y;
         return (GZ2 + z * ((P20 + y * P21 + z * P22) + (z * y) * (P23 + y *
                 P24 + z * P25)));
 }
 
 /* compute gamma(y) for y in GT3 = [1.6373, 2.0000] */
 static double
-GT3(double y) {
-double z, r;
+GT3(double y)
+{
+        double z, r;
 
         z = y * y;
         r = TZ3 * y + z * ((P30 + y * P31 + z * P32) + (z * y) * (P33 + y *
                 P34));
         return (GZ3 + r);
 }
 
-/* INDENT OFF */
 static const double c[] = {
-+1.0,
-+2.0,
-+0.5,
-+1.0e-300,
-+6.666717231848518054693623697539230e-0001,                     /* A1=T3[0] */
-+8.33333330959694065245736888749042811909994573178e-0002,       /* GP[0] */
--2.77765545601667179767706600890361535225507762168e-0003,       /* GP[1] */
-+7.77830853479775281781085278324621033523037489883e-0004,       /* GP[2] */
-+4.18938533204672741744150788368695779923320328369e-0001,       /* hln2pi   */
-+2.16608493924982901946e-02,                                    /* ln2_32 */
-+4.61662413084468283841e+01,                                    /* invln2_32 */
-+5.00004103388988968841156421415669985414073453720e-0001,       /* Et1 */
-+1.66667656752800761782778277828110208108687545908e-0001,       /* Et2 */
+        +1.0,
+        +2.0,
+        +0.5,
+        +1.0e-300,
+        +6.666717231848518054693623697539230e-0001,     /* A1=T3[0] */
+        +8.33333330959694065245736888749042811909994573178e-0002, /* GP[0] */
+        -2.77765545601667179767706600890361535225507762168e-0003, /* GP[1] */
+        +7.77830853479775281781085278324621033523037489883e-0004, /* GP[2] */
+        +4.18938533204672741744150788368695779923320328369e-0001, /* hln2pi   */
+        +2.16608493924982901946e-02, /* ln2_32 */
+        +4.61662413084468283841e+01, /* invln2_32 */
+        +5.00004103388988968841156421415669985414073453720e-0001, /* Et1 */
+        +1.66667656752800761782778277828110208108687545908e-0001, /* Et2 */
 };
 
 #define one             c[0]
 #define two             c[1]
 #define half            c[2]

@@ -175,50 +175,50 @@
 #define Et1             c[11]
 #define Et2             c[12]
 
 /* S[j] = 2**(j/32.) for the final computation of exp(w) */
 static const double S[] = {
-+1.00000000000000000000e+00,    /* 3FF0000000000000 */
-+1.02189714865411662714e+00,    /* 3FF059B0D3158574 */
-+1.04427378242741375480e+00,    /* 3FF0B5586CF9890F */
-+1.06714040067682369717e+00,    /* 3FF11301D0125B51 */
-+1.09050773266525768967e+00,    /* 3FF172B83C7D517B */
-+1.11438674259589243221e+00,    /* 3FF1D4873168B9AA */
-+1.13878863475669156458e+00,    /* 3FF2387A6E756238 */
-+1.16372485877757747552e+00,    /* 3FF29E9DF51FDEE1 */
-+1.18920711500272102690e+00,    /* 3FF306FE0A31B715 */
-+1.21524735998046895524e+00,    /* 3FF371A7373AA9CB */
-+1.24185781207348400201e+00,    /* 3FF3DEA64C123422 */
-+1.26905095719173321989e+00,    /* 3FF44E086061892D */
-+1.29683955465100964055e+00,    /* 3FF4BFDAD5362A27 */
-+1.32523664315974132322e+00,    /* 3FF5342B569D4F82 */
-+1.35425554693689265129e+00,    /* 3FF5AB07DD485429 */
-+1.38390988196383202258e+00,    /* 3FF6247EB03A5585 */
-+1.41421356237309514547e+00,    /* 3FF6A09E667F3BCD */
-+1.44518080697704665027e+00,    /* 3FF71F75E8EC5F74 */
-+1.47682614593949934623e+00,    /* 3FF7A11473EB0187 */
-+1.50916442759342284141e+00,    /* 3FF82589994CCE13 */
-+1.54221082540794074411e+00,    /* 3FF8ACE5422AA0DB */
-+1.57598084510788649659e+00,    /* 3FF93737B0CDC5E5 */
-+1.61049033194925428347e+00,    /* 3FF9C49182A3F090 */
-+1.64575547815396494578e+00,    /* 3FFA5503B23E255D */
-+1.68179283050742900407e+00,    /* 3FFAE89F995AD3AD */
-+1.71861929812247793414e+00,    /* 3FFB7F76F2FB5E47 */
-+1.75625216037329945351e+00,    /* 3FFC199BDD85529C */
-+1.79470907500310716820e+00,    /* 3FFCB720DCEF9069 */
-+1.83400808640934243066e+00,    /* 3FFD5818DCFBA487 */
-+1.87416763411029996256e+00,    /* 3FFDFC97337B9B5F */
-+1.91520656139714740007e+00,    /* 3FFEA4AFA2A490DA */
-+1.95714412417540017941e+00,    /* 3FFF50765B6E4540 */
+        +1.00000000000000000000e+00,    /* 3FF0000000000000 */
+        +1.02189714865411662714e+00,    /* 3FF059B0D3158574 */
+        +1.04427378242741375480e+00,    /* 3FF0B5586CF9890F */
+        +1.06714040067682369717e+00,    /* 3FF11301D0125B51 */
+        +1.09050773266525768967e+00,    /* 3FF172B83C7D517B */
+        +1.11438674259589243221e+00,    /* 3FF1D4873168B9AA */
+        +1.13878863475669156458e+00,    /* 3FF2387A6E756238 */
+        +1.16372485877757747552e+00,    /* 3FF29E9DF51FDEE1 */
+        +1.18920711500272102690e+00,    /* 3FF306FE0A31B715 */
+        +1.21524735998046895524e+00,    /* 3FF371A7373AA9CB */
+        +1.24185781207348400201e+00,    /* 3FF3DEA64C123422 */
+        +1.26905095719173321989e+00,    /* 3FF44E086061892D */
+        +1.29683955465100964055e+00,    /* 3FF4BFDAD5362A27 */
+        +1.32523664315974132322e+00,    /* 3FF5342B569D4F82 */
+        +1.35425554693689265129e+00,    /* 3FF5AB07DD485429 */
+        +1.38390988196383202258e+00,    /* 3FF6247EB03A5585 */
+        +1.41421356237309514547e+00,    /* 3FF6A09E667F3BCD */
+        +1.44518080697704665027e+00,    /* 3FF71F75E8EC5F74 */
+        +1.47682614593949934623e+00,    /* 3FF7A11473EB0187 */
+        +1.50916442759342284141e+00,    /* 3FF82589994CCE13 */
+        +1.54221082540794074411e+00,    /* 3FF8ACE5422AA0DB */
+        +1.57598084510788649659e+00,    /* 3FF93737B0CDC5E5 */
+        +1.61049033194925428347e+00,    /* 3FF9C49182A3F090 */
+        +1.64575547815396494578e+00,    /* 3FFA5503B23E255D */
+        +1.68179283050742900407e+00,    /* 3FFAE89F995AD3AD */
+        +1.71861929812247793414e+00,    /* 3FFB7F76F2FB5E47 */
+        +1.75625216037329945351e+00,    /* 3FFC199BDD85529C */
+        +1.79470907500310716820e+00,    /* 3FFCB720DCEF9069 */
+        +1.83400808640934243066e+00,    /* 3FFD5818DCFBA487 */
+        +1.87416763411029996256e+00,    /* 3FFDFC97337B9B5F */
+        +1.91520656139714740007e+00,    /* 3FFEA4AFA2A490DA */
+        +1.95714412417540017941e+00,    /* 3FFF50765B6E4540 */
 };
-/* INDENT ON */
 
-/* INDENT OFF */
+
 /*
  * return tgammaf(x) in double for 8<x<=35.040096283... using Stirling's formula
  *     log(G(x)) ~= (x-.5)*(log(x)-1) + .5(log(2*pi)-1) + (1/x)*P(1/(x*x))
  */
+
 /*
  * compute ss = log(x)-1
  *
  *  log(x) - 1 = T1(n) + T2(j) + T3(s), where x = 2**n * y,  1<=y<2,
  *  j=[64*y], z[j]=1+j/64+1/128, s = (y-z[j])/(y+z[j]), and

@@ -227,87 +227,86 @@
  *       T3(s) = 2s + A1*s^3
  *  Note
  *  (1) Remez error for T3(s) is bounded by 2**(-35.8)
  *      (see mpremez/work/Log/tgamma_log_2_outr1)
  */
-
 static const double T1[] = { /* T1[j]=(j+3)*log(2)-1 */
-+1.079441541679835928251696364375e+00,
-+1.772588722239781237668928485833e+00,
-+2.465735902799726547086160607291e+00,
+        +1.079441541679835928251696364375e+00,
+        +1.772588722239781237668928485833e+00,
+        +2.465735902799726547086160607291e+00,
 };
 
 static const double T2[] = {   /* T2[j]=log(1+j/64+1/128) */
-+7.782140442054948947462900061137e-03,
-+2.316705928153437822879916096229e-02,
-+3.831886430213659919375532512380e-02,
-+5.324451451881228286587019378653e-02,
-+6.795066190850774939456527777263e-02,
-+8.244366921107459126816006866831e-02,
-+9.672962645855111229557105648746e-02,
-+1.108143663402901141948061693232e-01,
-+1.247034785009572358634065153809e-01,
-+1.384023228591191356853258736016e-01,
-+1.519160420258419750718034248969e-01,
-+1.652495728953071628756114492772e-01,
-+1.784076574728182971194002415109e-01,
-+1.913948529996294546092988075613e-01,
-+2.042155414286908915038203861962e-01,
-+2.168739383006143596190895257443e-01,
-+2.293741010648458299914807250461e-01,
-+2.417199368871451681443075159135e-01,
-+2.539152099809634441373232979066e-01,
-+2.659635484971379413391259265375e-01,
-+2.778684510034563061863500329234e-01,
-+2.896332925830426768788930555257e-01,
-+3.012613305781617810128755382338e-01,
-+3.127557100038968883862465596883e-01,
-+3.241194686542119760906707604350e-01,
-+3.353555419211378302571795798142e-01,
-+3.464667673462085809184621884258e-01,
-+3.574558889218037742260094901409e-01,
-+3.683255611587076530482301540504e-01,
-+3.790783529349694583908533456310e-01,
-+3.897167511400252133704636040035e-01,
-+4.002431641270127069293251019951e-01,
-+4.106599249852683859343062031758e-01,
-+4.209692946441296361288671615068e-01,
-+4.311734648183713408591724789556e-01,
-+4.412745608048752294894964416613e-01,
-+4.512746441394585851446923830790e-01,
-+4.611757151221701663679999255979e-01,
-+4.709797152187910125468978560564e-01,
-+4.806885293457519076766184554480e-01,
-+4.903039880451938381503461596457e-01,
-+4.998278695564493298213314152470e-01,
-+5.092619017898079468040749192283e-01,
-+5.186077642080456321529769963648e-01,
-+5.278670896208423851138922177783e-01,
-+5.370414658968836545667292441538e-01,
-+5.461324375981356503823972092312e-01,
-+5.551415075405015927154803595159e-01,
-+5.640701382848029660713842900902e-01,
-+5.729197535617855090927567266263e-01,
-+5.816917396346224825206107537254e-01,
-+5.903874466021763746419167081236e-01,
-+5.990081896460833993816000244617e-01,
-+6.075552502245417955010851527911e-01,
-+6.160298772155140196475659281967e-01,
-+6.244332880118935010425387440547e-01,
-+6.327666695710378295457864685036e-01,
-+6.410311794209312910556013344054e-01,
-+6.492279466251098188908399699053e-01,
-+6.573580727083600301418900232459e-01,
-+6.654226325450904489500926100067e-01,
-+6.734226752121667202979603888010e-01,
-+6.813592248079030689480715595681e-01,
-+6.892332812388089803249143378146e-01,
+        +7.782140442054948947462900061137e-03,
+        +2.316705928153437822879916096229e-02,
+        +3.831886430213659919375532512380e-02,
+        +5.324451451881228286587019378653e-02,
+        +6.795066190850774939456527777263e-02,
+        +8.244366921107459126816006866831e-02,
+        +9.672962645855111229557105648746e-02,
+        +1.108143663402901141948061693232e-01,
+        +1.247034785009572358634065153809e-01,
+        +1.384023228591191356853258736016e-01,
+        +1.519160420258419750718034248969e-01,
+        +1.652495728953071628756114492772e-01,
+        +1.784076574728182971194002415109e-01,
+        +1.913948529996294546092988075613e-01,
+        +2.042155414286908915038203861962e-01,
+        +2.168739383006143596190895257443e-01,
+        +2.293741010648458299914807250461e-01,
+        +2.417199368871451681443075159135e-01,
+        +2.539152099809634441373232979066e-01,
+        +2.659635484971379413391259265375e-01,
+        +2.778684510034563061863500329234e-01,
+        +2.896332925830426768788930555257e-01,
+        +3.012613305781617810128755382338e-01,
+        +3.127557100038968883862465596883e-01,
+        +3.241194686542119760906707604350e-01,
+        +3.353555419211378302571795798142e-01,
+        +3.464667673462085809184621884258e-01,
+        +3.574558889218037742260094901409e-01,
+        +3.683255611587076530482301540504e-01,
+        +3.790783529349694583908533456310e-01,
+        +3.897167511400252133704636040035e-01,
+        +4.002431641270127069293251019951e-01,
+        +4.106599249852683859343062031758e-01,
+        +4.209692946441296361288671615068e-01,
+        +4.311734648183713408591724789556e-01,
+        +4.412745608048752294894964416613e-01,
+        +4.512746441394585851446923830790e-01,
+        +4.611757151221701663679999255979e-01,
+        +4.709797152187910125468978560564e-01,
+        +4.806885293457519076766184554480e-01,
+        +4.903039880451938381503461596457e-01,
+        +4.998278695564493298213314152470e-01,
+        +5.092619017898079468040749192283e-01,
+        +5.186077642080456321529769963648e-01,
+        +5.278670896208423851138922177783e-01,
+        +5.370414658968836545667292441538e-01,
+        +5.461324375981356503823972092312e-01,
+        +5.551415075405015927154803595159e-01,
+        +5.640701382848029660713842900902e-01,
+        +5.729197535617855090927567266263e-01,
+        +5.816917396346224825206107537254e-01,
+        +5.903874466021763746419167081236e-01,
+        +5.990081896460833993816000244617e-01,
+        +6.075552502245417955010851527911e-01,
+        +6.160298772155140196475659281967e-01,
+        +6.244332880118935010425387440547e-01,
+        +6.327666695710378295457864685036e-01,
+        +6.410311794209312910556013344054e-01,
+        +6.492279466251098188908399699053e-01,
+        +6.573580727083600301418900232459e-01,
+        +6.654226325450904489500926100067e-01,
+        +6.734226752121667202979603888010e-01,
+        +6.813592248079030689480715595681e-01,
+        +6.892332812388089803249143378146e-01,
 };
-/* INDENT ON */
 
 static double
-large_gam(double x) {
+large_gam(double x)
+{
         double ss, zz, z, t1, t2, w, y, u;
         unsigned lx;
         int k, ix, j, m;
 
         ix = __HI(x);

@@ -322,96 +321,100 @@
         t1 = y + z;
         t2 = y - z;
         u = t2 / t1;
         ss = T1[m - 3] + T2[j] + u * (two + A1 * (u * u));
                                                         /* ss = log(x)-1 */
+
         /*
          * compute ww = (x-.5)*(log(x)-1) + .5*(log(2pi)-1) + 1/x*(P(1/x^2)))
          * where ss = log(x) - 1
          */
         z = one / x;
         zz = z * z;
         w = ((x - half) * ss + hln2pi) + z * (GP0 + zz * GP1 + (zz * zz) * GP2);
-        k = (int) (w * invln2_32 + half);
+        k = (int)(w * invln2_32 + half);
 
         /* compute the exponential of w */
         j = k & 0x1f;
         m = k >> 5;
-        z = w - (double) k *ln2_32;
+        z = w - (double)k * ln2_32;
         zz = S[j] * (one + z + (z * z) * (Et1 + z * Et2));
         __HI(zz) += m << 20;
         return (zz);
 }
-/* INDENT OFF */
+
+
 /*
  * kpsin(x)= sin(pi*x)/pi
  *                 3        5        7        9
  *      = x+ks[0]*x +ks[1]*x +ks[2]*x +ks[3]*x
  */
 static const double ks[] = {
--1.64493404985645811354476665052005342839447790544e+0000,
-+8.11740794458351064092797249069438269367389272270e-0001,
--1.90703144603551216933075809162889536878854055202e-0001,
-+2.55742333994264563281155312271481108635575331201e-0002,
+        -1.64493404985645811354476665052005342839447790544e+0000,
+        +8.11740794458351064092797249069438269367389272270e-0001,
+        -1.90703144603551216933075809162889536878854055202e-0001,
+        +2.55742333994264563281155312271481108635575331201e-0002,
 };
-/* INDENT ON */
 
 static double
-kpsin(double x) {
+kpsin(double x)
+{
         double z;
 
         z = x * x;
         return (x + (x * z) * ((ks[0] + z * ks[1]) + (z * z) * (ks[2] + z *
                 ks[3])));
 }
 
-/* INDENT OFF */
+
 /*
  * kpcos(x)= cos(pi*x)/pi
  *                     2        4        6
  *      = kc[0]+kc[1]*x +kc[2]*x +kc[3]*x
  */
 static const double kc[] = {
-+3.18309886183790671537767526745028724068919291480e-0001,
--1.57079581447762568199467875065854538626594937791e+0000,
-+1.29183528092558692844073004029568674027807393862e+0000,
--4.20232949771307685981015914425195471602739075537e-0001,
+        +3.18309886183790671537767526745028724068919291480e-0001,
+        -1.57079581447762568199467875065854538626594937791e+0000,
+        +1.29183528092558692844073004029568674027807393862e+0000,
+        -4.20232949771307685981015914425195471602739075537e-0001,
 };
-/* INDENT ON */
 
 static double
-kpcos(double x) {
+kpcos(double x)
+{
         double z;
 
         z = x * x;
         return (kc[0] + z * (kc[1] + z * kc[2] + (z * z) * kc[3]));
 }
 
-/* INDENT OFF */
-static const double
-t0z1 = 0.134861805732790769689793935774652917006,
-t0z2 = 0.461632144968362341262659542325721328468,
-t0z3 = 0.819773101100500601787868704921606996312;
-        /* 1.134861805732790769689793935774652917006 */
-/* INDENT ON */
+static const double t0z1 = 0.134861805732790769689793935774652917006,
+        t0z2 = 0.461632144968362341262659542325721328468,
+        t0z3 = 0.819773101100500601787868704921606996312;
+
+/*
+ * 1.134861805732790769689793935774652917006
+ */
 
 /*
  * gamma(x+i) for 0 <= x < 1
  */
 static double
-gam_n(int i, double x) {
+gam_n(int i, double x)
+{
         double rr = 0.0L, yy;
         double z1, z2;
 
         /* compute yy = gamma(x+1) */
         if (x > 0.2845) {
                 if (x > 0.6374)
                         yy = GT3(x - t0z3);
                 else
                         yy = GT2(x - t0z2);
-        } else
+        } else {
                 yy = GT1(x - t0z1);
+        }
 
         /* compute gamma(x+i) = (x+i-1)*...*(x+1)*yy, 0<i<8 */
         switch (i) {
         case 0:         /* yy/x */
                 rr = yy / x;

@@ -443,65 +446,72 @@
                 z1 = (x + two) * (x + 3.0);
                 z2 = (x + 5.0) * (x + 6.0) * yy;
                 rr = z1 * (z1 - two) * z2;
                 break;
         }
+
         return (rr);
 }
 
 float
-tgammaf(float xf) {
+tgammaf(float xf)
+{
         float zf;
         double ss, ww;
         double x, y, z;
         int i, j, k, ix, hx, xk;
 
-        hx = *(int *) &xf;
+        hx = *(int *)&xf;
         ix = hx & 0x7fffffff;
 
-        x = (double) xf;
+        x = (double)xf;
+
         if (ix < 0x33800000)
                 return (1.0F / xf);     /* |x| < 2**-24 */
 
         if (ix >= 0x7f800000)
-                return (xf * ((hx < 0)? 0.0F : xf)); /* +-Inf or NaN */
+                return (xf * ((hx < 0) ? 0.0F : xf));   /* +-Inf or NaN */
 
         if (hx > 0x420C290F)    /* x > 35.040096283... overflow */
-                return (float)(x / tiny);
+                return ((float)(x / tiny));
 
         if (hx >= 0x41000000)   /* x >= 8 */
-                return ((float) large_gam(x));
+                return ((float)large_gam(x));
 
         if (hx > 0) {           /* 0 < x < 8 */
-                i = (int) xf;
-                return ((float) gam_n(i, x - (double) i));
+                i = (int)xf;
+                return ((float)gam_n(i, x - (double)i));
         }
 
-        /* negative x */
-        /* INDENT OFF */
+        /*
+         * negative x
+         */
+
         /*
          * compute xk =
          *      -2 ... x is an even int (-inf is considered even)
          *      -1 ... x is an odd int
          *      +0 ... x is not an int but chopped to an even int
          *      +1 ... x is not an int but chopped to an odd int
          */
-        /* INDENT ON */
         xk = 0;
+
         if (ix >= 0x4b000000) {
                 if (ix > 0x4b000000)
                         xk = -2;
                 else
                         xk = -2 + (ix & 1);
         } else if (ix >= 0x3f800000) {
                 k = (ix >> 23) - 0x7f;
                 j = ix >> (23 - k);
+
                 if ((j << (23 - k)) == ix)
                         xk = -2 + (j & 1);
                 else
                         xk = j & 1;
         }
+
         if (xk < 0) {
                 /* 0/0 invalid NaN, ideally gamma(-n)= (-1)**(n+1) * inf */
                 zf = xf - xf;
                 return (zf / zf);
         }

@@ -510,37 +520,42 @@
         if (ix > 0x4224000B) {  /* x < -(41+11ulp) */
                 if (xk == 0)
                         z = -tiny;
                 else
                         z = tiny;
+
                 return ((float)z);
         }
 
-        /* INDENT OFF */
-        /* now compute gamma(x) by  -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x */
+        /*
+         * now compute gamma(x) by  -1/((sin(pi*y)/pi)*gamma(1+y)), y = -x
+         */
+
         /*
          * First compute ss = -sin(pi*y)/pi , so that
          * gamma(x) = 1/(ss*gamma(1+y))
          */
-        /* INDENT ON */
         y = -x;
-        j = (int) y;
-        z = y - (double) j;
-        if (z > 0.3183098861837906715377675)
+        j = (int)y;
+        z = y - (double)j;
+
+        if (z > 0.3183098861837906715377675) {
                 if (z > 0.6816901138162093284622325)
                         ss = kpsin(one - z);
                 else
                         ss = kpcos(0.5 - z);
-        else
+        } else {
                 ss = kpsin(z);
+        }
+
         if (xk == 0)
                 ss = -ss;
 
         /* Then compute ww = gamma(1+y)  */
         if (j < 7)
                 ww = gam_n(j + 1, z);
         else
                 ww = large_gam(y + one);
 
         /* return 1/(ss*ww) */
-        return ((float) (one / (ww * ss)));
+        return ((float)(one / (ww * ss)));
 }