1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __llrintl = llrintl 32 #if defined(__sparcv9) || defined(__amd64) 33 #pragma weak lrintl = llrintl 34 #pragma weak __lrintl = llrintl 35 #endif 36 37 #include "libm.h" 38 39 #if defined(__sparc) 40 #include "fma.h" 41 #include "fenv_inlines.h" 42 43 long long 44 llrintl(long double x) 45 { 46 union { 47 unsigned i[4]; 48 long double q; 49 } xx; 50 union { 51 unsigned i[2]; 52 long long l; 53 } zz; 54 union { 55 unsigned i; 56 float f; 57 } tt; 58 59 unsigned int hx, sx, frac, fsr; 60 int rm, j; 61 volatile float dummy; 62 63 xx.q = x; 64 sx = xx.i[0] & 0x80000000; 65 hx = xx.i[0] & ~0x80000000; 66 67 /* handle trivial cases */ 68 if (hx > 0x403e0000) { /* |x| > 2^63 + ... or x is nan */ 69 /* convert an out-of-range float */ 70 tt.i = sx | 0x7f000000; 71 return ((long long)tt.f); 72 } else if ((hx | xx.i[1] | xx.i[2] | xx.i[3]) == 0) { /* x is zero */ 73 return (0LL); 74 } 75 76 /* get the rounding mode */ 77 __fenv_getfsr32(&fsr); 78 rm = fsr >> 30; 79 80 /* flip the sense of directed roundings if x is negative */ 81 if (sx) 82 rm ^= rm >> 1; 83 84 /* handle |x| < 1 */ 85 if (hx < 0x3fff0000) { 86 dummy = 1.0e30f; /* x is nonzero, so raise inexact */ 87 dummy += 1.0e-30f; 88 89 if (rm == FSR_RP || (rm == FSR_RN && (hx >= 0x3ffe0000 && ((hx & 90 0xffff) | xx.i[1] | xx.i[2] | xx.i[3])))) 91 return (sx ? -1LL : 1LL); 92 93 return (0LL); 94 } 95 96 /* extract the integer and fractional parts of x */ 97 j = 0x406f - (hx >> 16); 98 xx.i[0] = 0x10000 | (xx.i[0] & 0xffff); 99 100 if (j >= 96) { 101 zz.i[0] = 0; 102 zz.i[1] = xx.i[0] >> (j - 96); 103 frac = ((xx.i[0] << 1) << (127 - j)) | (xx.i[1] >> (j - 96)); 104 105 if (((xx.i[1] << 1) << (127 - j)) | xx.i[2] | xx.i[3]) 106 frac |= 1; 107 } else if (j >= 64) { 108 zz.i[0] = xx.i[0] >> (j - 64); 109 zz.i[1] = ((xx.i[0] << 1) << (95 - j)) | (xx.i[1] >> (j - 64)); 110 frac = ((xx.i[1] << 1) << (95 - j)) | (xx.i[2] >> (j - 64)); 111 112 if (((xx.i[2] << 1) << (95 - j)) | xx.i[3]) 113 frac |= 1; 114 } else { 115 zz.i[0] = ((xx.i[0] << 1) << (63 - j)) | (xx.i[1] >> (j - 32)); 116 zz.i[1] = ((xx.i[1] << 1) << (63 - j)) | (xx.i[2] >> (j - 32)); 117 frac = ((xx.i[2] << 1) << (63 - j)) | (xx.i[3] >> (j - 32)); 118 119 if ((xx.i[3] << 1) << (63 - j)) 120 frac |= 1; 121 } 122 123 /* round */ 124 if (frac && (rm == FSR_RP || (rm == FSR_RN && (frac > 0x80000000u || 125 (frac == 0x80000000 && (zz.i[1] & 1)))))) { 126 if (++zz.i[1] == 0) 127 zz.i[0]++; 128 } 129 130 /* check for result out of range (note that z is |x| at this point) */ 131 if (zz.i[0] > 0x80000000u || (zz.i[0] == 0x80000000 && (zz.i[1] || 132 !sx))) { 133 tt.i = sx | 0x7f000000; 134 return ((long long)tt.f); 135 } 136 137 /* raise inexact if need be */ 138 if (frac) { 139 dummy = 1.0e30F; 140 dummy += 1.0e-30F; 141 } 142 143 /* negate result if need be */ 144 if (sx) { 145 zz.i[0] = ~zz.i[0]; 146 zz.i[1] = -zz.i[1]; 147 148 if (zz.i[1] == 0) 149 zz.i[0]++; 150 } 151 152 return (zz.l); 153 } 154 #elif defined(__x86) 155 long long 156 llrintl(long double x) 157 { 158 /* 159 * Note: The following code works on x86 (in the default rounding 160 * precision mode), but one ought to just use the fistpll instruction 161 * instead. 162 */ 163 union { 164 unsigned i[3]; 165 long double e; 166 } xx, yy; 167 168 int ex; 169 170 xx.e = x; 171 ex = xx.i[2] & 0x7fff; 172 173 if (ex < 0x403e) { /* |x| < 2^63 */ 174 /* add and subtract a power of two to round x to an integer */ 175 yy.i[2] = (xx.i[2] & 0x8000) | 0x403e; 176 yy.i[1] = 0x80000000; 177 yy.i[0] = 0; 178 x = (x + yy.e) - yy.e; 179 } 180 181 /* now x is nan, inf, or integral */ 182 return ((long long)x); 183 } 184 #else 185 #error Unknown architecture 186 #endif