Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/m9x/nearbyint.c
+++ new/usr/src/lib/libm/common/m9x/nearbyint.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak nearbyint = __nearbyint
31 32
32 33 /*
33 34 * nearbyint(x) returns the nearest fp integer to x in the direction
34 35 * corresponding to the current rounding direction without raising
35 36 * the inexact exception.
36 37 *
37 38 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN,
38 39 * nearbyint(x) is also NaN.
39 40 */
40 41
41 42 #include "libm.h"
42 43 #include <fenv.h>
43 44
44 45 double
45 -__nearbyint(double x) {
46 +__nearbyint(double x)
47 +{
46 48 union {
47 49 unsigned i[2];
48 50 double d;
49 51 } xx;
52 +
50 53 unsigned hx, sx, i, frac;
51 54 int rm, j;
52 55
53 56 xx.d = x;
54 57 sx = xx.i[HIWORD] & 0x80000000;
55 58 hx = xx.i[HIWORD] & ~0x80000000;
56 59
57 60 /* handle trivial cases */
58 - if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
61 + if (hx >= 0x43300000) { /* x is nan, inf, or already integral */
59 62 if (hx >= 0x7ff00000) /* x is inf or nan */
60 63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN)
61 64 return (hx >= 0x7ff80000 ? x : x + x);
62 - /* assumes sparc-like QNaN */
65 +
66 + /* assumes sparc-like QNaN */
63 67 #else
64 68 return (x + x);
65 69 #endif
66 70 return (x);
67 - } else if ((hx | xx.i[LOWORD]) == 0) /* x is zero */
71 + } else if ((hx | xx.i[LOWORD]) == 0) { /* x is zero */
68 72 return (x);
73 + }
69 74
70 75 /* get the rounding mode */
71 76 rm = fegetround();
72 77
73 78 /* flip the sense of directed roundings if x is negative */
74 79 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD))
75 80 rm = (FE_UPWARD + FE_DOWNWARD) - rm;
76 81
77 82 /* handle |x| < 1 */
78 83 if (hx < 0x3ff00000) {
79 - if (rm == FE_UPWARD || (rm == FE_TONEAREST &&
80 - (hx >= 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
84 + if (rm == FE_UPWARD || (rm == FE_TONEAREST && (hx >=
85 + 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD]))))
81 86 xx.i[HIWORD] = sx | 0x3ff00000;
82 87 else
83 88 xx.i[HIWORD] = sx;
89 +
84 90 xx.i[LOWORD] = 0;
85 91 return (xx.d);
86 92 }
87 93
88 94 /* round x at the integer bit */
89 95 j = 0x433 - (hx >> 20);
96 +
90 97 if (j >= 32) {
91 98 i = 1 << (j - 32);
92 - frac = ((xx.i[HIWORD] << 1) << (63 - j)) |
93 - (xx.i[LOWORD] >> (j - 32));
99 + frac = ((xx.i[HIWORD] << 1) << (63 - j)) | (xx.i[LOWORD] >> (j -
100 + 32));
101 +
94 102 if (xx.i[LOWORD] & (i - 1))
95 103 frac |= 1;
104 +
96 105 if (!frac)
97 106 return (x);
107 +
98 108 xx.i[LOWORD] = 0;
99 109 xx.i[HIWORD] &= ~(i - 1);
100 - if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
101 - ((frac > 0x80000000u) || ((frac == 0x80000000) &&
102 - (xx.i[HIWORD] & i)))))
110 +
111 + if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && ((frac >
112 + 0x80000000u) || ((frac == 0x80000000) && (xx.i[HIWORD] &
113 + i)))))
103 114 xx.i[HIWORD] += i;
104 115 } else {
105 116 i = 1 << j;
106 117 frac = (xx.i[LOWORD] << 1) << (31 - j);
118 +
107 119 if (!frac)
108 120 return (x);
121 +
109 122 xx.i[LOWORD] &= ~(i - 1);
110 - if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) &&
111 - (frac > 0x80000000u || ((frac == 0x80000000) &&
112 - (xx.i[LOWORD] & i))))) {
123 +
124 + if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && (frac >
125 + 0x80000000u || ((frac == 0x80000000) && (xx.i[LOWORD] &
126 + i))))) {
113 127 xx.i[LOWORD] += i;
128 +
114 129 if (xx.i[LOWORD] == 0)
115 130 xx.i[HIWORD]++;
116 131 }
117 132 }
133 +
118 134 return (xx.d);
119 135 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX