1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __llroundl = llroundl 32 #if defined(__sparcv9) || defined(__amd64) 33 #pragma weak lroundl = llroundl 34 #pragma weak __lroundl = llroundl 35 #endif 36 37 #include "libm.h" 38 39 #if defined(__sparc) 40 long long 41 llroundl(long double x) 42 { 43 union { 44 unsigned i[4]; 45 long double q; 46 } xx; 47 union { 48 unsigned i[2]; 49 long long l; 50 } zz; 51 union { 52 unsigned i; 53 float f; 54 } tt; 55 56 unsigned hx, sx, frac; 57 int j; 58 59 xx.q = x; 60 sx = xx.i[0] & 0x80000000; 61 hx = xx.i[0] & ~0x80000000; 62 63 /* handle trivial cases */ 64 if (hx > 0x403e0000) { /* |x| > 2^63 + ... or x is nan */ 65 /* convert an out-of-range float */ 66 tt.i = sx | 0x7f000000; 67 return ((long long)tt.f); 68 } 69 70 /* handle |x| < 1 */ 71 if (hx < 0x3fff0000) { 72 if (hx >= 0x3ffe0000) 73 return (sx ? -1LL : 1LL); 74 75 return (0LL); 76 } 77 78 /* extract the integer and fractional parts of x */ 79 j = 0x406f - (hx >> 16); 80 xx.i[0] = 0x10000 | (xx.i[0] & 0xffff); 81 82 if (j >= 96) { 83 zz.i[0] = 0; 84 zz.i[1] = xx.i[0] >> (j - 96); 85 frac = ((xx.i[0] << 1) << (127 - j)) | (xx.i[1] >> (j - 96)); 86 87 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3]) 88 frac |= 1; 89 } else if (j >= 64) { 90 zz.i[0] = xx.i[0] >> (j - 64); 91 zz.i[1] = ((xx.i[0] << 1) << (95 - j)) | (xx.i[1] >> (j - 64)); 92 frac = ((xx.i[1] << 1) << (95 - j)) | (xx.i[2] >> (j - 64)); 93 94 if (((xx.i[2] << 1) << (95 - j)) | xx.i[3]) 95 frac |= 1; 96 } else { 97 zz.i[0] = ((xx.i[0] << 1) << (63 - j)) | (xx.i[1] >> (j - 32)); 98 zz.i[1] = ((xx.i[1] << 1) << (63 - j)) | (xx.i[2] >> (j - 32)); 99 frac = ((xx.i[2] << 1) << (63 - j)) | (xx.i[3] >> (j - 32)); 100 101 if ((xx.i[3] << 1) << (63 - j)) 102 frac |= 1; 103 } 104 105 /* round */ 106 if (frac >= 0x80000000u) { 107 if (++zz.i[1] == 0) 108 zz.i[0]++; 109 } 110 111 /* check for result out of range (note that z is |x| at this point) */ 112 if (zz.i[0] > 0x80000000u || (zz.i[0] == 0x80000000 && (zz.i[1] || 113 !sx))) { 114 tt.i = sx | 0x7f000000; 115 return ((long long)tt.f); 116 } 117 118 /* negate result if need be */ 119 if (sx) { 120 zz.i[0] = ~zz.i[0]; 121 zz.i[1] = -zz.i[1]; 122 123 if (zz.i[1] == 0) 124 zz.i[0]++; 125 } 126 127 return (zz.l); 128 } 129 #elif defined(__x86) 130 long long 131 llroundl(long double x) 132 { 133 union { 134 unsigned i[3]; 135 long double e; 136 } xx; 137 138 int ex, sx, i; 139 140 xx.e = x; 141 ex = xx.i[2] & 0x7fff; 142 sx = xx.i[2] & 0x8000; 143 144 if (ex < 0x403e) { /* |x| < 2^63 */ 145 /* handle |x| < 1 */ 146 if (ex < 0x3fff) { 147 if (ex >= 0x3ffe) 148 return (sx ? -1LL : 1LL); 149 150 return (0LL); 151 } 152 153 /* round x at the integer bit */ 154 if (ex < 0x401e) { 155 i = 1 << (0x401d - ex); 156 xx.i[1] = (xx.i[1] + i) & ~(i | (i - 1)); 157 xx.i[0] = 0; 158 } else { 159 i = 1 << (0x403d - ex); 160 xx.i[0] += i; 161 162 if (xx.i[0] < i) 163 xx.i[1]++; 164 165 xx.i[0] &= ~(i | (i - 1)); 166 } 167 168 if (xx.i[1] == 0) { 169 xx.i[2] = sx | ++ex; 170 xx.i[1] = 0x80000000U; 171 } 172 } 173 174 /* now x is nan, inf, or integral */ 175 return ((long long)xx.e); 176 } 177 #else 178 #error Unknown architecture 179 #endif