1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #include "libm.h" /* __k_clog_rl */ 32 #include "complex_wrapper.h" 33 #include "longdouble.h" 34 35 36 /* 37 * long double __k_clog_rl(long double x, long double y, long double *e); 38 * 39 * Compute real part of complex natural logarithm of x+iy in extra precision 40 * 41 * __k_clog_rl returns log(hypot(x, y)) with a correction term e. 42 * 43 * Accuracy: quad 140 bits, intel extended 91 bits. 44 * 45 * Method. 46 * Assume X > Y >= 0 . Let X = 2**nx * x, Y = 2**nx * y, where 1 <= x < 2. 47 * Let Z = X*X + Y*Y. Then Z = 2**(nx+nx) * z, where z = x*x + y*y. 48 * Note that z < 8. 49 * Let Z = x*x + y*y. Z can be normalized as Z = 2**N * z, 1 <= z < 2. 50 * We further break down z into 1 + zk + zh + zt, where 51 * zk = K*(2**-7) matches z to 7.5 significant bits, 0 <= K <= 2**(-7)-1 52 * zh = (z-zk) rounded to half of the current significant bits 53 * zt = (z-zk-zh) rounded. 54 * 55 * z - (1+zk) (zh+zt) 56 * Let s = ------------ = ---------------, then 57 * z + (1+zk) 2(1+zk)+zh+zt 58 * z 59 * log(Z) = N*log2 + log(z) = N*log2 + log(1+zk) + log(------) 60 * 1+zk 61 * 1+s 62 * = N * log2 + log(1 +zk) + log(---) 63 * 1-s 64 * 65 * 3 5 66 * = N*log2 + log(1+zk) + 2s + 1/12(2s) + 1/80(2s) + ... 67 * 68 * 69 * Note 1. For IEEE double precision, a fifteen degree odd polynomial 70 * 2s + P1*(2s)^3 + P2*(2s)^5 + P3*(2s)^7 + ... + P7*(2s)^15 71 * is generated by a special remez algorithm to 72 * approx log((1+s)/(1-s)) accurte to 145 bits. 73 * Note 2. 2s can be computed accurately as s2h+s2t by 74 * r = 2/((zh+zt)+2(1+zk)) 75 * s2 = r*(zh+zt) 76 * s2h = s2 rounded to double; v = 0.5*s2h; 77 * s2t = r*((((zh-s2h*(1+zk))-v*zh)+zt)-v*zt) 78 */ 79 80 static const long double zero = 0.0L, 81 half = 0.5L, 82 two = 2.0L, 83 two240 = 1.7668470647783843295832975007429185158274839e+72L; /* 2^240 */ 84 85 /* first 48 bits of ln2 */ 86 static const long double 87 ln2_h = 0.693147180559943620892227045260369777679443359375L, 88 ln2_t = 1.68852500507619780679039605677498525525412068e-15L, 89 P1 = .083333333333333333333333333333333333341023785768375L, 90 P2 = .01249999999999999999999999999999679085402075766159375L, 91 P3 = .002232142857142857142857143310092047621284490564671875L, 92 P4 = .00043402777777777777774746781319264872413156956512109375L, 93 P5 = .0000887784090909101756336594019277185263940665468935546875L, 94 P6 = .000018780048055589639895360927834628371268354778446533203125L, 95 P7 = .000004069227854328982921366736003458838031087153635406494140625L; 96 97 /* 98 * T[2k, 2k+1] = log(1+k*2**-7) for k = 0, ..., 2**7 - 1, 99 * with T[2k] * 2^48 is an int 100 */ 101 static const long double TBL_log1k[] = { 102 0.0000000000000000000000000000000000000000e+00L, 103 0.0000000000000000000000000000000000000000e+00L, 104 7.7821404420532758194894995540380477905273e-03L, 105 1.6731279734005070987158875984584325351222e-15L, 106 1.5504186535963526694104075431823730468750e-02L, 107 1.7274567499706106231054091184928671990316e-15L, 108 2.3167059281533397552266251295804977416992e-02L, 109 9.8067653290966648493916241687661877474892e-16L, 110 3.0771658666751022792595904320478439331055e-02L, 111 2.6655784323032762937247606420524589813624e-15L, 112 3.8318864302134159061097307130694389343262e-02L, 113 2.4401326580179931029010027013316092332340e-15L, 114 4.5809536031292452662455616518855094909668e-02L, 115 1.7505042236510958082472042641283104263139e-15L, 116 5.3244514518809182845870964229106903076172e-02L, 117 3.1000199992295574218738634002122149891138e-15L, 118 6.0624621816433688081815489567816257476807e-02L, 119 1.1544987906424726040058093958345197512800e-15L, 120 6.7950661908504628172522643581032752990723e-02L, 121 3.1212220426341915966610439115772728417386e-15L, 122 7.5223421237584631171557703055441379547119e-02L, 123 2.8945270476369282210350897509258766743153e-15L, 124 8.2443669211073711267090402543544769287109e-02L, 125 8.8000106966612476303662698634483335676886e-16L, 126 8.9612158689686083334891009144484996795654e-02L, 127 1.0492850604602339995319895311151740799226e-15L, 128 9.6729626458550654888313147239387035369873e-02L, 129 4.5740725790924807640164516707244620870662e-16L, 130 1.0379679368164218544734467286616563796997e-01L, 131 1.3793787171308978090503366050174239822054e-15L, 132 1.1081436634028918319927470292896032333374e-01L, 133 9.3099553146639425160476473362380086036919e-16L, 134 1.1778303565638026384476688690483570098877e-01L, 135 3.1906940272225656860040797111813146690890e-15L, 136 1.2470347850095464536934741772711277008057e-01L, 137 2.5904940590976537504984110469214193890052e-15L, 138 1.3157635778871679121948545798659324645996e-01L, 139 2.4813692306707028899159917911012100567219e-15L, 140 1.3840232285911824305912887211889028549194e-01L, 141 8.9262619700148275890190121571708972000380e-16L, 142 1.4518200984449691759436973370611667633057e-01L, 143 9.7968756533003444764719201050911636480025e-16L, 144 1.5191604202583874894116888754069805145264e-01L, 145 3.2261306345373561864598749471119213018106e-15L, 146 1.5860503017663774016909883357584476470947e-01L, 147 8.4392427234104999681053621980394827998735e-16L, 148 1.6524957289530561865831259638071060180664e-01L, 149 1.5442172988528965297119225948270579746101e-15L, 150 1.7185025692665689689420105423778295516968e-01L, 151 2.3254458978918173643097657009894831132739e-15L, 152 1.7840765747281750464026117697358131408691e-01L, 153 7.9247913906453736065426776912520942036896e-16L, 154 1.8492233849401173984006163664162158966064e-01L, 155 2.5282384195601762803134514624610774126020e-16L, 156 1.9139485299962899489401024766266345977783e-01L, 157 4.5971528855989864541366920731297729269228e-16L, 158 1.9782574332991842425144568551331758499146e-01L, 159 1.4561111263856836438840838027526567191527e-15L, 160 2.0421554142868814096800633706152439117432e-01L, 161 2.7505358140491347148810394262840919337709e-15L, 162 2.1056476910734645002776233013719320297241e-01L, 163 3.1876417904825951583107481283088861928977e-15L, 164 2.1687393830061196808856038842350244522095e-01L, 165 2.3915305291373208450532580201045871599499e-15L, 166 2.2314355131420882116799475625157356262207e-01L, 167 9.3459830033405826094075253077304795996257e-16L, 168 2.2937410106484534821902343537658452987671e-01L, 169 4.8177245728966955534167425511952551974164e-16L, 170 2.3556607131276408040321257431060075759888e-01L, 171 2.8286743756446304426525380844720043381780e-15L, 172 2.4171993688714366044223424978554248809814e-01L, 173 1.5077020732661279714120052415509585052975e-15L, 174 2.4783616390458007572306087240576744079590e-01L, 175 1.1810575418933407573072030113600980623171e-15L, 176 2.5391520998096339667426946107298135757446e-01L, 177 4.7463053836833625309891834934881898560705e-17L, 178 2.5995752443692410338371701072901487350464e-01L, 179 1.9635883624838132961710716735786266795913e-15L, 180 2.6596354849713677026556979399174451828003e-01L, 181 1.1710735561325457988709887923652142233351e-15L, 182 2.7193371548364098089223261922597885131836e-01L, 183 7.7793943687530702031066421537496360004376e-16L, 184 2.7786845100345303194444568362087011337280e-01L, 185 3.2742419043493025311197092322146237692165e-15L, 186 2.8376817313064250924981024581938982009888e-01L, 187 2.0890970909765308649465619266075677112425e-15L, 188 2.8963329258304071345264674164354801177979e-01L, 189 1.9634262463138821209582240742801727823629e-15L, 190 2.9546421289383317798638017848134040832520e-01L, 191 2.6984003017275736237868564402005801750600e-15L, 192 3.0126133057816062432721082586795091629028e-01L, 193 1.1566856647123658045763670687640673680383e-15L, 194 3.0702503529490954292668902780860662460327e-01L, 195 2.3191484355127267712770857311812090801833e-15L, 196 3.1275571000389490450288576539605855941772e-01L, 197 1.9838833607942922604727420618882220398852e-15L, 198 3.1845373111853447767316538374871015548706e-01L, 199 1.3813708182984188944010814590398164268227e-16L, 200 3.2411946865421015218089451082050800323486e-01L, 201 1.8239097762496144793489474731253815376404e-15L, 202 3.2975328637246548169059678912162780761719e-01L, 203 2.5001238260227991620033344720809714552230e-15L, 204 3.3535554192113536942088103387504816055298e-01L, 205 2.4608362985459391180385214539620341910962e-15L, 206 3.4092658697059263772644044365733861923218e-01L, 207 5.7257864875612301758921090406373771458003e-16L, 208 3.4646676734620740489845047704875469207764e-01L, 209 1.1760200117113770182586341947822306069951e-15L, 210 3.5197642315717558858523261733353137969971e-01L, 211 2.5960702148389259075462896448369304790506e-15L, 212 3.5745588892180180096147523727267980575562e-01L, 213 1.9732645342528682246686790561260072184839e-15L, 214 3.6290549368936808605212718248367309570312e-01L, 215 3.6708569716349381675043725477739939978160e-16L, 216 3.6832556115870573876236448995769023895264e-01L, 217 1.9142858656640927085879445412821643247628e-15L, 218 3.7371640979358389245135185774415731430054e-01L, 219 1.8836966497497166619234389157276681281343e-16L, 220 3.7907835293496816575498087331652641296387e-01L, 221 1.2926358724723144934459175417385013725801e-15L, 222 3.8441169891033055705520382616668939590454e-01L, 223 1.4826795862363146014726140088145939341729e-15L, 224 3.8971675114002479745067830663174390792847e-01L, 225 4.1591978529737177695912258866565331189698e-16L, 226 3.9499380824086571806219581048935651779175e-01L, 227 3.2600441982258756252505182317625310732365e-15L, 228 4.0024316412701210765590076334774494171143e-01L, 229 5.9927342433864738622836851475469574662703e-16L, 230 4.0546510810816371872533636633306741714478e-01L, 231 6.6325267674913128171942721503283748008372e-16L, 232 4.1065992498526782128465129062533378601074e-01L, 233 5.6464965491255048900165082436455718077885e-16L, 234 4.1582789514371043537721561733633279800415e-01L, 235 5.3023611327561856950735176370587227509442e-16L, 236 4.2096929464412724541944044176489114761353e-01L, 237 2.3907094267197419048248363335257046791153e-15L, 238 4.2608439531089814522601955104619264602661e-01L, 239 1.9178985253285492839728700574592375309985e-15L, 240 4.3117346481836804628073878120630979537964e-01L, 241 3.2945784336977492852031005044499611665595e-15L, 242 4.3623676677491474151793227065354585647583e-01L, 243 3.3288311090524075754441878570852962903891e-15L, 244 4.4127456080487448275562201160937547683716e-01L, 245 7.4673387443005192574852544613692268411229e-16L, 246 4.4628710262841764233598951250314712524414e-01L, 247 1.8691966006681165218815050615460959199251e-15L, 248 4.5127464413945617138779198285192251205444e-01L, 249 2.4137569004002270899666314791611479063976e-15L, 250 4.5623743348158640742440184112638235092163e-01L, 251 1.1869564036970375473975162509216610120281e-15L, 252 4.6117571512216670726047595962882041931152e-01L, 253 3.4591075239659690349392915732654828400811e-15L, 254 4.6608972992459740680715185590088367462158e-01L, 255 1.8177514673916038857252366108673570603067e-15L, 256 4.7097971521878889689105562865734100341797e-01L, 257 2.1156558422273990182479555421331461933366e-15L, 258 4.7584590486996347635795245878398418426514e-01L, 259 4.3790725712752039722791012358345927696967e-16L, 260 4.8068852934575190261057286988943815231323e-01L, 261 5.0660455855585733988956280680891477171499e-18L, 262 4.8550781578169832641833636444061994552612e-01L, 263 2.4813834547127501689550526444948043590905e-15L, 264 4.9030398804519137456736643798649311065674e-01L, 265 2.4635829797216592537498738468934647345741e-15L, 266 4.9507726679784980206022737547755241394043e-01L, 267 1.7125377372093652812514167461480115600063e-15L, 268 4.9982786955644797899367404170334339141846e-01L, 269 1.3508276573735437007500942002018098437396e-15L, 270 5.0455601075239187025545106735080480575562e-01L, 271 3.4168028574643873701242268618467347998876e-15L, 272 5.0926190178980590417268103919923305511475e-01L, 273 2.0426313938800290907697638200502614622891e-15L, 274 5.1394575110223428282552049495279788970947e-01L, 275 3.3975485593321419703400672813719873194659e-17L, 276 5.1860776420804555186805373523384332656860e-01L, 277 8.0284923261130955371987633083003284697416e-17L, 278 5.2324814376454753528378205373883247375488e-01L, 279 3.0123302517119603836788558832352723470118e-16L, 280 5.2786708962084105678513878956437110900879e-01L, 281 1.3283287534282139298545497336570406582397e-15L, 282 5.3246479886946929127589100971817970275879e-01L, 283 2.5525980327137419625398485590148417041921e-15L, 284 5.3704146589688050994482182431966066360474e-01L, 285 3.1446219074198341716354190061340477078626e-15L, 286 5.4159728243274329884116014000028371810913e-01L, 287 1.0727353821639001503808606766770295812627e-15L, 288 5.4613243759813556721383065450936555862427e-01L, 289 8.3168566554721843605240702438699163825794e-17L, 290 5.5064711795266063631970610003918409347534e-01L, 291 1.6429402420791657293666192255419538448840e-15L, 292 5.5514150754050106684189813677221536636353e-01L, 293 5.2587358222274368868380660194332415847228e-16L, 294 5.5961578793542088305912329815328121185303e-01L, 295 1.8032117652023735453816330571171114110385e-15L, 296 5.6407013828480145889443519990891218185425e-01L, 297 1.5071769490901812785299634348367857600711e-15L, 298 5.6850473535266843327917740680277347564697e-01L, 299 2.7879956135806418878792935692629147550413e-16L, 300 5.7291975356178426181941176764667034149170e-01L, 301 1.2472733449589795907271346997596471822345e-15L, 302 5.7731536503482061561953742057085037231445e-01L, 303 2.9886985746409486460291929160223207644146e-15L, 304 5.8169173963462128540413687005639076232910e-01L, 305 1.1971164738836689815783808674399742176950e-15L, 306 5.8604904500357690722012193873524665832520e-01L, 307 1.3016839974975520776911897855504474452726e-15L, 308 5.9038744660217545856539800297468900680542e-01L, 309 9.1607651870514890975077236127894522134392e-16L, 310 5.9470710774668944509357970673590898513794e-01L, 311 3.3444207638397932963480545729233567201211e-15L, 312 5.9900818964608149030937056522816419601440e-01L, 313 1.9090722294592334873060460706130642200729e-15L, 314 6.0329085143808214297678205184638500213623e-01L, 315 2.1193638031348149256035110177854940281795e-15L, 316 6.0755525022453937822319858241826295852661e-01L, 317 2.4172778865703728624133665395876418941354e-15L, 318 6.1180154110599005434778518974781036376953e-01L, 319 2.8491821045766810044199163148675291775782e-15L, 320 6.1602987721551372146677749697118997573853e-01L, 321 2.9818078843122551067455400545109858745295e-16L, 322 6.2024040975185457114093878772109746932983e-01L, 323 2.9577105558448461493874424529516311623184e-15L, 324 6.2443328801189323939979658462107181549072e-01L, 325 2.6164274215943360130441858075903119505815e-16L, 326 6.2860865942237253989333112258464097976685e-01L, 327 1.5978509770831895426601797458058854400463e-15L, 328 6.3276666957103699928666173946112394332886e-01L, 329 8.3025912472904245581515990140161946934461e-16L, 330 6.3690746223706895534633076749742031097412e-01L, 331 2.7627416365968377888021629180796328536455e-16L, 332 6.4103117942092779912854894064366817474365e-01L, 333 3.4919270523937617243719652995048419893186e-15L, 334 6.4513796137358170312836591619998216629028e-01L, 335 2.9985368625799347497396478978681548584217e-15L, 336 6.4922794662510696639401430729776620864868e-01L, 337 2.8524968256626075449136225882322854909611e-15L, 338 6.5330127201274379444839723873883485794067e-01L, 339 1.8443102186424720390266302263929355424008e-15L, 340 6.5735807270835877602621621917933225631714e-01L, 341 1.2541156738040666039091970075936624723645e-15L, 342 6.6139848224536379461824253667145967483521e-01L, 343 1.2136419933020381912633127333149145382797e-15L, 344 6.6542263254508782210905337706208229064941e-01L, 345 2.6268410392329445778904988886114643307320e-15L, 346 6.6943065394262646350398426875472068786621e-01L, 347 2.8037949010021747828222575923191438798877e-15L, 348 6.7342267521216570003161905333399772644043e-01L, 349 1.0202663413354670195383104149875619397268e-15L, 350 6.7739882359180469961756898555904626846313e-01L, 351 1.4411921136244383020300914304078010801275e-15L, 352 6.8135922480790256372529256623238325119019e-01L, 353 5.0522277899333570619054540068138110661023e-16L, 354 6.8530400309891703614084690343588590621948e-01L, 355 2.3804032011755313470802014258958896193599e-15L, 356 6.8923328123880622797514661215245723724365e-01L, 357 2.7523497677256621466659891416404053623832e-15L, 358 }; 359 360 /* 361 * Compute N*log2 + log(1+zk+zh+zt) in extra precision 362 */ 363 static long double 364 k_log_NKzl(int N, int K, long double zh, long double *zt) 365 { 366 long double y, r, w, s2, s2h, s2t, t, zk, v, P; 367 double dzk; 368 369 #if !defined(__x86) 370 unsigned lx, ly; 371 int j; 372 #endif 373 374 ((int *)&dzk)[HIWORD] = 0x3ff00000 + (K << 13); 375 ((int *)&dzk)[LOWORD] = 0; 376 t = zh + (*zt); 377 zk = (long double)dzk; 378 r = two / (t + two * zk); 379 s2h = s2 = r * t; 380 /* split s2 into correctly rounded half */ 381 382 #if defined(__x86) 383 ((unsigned *)&s2h)[0] = 0; /* 32 bits chopped */ 384 #else 385 lx = ((unsigned *)&s2h)[2]; /* 56 bits rounded */ 386 j = ((lx >> 24) + 1) >> 1; 387 ((unsigned *)&s2h)[2] = (j << 25); 388 lx = ((unsigned *)&s2h)[1]; 389 ly = lx + (j >> 7); 390 ((unsigned *)&s2h)[1] = ly; 391 ((unsigned *)&s2h)[0] += (ly == 0 && lx != 0); 392 ((unsigned *)&s2h)[3] = 0; 393 #endif 394 395 v = half * s2h; 396 w = s2 * s2; 397 s2t = r * ((((zh - s2h * zk) - v * zh) + (*zt)) - v * (*zt)); 398 P = s2t + (w * s2) * ((P1 + w * P2) + (w * w) * ((P3 + w * P4) + (w * 399 w) * (P5 + w * P6 + (w * w) * P7))); 400 P += N * ln2_t + TBL_log1k[K + K + 1]; 401 t = N * ln2_h + TBL_log1k[K + K]; 402 y = t + (P + s2h); 403 P -= ((y - t) - s2h); 404 *zt = P; 405 return (y); 406 } 407 408 long double 409 __k_clog_rl(long double x, long double y, long double *er) 410 { 411 long double t1, t2, t3, t4, tk, z, wh, w, zh, zk; 412 int n, k, ix, iy, iz, nx, ny, nz, i; 413 double dk; 414 415 #if !defined(__x86) 416 int j; 417 unsigned lx, ly; 418 #endif 419 420 ix = HI_XWORD(x) & ~0x80000000; 421 iy = HI_XWORD(y) & ~0x80000000; 422 y = fabsl(y); 423 x = fabsl(x); 424 425 if (ix < iy || (ix < 0x7fff0000 && ix == iy && x < y)) { 426 /* force x >= y */ 427 tk = x; 428 x = y; 429 y = tk; 430 n = ix, ix = iy; 431 iy = n; 432 } 433 434 *er = zero; 435 nx = ix >> 16; 436 ny = iy >> 16; 437 438 if (nx >= 0x7fff) { /* x or y is Inf or NaN */ 439 if (isinfl(x)) 440 return (x); 441 else if (isinfl(y)) 442 return (y); 443 else 444 return (x + y); 445 } 446 447 /* 448 * for tiny y:(double y < 2^-35, extended y < 2^-46, quad y < 2^-70) 449 * 450 * log(sqrt(1 + y**2)) = y**2 / 2 - y**4 / 8 + ... = y**2 / 2 451 */ 452 #if defined(__x86) 453 if (x == 1.0L && ny < (0x3fff - 46)) { 454 #else 455 if (x == 1.0L && ny < (0x3fff - 70)) { 456 #endif 457 458 t2 = y * y; 459 460 if (ny >= 8305) { /* compute er = tail of t2 */ 461 dk = (double)y; 462 463 #if defined(__x86) 464 ((unsigned *)&dk)[LOWORD] &= 0xfffe0000; 465 #endif 466 467 wh = (long double)dk; 468 *er = half * ((y - wh) * (y + wh) - (t2 - wh * wh)); 469 } 470 471 return (half * t2); 472 } 473 474 /* 475 * x or y is subnormal or zero 476 */ 477 if (nx == 0) { 478 if (x == 0.0L) { 479 return (-1.0L / x); 480 } else { 481 x *= two240; 482 y *= two240; 483 ix = HI_XWORD(x); 484 iy = HI_XWORD(y); 485 nx = (ix >> 16) - 240; 486 ny = (iy >> 16) - 240; 487 488 /* guard subnormal flush to 0 */ 489 if (x == 0.0L) 490 return (-1.0L / x); 491 } 492 } else if (ny == 0) { /* y subnormal, scale it */ 493 y *= two240; 494 iy = HI_XWORD(y); 495 ny = (iy >> 16) - 240; 496 } 497 498 n = nx - ny; 499 500 /* 501 * When y is zero or when x >> y, i.e., n > 62, 78, 122 for DBLE, 502 * EXTENDED, QUAD respectively, 503 * log(x) = log(sqrt(x * x + y * y)) to 27 extra bits. 504 */ 505 506 #if defined(__x86) 507 if (n > 78 || y == 0.0L) { 508 #else 509 if (n > 122 || y == 0.0L) { 510 #endif 511 512 XFSCALE(x, (0x3fff - (ix >> 16))); 513 i = ((ix & 0xffff) + 0x100) >> 9; /* 7.5 bits of x */ 514 zk = 1.0L + ((long double)i) * 0.0078125L; 515 z = x - zk; 516 dk = (double)z; 517 518 #if defined(__x86) 519 ((unsigned *)&dk)[LOWORD] &= 0xfffe0000; 520 #endif 521 522 zh = (long double)dk; 523 k = i & 0x7f; /* index of zk */ 524 n = nx - 0x3fff; 525 *er = z - zh; 526 527 if (i == 0x80) { /* if zk = 2.0, adjust scaling */ 528 n += 1; 529 zh *= 0.5L; 530 *er *= 0.5L; 531 } 532 533 w = k_log_NKzl(n, k, zh, er); 534 } else { 535 /* 536 * compute z = x*x + y*y 537 */ 538 XFSCALE(x, (0x3fff - (ix >> 16))); 539 XFSCALE(y, (0x3fff - n - (iy >> 16))); 540 ix = (ix & 0xffff) | 0x3fff0000; 541 iy = (iy & 0xffff) | (0x3fff0000 - (n << 16)); 542 nx -= 0x3fff; 543 t1 = x * x; 544 t2 = y * y; 545 wh = x; 546 547 /* split x into correctly rounded half */ 548 #if defined(__x86) 549 ((unsigned *)&wh)[0] = 0; /* 32 bits chopped */ 550 #else 551 lx = ((unsigned *)&wh)[2]; /* 56 rounded */ 552 j = ((lx >> 24) + 1) >> 1; 553 ((unsigned *)&wh)[2] = (j << 25); 554 lx = ((unsigned *)&wh)[1]; 555 ly = lx + (j >> 7); 556 ((unsigned *)&wh)[1] = ly; 557 ((unsigned *)&wh)[0] += (ly == 0 && lx != 0); 558 ((unsigned *)&wh)[3] = 0; 559 #endif 560 561 z = t1 + t2; 562 563 /* 564 * higher precision simulation x*x = t1 + t3, y*y = t2 + t4 565 */ 566 tk = wh - x; 567 t3 = tk * tk - (two * wh * tk - (wh * wh - t1)); 568 wh = y; 569 570 /* split y into correctly rounded half */ 571 #if defined(__x86) 572 ((unsigned *)&wh)[0] = 0; /* 32 bits chopped */ 573 #else 574 ly = ((unsigned *)&wh)[2]; /* 56 bits rounded */ 575 j = ((ly >> 24) + 1) >> 1; 576 ((unsigned *)&wh)[2] = (j << 25); 577 lx = ((unsigned *)&wh)[1]; 578 ly = lx + (j >> 7); 579 ((unsigned *)&wh)[1] = ly; 580 ((unsigned *)&wh)[0] += (ly == 0 && lx != 0); 581 ((unsigned *)&wh)[3] = 0; 582 #endif 583 584 tk = wh - y; 585 t4 = tk * tk - (two * wh * tk - (wh * wh - t2)); 586 587 /* 588 * find zk matches z to 7.5 bits 589 */ 590 iz = HI_XWORD(z); 591 k = ((iz & 0xffff) + 0x100) >> 9; /* 7.5 bits of x */ 592 nz = (iz >> 16) - 0x3fff + (k >> 7); 593 k &= 0x7f; 594 zk = 1.0L + ((long double)k) * 0.0078125L; 595 596 if (nz == 1) 597 zk += zk; 598 else if (nz == 2) 599 zk *= 4.0L; 600 else if (nz == 3) 601 zk *= 8.0L; 602 603 /* 604 * order t1, t2, t3, t4 according to their size 605 */ 606 if (t2 >= fabsl(t3)) { 607 if (fabsl(t3) < fabsl(t4)) { 608 wh = t3; 609 t3 = t4; 610 t4 = wh; 611 } 612 } else { 613 wh = t2; 614 t2 = t3; 615 t3 = wh; 616 } 617 618 /* 619 * higher precision simulation: x * x + y * y = t1 + t2 + t3 + t4 620 * = zk(7 bits) + zh(24 bits) + *er(tail) and call k_log_NKz 621 */ 622 tk = t1 - zk; 623 zh = ((tk + t2) + t3) + t4; 624 625 /* split zh into correctly rounded half */ 626 #if defined(__x86) 627 ((unsigned *)&zh)[0] = 0; 628 #else 629 ly = ((unsigned *)&zh)[2]; 630 j = ((ly >> 24) + 1) >> 1; 631 ((unsigned *)&zh)[2] = (j << 25); 632 lx = ((unsigned *)&zh)[1]; 633 ly = lx + (j >> 7); 634 ((unsigned *)&zh)[1] = ly; 635 ((unsigned *)&zh)[0] += (ly == 0 && lx != 0); 636 ((unsigned *)&zh)[3] = 0; 637 #endif 638 639 w = fabsl(zh); 640 641 if (w >= fabsl(t2)) { 642 *er = (((tk - zh) + t2) + t3) + t4; 643 } else { 644 if (n == 0) { 645 wh = half * zk; 646 wh = (t1 - wh) - (wh - t2); 647 } else { 648 wh = tk + t2; 649 } 650 651 if (w >= fabsl(t3)) { 652 *er = ((wh - zh) + t3) + t4; 653 } else { 654 z = t3; 655 t3 += t4; 656 t4 -= t3 - z; 657 658 if (w >= fabsl(t3)) 659 *er = ((wh - zh) + t3) + t4; 660 else 661 *er = ((wh + t3) - zh) + t4; 662 } 663 } 664 665 if (nz == 3) { 666 zh *= 0.125L; 667 *er *= 0.125L; 668 } else if (nz == 2) { 669 zh *= 0.25L; 670 *er *= 0.25L; 671 } else if (nz == 1) { 672 zh *= half; 673 *er *= half; 674 } 675 676 nz += nx + nx; 677 w = half * k_log_NKzl(nz, k, zh, er); 678 *er *= half; 679 } 680 681 return (w); 682 }