Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/m9x/frexp.c
+++ new/usr/src/lib/libm/common/m9x/frexp.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak frexp = __frexp
31 32
32 33 /*
33 34 * frexp(x, exp) returns the normalized significand of x and sets
34 35 * *exp so that x = r*2^(*exp) where r is the return value. If x
35 36 * is finite and nonzero, 1/2 <= |r| < 1.
36 37 *
37 38 * If x is zero, infinite or NaN, frexp returns x and sets *exp = 0.
38 39 * (The relevant standards do not specify *exp when x is infinite or
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
39 40 * NaN, but this code sets it anyway.)
40 41 *
41 42 * If x is a signaling NaN, this code returns x without attempting
42 43 * to raise the invalid operation exception. If x is subnormal,
43 44 * this code treats it as nonzero regardless of nonstandard mode.
44 45 */
45 46
46 47 #include "libm.h"
47 48
48 49 double
49 -__frexp(double x, int *exp) {
50 +__frexp(double x, int *exp)
51 +{
50 52 union {
51 53 unsigned i[2];
52 54 double d;
53 55 } xx, yy;
56 +
54 57 double t;
55 58 unsigned hx;
56 59 int e;
57 60
58 61 xx.d = x;
59 62 hx = xx.i[HIWORD] & ~0x80000000;
60 63
61 - if (hx >= 0x7ff00000) { /* x is infinite or NaN */
64 + if (hx >= 0x7ff00000) { /* x is infinite or NaN */
62 65 *exp = 0;
63 66 return (x);
64 67 }
65 68
66 69 e = 0;
67 - if (hx < 0x00100000) { /* x is subnormal or zero */
70 +
71 + if (hx < 0x00100000) { /* x is subnormal or zero */
68 72 if ((hx | xx.i[LOWORD]) == 0) {
69 73 *exp = 0;
70 74 return (x);
71 75 }
72 76
73 77 /*
74 78 * normalize x by regarding it as an integer
75 79 *
76 80 * Here we use 32-bit integer arithmetic to avoid trapping
77 81 * or emulating 64-bit arithmetic. If 64-bit arithmetic is
78 82 * available (e.g., in SPARC V9), do this instead:
79 83 *
80 84 * long lx = ((long) hx << 32) | xx.i[LOWORD];
↓ open down ↓ |
3 lines elided |
↑ open up ↑ |
81 85 * xx.d = (xx.i[HIWORD] < 0)? -lx : lx;
82 86 *
83 87 * If subnormal arithmetic doesn't trap, just multiply x by
84 88 * a power of two.
85 89 */
86 90 yy.i[HIWORD] = 0x43300000 | hx;
87 91 yy.i[LOWORD] = xx.i[LOWORD];
88 92 t = yy.d;
89 93 yy.i[HIWORD] = 0x43300000;
90 94 yy.i[LOWORD] = 0;
91 - t -= yy.d; /* t = |x| scaled */
92 - xx.d = ((int)xx.i[HIWORD] < 0)? -t : t;
95 + t -= yy.d; /* t = |x| scaled */
96 + xx.d = ((int)xx.i[HIWORD] < 0) ? -t : t;
93 97 hx = xx.i[HIWORD] & ~0x80000000;
94 98 e = -1074;
95 99 }
96 100
97 101 /* now xx.d is normal */
98 102 xx.i[HIWORD] = (xx.i[HIWORD] & ~0x7ff00000) | 0x3fe00000;
99 103 *exp = e + (hx >> 20) - 0x3fe;
100 104 return (xx.d);
101 105 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX