1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak nearbyint = __nearbyint 32 33 /* 34 * nearbyint(x) returns the nearest fp integer to x in the direction 35 * corresponding to the current rounding direction without raising 36 * the inexact exception. 37 * 38 * nearbyint(x) is x unchanged if x is +/-0 or +/-inf. If x is NaN, 39 * nearbyint(x) is also NaN. 40 */ 41 42 #include "libm.h" 43 #include <fenv.h> 44 45 double 46 __nearbyint(double x) 47 { 48 union { 49 unsigned i[2]; 50 double d; 51 } xx; 52 53 unsigned hx, sx, i, frac; 54 int rm, j; 55 56 xx.d = x; 57 sx = xx.i[HIWORD] & 0x80000000; 58 hx = xx.i[HIWORD] & ~0x80000000; 59 60 /* handle trivial cases */ 61 if (hx >= 0x43300000) { /* x is nan, inf, or already integral */ 62 if (hx >= 0x7ff00000) /* x is inf or nan */ 63 #if defined(FPADD_TRAPS_INCOMPLETE_ON_NAN) 64 return (hx >= 0x7ff80000 ? x : x + x); 65 66 /* assumes sparc-like QNaN */ 67 #else 68 return (x + x); 69 #endif 70 return (x); 71 } else if ((hx | xx.i[LOWORD]) == 0) { /* x is zero */ 72 return (x); 73 } 74 75 /* get the rounding mode */ 76 rm = fegetround(); 77 78 /* flip the sense of directed roundings if x is negative */ 79 if (sx && (rm == FE_UPWARD || rm == FE_DOWNWARD)) 80 rm = (FE_UPWARD + FE_DOWNWARD) - rm; 81 82 /* handle |x| < 1 */ 83 if (hx < 0x3ff00000) { 84 if (rm == FE_UPWARD || (rm == FE_TONEAREST && (hx >= 85 0x3fe00000 && ((hx & 0xfffff) | xx.i[LOWORD])))) 86 xx.i[HIWORD] = sx | 0x3ff00000; 87 else 88 xx.i[HIWORD] = sx; 89 90 xx.i[LOWORD] = 0; 91 return (xx.d); 92 } 93 94 /* round x at the integer bit */ 95 j = 0x433 - (hx >> 20); 96 97 if (j >= 32) { 98 i = 1 << (j - 32); 99 frac = ((xx.i[HIWORD] << 1) << (63 - j)) | (xx.i[LOWORD] >> (j - 100 32)); 101 102 if (xx.i[LOWORD] & (i - 1)) 103 frac |= 1; 104 105 if (!frac) 106 return (x); 107 108 xx.i[LOWORD] = 0; 109 xx.i[HIWORD] &= ~(i - 1); 110 111 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && ((frac > 112 0x80000000u) || ((frac == 0x80000000) && (xx.i[HIWORD] & 113 i))))) 114 xx.i[HIWORD] += i; 115 } else { 116 i = 1 << j; 117 frac = (xx.i[LOWORD] << 1) << (31 - j); 118 119 if (!frac) 120 return (x); 121 122 xx.i[LOWORD] &= ~(i - 1); 123 124 if ((rm == FE_UPWARD) || ((rm == FE_TONEAREST) && (frac > 125 0x80000000u || ((frac == 0x80000000) && (xx.i[LOWORD] & 126 i))))) { 127 xx.i[LOWORD] += i; 128 129 if (xx.i[LOWORD] == 0) 130 xx.i[HIWORD]++; 131 } 132 } 133 134 return (xx.d); 135 }