Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -16,22 +16,24 @@
  * fields enclosed by brackets "[]" replaced with your own identifying
  * information: Portions Copyright [yyyy] [name of copyright owner]
  *
  * CDDL HEADER END
  */
+
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
 #include "libm.h"               /* __k_clog_r */
 #include "complex_wrapper.h"
 
-/* INDENT OFF */
+
 /*
  * double __k_clog_r(double x, double y, double *e);
  *
  * Compute real part of complex natural logarithm of x+iy in extra precision
  *

@@ -68,163 +70,161 @@
  *         r = 2/((zh+zt)+2(1+zk))
  *         s2 = r*(zh+zt)
  *         s2h = s2 rounded to float;  v = 0.5*s2h;
  *         s2t = r*((((zh-s2h*(1+zk))-v*zh)+zt)-v*zt)
  */
-/* INDENT ON */
 
-static const double
-zero  = 0.0,
-half  = 0.5,
-two   = 2.0,
-two120 = 1.32922799578491587290e+36,  /* 2^120 */
-ln2_h  = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
-ln2_t  = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-P1 =  .083333333333333351554108717377986202224765262191125,
-P2 =  .01249999999819227552330700574633767185896464873834375,
-P3 =  .0022321938458645656605471559987512516234702284287265625;
-
-/*
-* T[2k, 2k+1] = log(1+k*2^-7) for k = 0, ..., 2^7 - 1,
-* with T[2k] * 2^40 is an int
-*/
+static const double zero = 0.0,
+        half = 0.5,
+        two = 2.0,
+        two120 = 1.32922799578491587290e+36,            /* 2^120 */
+        ln2_h = 6.93147180369123816490e-01,     /* 3fe62e42 fee00000 */
+        ln2_t = 1.90821492927058770002e-10,     /* 3dea39ef 35793c76 */
+        P1 = .083333333333333351554108717377986202224765262191125,
+        P2 = .01249999999819227552330700574633767185896464873834375,
+        P3 = .0022321938458645656605471559987512516234702284287265625;
 
+/*
+ * T[2k, 2k+1] = log(1+k*2^-7) for k = 0, ..., 2^7 - 1,
+ * with T[2k] * 2^40 is an int
+ */
 static const double TBL_log1k[] = {
-0.00000000000000000000e+00,  0.00000000000000000000e+00,
-7.78214044203195953742e-03,  2.29894100462035112076e-14,
-1.55041865355087793432e-02,  4.56474807636434698847e-13,
-2.31670592811497044750e-02,  3.84673753843363762372e-13,
-3.07716586667083902285e-02,  4.52981425779092882775e-14,
-3.83188643018002039753e-02,  3.36395218465265063278e-13,
-4.58095360309016541578e-02,  3.92549008891706208826e-13,
-5.32445145181554835290e-02,  6.56799336898521766515e-13,
-6.06246218158048577607e-02,  6.29984819938331143924e-13,
-6.79506619080711971037e-02,  4.36552290856295281946e-13,
-7.52234212368421140127e-02,  7.45411685916941618656e-13,
-8.24436692109884461388e-02,  8.61451293608781447223e-14,
-8.96121586893059429713e-02,  3.81189648692113819551e-13,
-9.67296264579999842681e-02,  5.51128027471986918274e-13,
-1.03796793680885457434e-01,  7.58107392301637643358e-13,
-1.10814366339582193177e-01,  7.07921017612766061755e-13,
-1.17783035655520507134e-01,  8.62947404296943765415e-13,
-1.24703478500123310369e-01,  8.33925494898414856118e-13,
-1.31576357788617315236e-01,  1.01957352237084734958e-13,
-1.38402322858382831328e-01,  7.36304357708705134617e-13,
-1.45182009843665582594e-01,  8.32314688404647202319e-13,
-1.51916042025732167531e-01,  1.09807540998552379211e-13,
-1.58605030175749561749e-01,  8.89022343972466269900e-13,
-1.65249572894936136436e-01,  3.71026439894104998399e-13,
-1.71850256926518341061e-01,  1.40881279371111350341e-13,
-1.78407657472234859597e-01,  5.83437522462346671423e-13,
-1.84922338493379356805e-01,  6.32635858668445232946e-13,
-1.91394852999110298697e-01,  5.19155912393432989209e-13,
-1.97825743329303804785e-01,  6.16075577558872326221e-13,
-2.04215541428311553318e-01,  3.79338185766902218086e-13,
-2.10564769106895255391e-01,  4.54382278998146218219e-13,
-2.16873938300523150247e-01,  9.12093724991498410553e-14,
-2.23143551314024080057e-01,  1.85675709597960106615e-13,
-2.29374101064422575291e-01,  4.23254700234549300166e-13,
-2.35566071311950508971e-01,  8.16400106820959292914e-13,
-2.41719936886511277407e-01,  6.33890736899755317832e-13,
-2.47836163904139539227e-01,  4.41717553713155466566e-13,
-2.53915209980732470285e-01,  2.30973852175869394892e-13,
-2.59957524436686071567e-01,  2.39995404842117353465e-13,
-2.65963548496984003577e-01,  1.53937761744554075681e-13,
-2.71933715483100968413e-01,  5.40790418614551497411e-13,
-2.77868451003087102436e-01,  3.69203750820800887027e-13,
-2.83768173129828937817e-01,  8.15660529536291275782e-13,
-2.89633292582948342897e-01,  9.43339818951269030846e-14,
-2.95464212893421063200e-01,  4.14813187042585679830e-13,
-3.01261330577290209476e-01,  8.71571536970835103739e-13,
-3.07025035294827830512e-01,  8.40315630479242455758e-14,
-3.12755710003330023028e-01,  5.66865358290073900922e-13,
-3.18453731118097493891e-01,  4.37121919574291444278e-13,
-3.24119468653407238889e-01,  8.04737201185162774515e-13,
-3.29753286371669673827e-01,  7.98307987877335024112e-13,
-3.35355541920762334485e-01,  3.75495772572598557174e-13,
-3.40926586970454081893e-01,  1.39128412121975659358e-13,
-3.46466767346100823488e-01,  1.07757430375726404546e-13,
-3.51976423156884266064e-01,  2.93918591876480007730e-13,
-3.57455888921322184615e-01,  4.81589611172320539489e-13,
-3.62905493689140712377e-01,  2.27740761140395561986e-13,
-3.68325561158599157352e-01,  1.08495696229679121506e-13,
-3.73716409792905324139e-01,  6.78756682315870616582e-13,
-3.79078352934811846353e-01,  1.57612037739694350287e-13,
-3.84411698910298582632e-01,  3.34571026954408237380e-14,
-3.89716751139530970249e-01,  4.94243121138567024911e-13,
-3.94993808240542421117e-01,  3.26556988969071456956e-13,
-4.00243164126550254878e-01,  4.62452051668403792833e-13,
-4.05465108107819105498e-01,  3.45276479520397708744e-13,
-4.10659924984429380856e-01,  8.39005077851830734139e-13,
-4.15827895143593195826e-01,  1.17769787513692141889e-13,
-4.20969294643327884842e-01,  8.01751287156832458079e-13,
-4.26084395310681429692e-01,  2.18633432932159103190e-13,
-4.31173464818130014464e-01,  2.41326394913331314894e-13,
-4.36236766774527495727e-01,  3.90574622098307022265e-13,
-4.41274560804231441580e-01,  6.43787909737320689684e-13,
-4.46287102628048160113e-01,  3.71351419195920213229e-13,
-4.51274644138720759656e-01,  7.37825488412103968058e-13,
-4.56237433480964682531e-01,  6.22911850193784704748e-13,
-4.61175715121498797089e-01,  6.71369279138460114513e-13,
-4.66089729924533457961e-01,  6.57665976858006147528e-14,
-4.70979715218163619284e-01,  6.27393263311115598424e-13,
-4.75845904869856894948e-01,  1.07019317621142549209e-13,
-4.80688529345570714213e-01,  1.81193463664411114729e-13,
-4.85507815781602403149e-01,  9.84046527823262695501e-14,
-4.90303988044615834951e-01,  5.78003198945402769376e-13,
-4.95077266797125048470e-01,  7.26466128212511528295e-13,
-4.99827869555701909121e-01,  7.47420700205478712293e-13,
-5.04556010751912253909e-01,  4.83033149495532022300e-13,
-5.09261901789614057634e-01,  1.93889170049107088943e-13,
-5.13945751101346104406e-01,  8.88212395185718544720e-13,
-5.18607764207445143256e-01,  6.00488896640545761201e-13,
-5.23248143764249107335e-01,  2.98729182044413286731e-13,
-5.27867089620485785417e-01,  3.56599696633478298092e-13,
-5.32464798869114019908e-01,  3.57823965912763837621e-13,
-5.37041465896436420735e-01,  4.47233831757482468946e-13,
-5.41597282432121573947e-01,  6.22797629172251525649e-13,
-5.46132437597407260910e-01,  7.28389472720657362987e-13,
-5.50647117952394182794e-01,  2.68096466152116723636e-13,
-5.55141507539701706264e-01,  7.99886451312335479470e-13,
-5.59615787935399566777e-01,  2.31194938380053776320e-14,
-5.64070138284478161950e-01,  3.24804121719935740729e-13,
-5.68504735351780254859e-01,  8.88457219261483317716e-13,
-5.72919753561109246220e-01,  6.76262872317054154667e-13,
-5.77315365034337446559e-01,  4.86157758891509033842e-13,
-5.81691739634152327199e-01,  4.70155322075549811780e-13,
-5.86049045003164792433e-01,  4.13416470738355643357e-13,
-5.90387446602107957006e-01,  6.84176364159146659095e-14,
-5.94707107746216934174e-01,  4.75855340044306376333e-13,
-5.99008189645246602595e-01,  8.36796786747576938145e-13,
-6.03290851438032404985e-01,  5.18573553063418286042e-14,
-6.07555250224322662689e-01,  2.19132812293400917731e-13,
-6.11801541105705837253e-01,  2.87066276408616768331e-13,
-6.16029877214714360889e-01,  7.99658758518543977451e-13,
-6.20240409751204424538e-01,  6.53104313776336534177e-13,
-6.24433288011459808331e-01,  4.33692711555820529733e-13,
-6.28608659421843185555e-01,  5.30952189118357790115e-13,
-6.32766669570628437214e-01,  4.09392332186786656392e-13,
-6.36907462236194987781e-01,  8.74243839148582888557e-13,
-6.41031179420679109171e-01,  2.52181884568428814231e-13,
-6.45137961372711288277e-01,  8.73413388168702670246e-13,
-6.49227946624705509748e-01,  4.04309142530119209805e-13,
-6.53301272011958644725e-01,  7.86994033233553225797e-13,
-6.57358072708120744210e-01,  2.39285932153437645135e-13,
-6.61398482245203922503e-01,  1.61085757539324585156e-13,
-6.65422632544505177066e-01,  5.85271884362515112697e-13,
-6.69430653942072240170e-01,  5.57027128793880294600e-13,
-6.73422675211440946441e-01,  7.25773856816637653180e-13,
-6.77398823590920073912e-01,  8.86066898134949155668e-13,
-6.81359224807238206267e-01,  6.64862680714687006264e-13,
-6.85304003098281100392e-01,  6.38316151706465171657e-13,
-6.89233281238557538018e-01,  2.51442307283760746611e-13,
+        0.00000000000000000000e+00, 0.00000000000000000000e+00,
+        7.78214044203195953742e-03, 2.29894100462035112076e-14,
+        1.55041865355087793432e-02, 4.56474807636434698847e-13,
+        2.31670592811497044750e-02, 3.84673753843363762372e-13,
+        3.07716586667083902285e-02, 4.52981425779092882775e-14,
+        3.83188643018002039753e-02, 3.36395218465265063278e-13,
+        4.58095360309016541578e-02, 3.92549008891706208826e-13,
+        5.32445145181554835290e-02, 6.56799336898521766515e-13,
+        6.06246218158048577607e-02, 6.29984819938331143924e-13,
+        6.79506619080711971037e-02, 4.36552290856295281946e-13,
+        7.52234212368421140127e-02, 7.45411685916941618656e-13,
+        8.24436692109884461388e-02, 8.61451293608781447223e-14,
+        8.96121586893059429713e-02, 3.81189648692113819551e-13,
+        9.67296264579999842681e-02, 5.51128027471986918274e-13,
+        1.03796793680885457434e-01, 7.58107392301637643358e-13,
+        1.10814366339582193177e-01, 7.07921017612766061755e-13,
+        1.17783035655520507134e-01, 8.62947404296943765415e-13,
+        1.24703478500123310369e-01, 8.33925494898414856118e-13,
+        1.31576357788617315236e-01, 1.01957352237084734958e-13,
+        1.38402322858382831328e-01, 7.36304357708705134617e-13,
+        1.45182009843665582594e-01, 8.32314688404647202319e-13,
+        1.51916042025732167531e-01, 1.09807540998552379211e-13,
+        1.58605030175749561749e-01, 8.89022343972466269900e-13,
+        1.65249572894936136436e-01, 3.71026439894104998399e-13,
+        1.71850256926518341061e-01, 1.40881279371111350341e-13,
+        1.78407657472234859597e-01, 5.83437522462346671423e-13,
+        1.84922338493379356805e-01, 6.32635858668445232946e-13,
+        1.91394852999110298697e-01, 5.19155912393432989209e-13,
+        1.97825743329303804785e-01, 6.16075577558872326221e-13,
+        2.04215541428311553318e-01, 3.79338185766902218086e-13,
+        2.10564769106895255391e-01, 4.54382278998146218219e-13,
+        2.16873938300523150247e-01, 9.12093724991498410553e-14,
+        2.23143551314024080057e-01, 1.85675709597960106615e-13,
+        2.29374101064422575291e-01, 4.23254700234549300166e-13,
+        2.35566071311950508971e-01, 8.16400106820959292914e-13,
+        2.41719936886511277407e-01, 6.33890736899755317832e-13,
+        2.47836163904139539227e-01, 4.41717553713155466566e-13,
+        2.53915209980732470285e-01, 2.30973852175869394892e-13,
+        2.59957524436686071567e-01, 2.39995404842117353465e-13,
+        2.65963548496984003577e-01, 1.53937761744554075681e-13,
+        2.71933715483100968413e-01, 5.40790418614551497411e-13,
+        2.77868451003087102436e-01, 3.69203750820800887027e-13,
+        2.83768173129828937817e-01, 8.15660529536291275782e-13,
+        2.89633292582948342897e-01, 9.43339818951269030846e-14,
+        2.95464212893421063200e-01, 4.14813187042585679830e-13,
+        3.01261330577290209476e-01, 8.71571536970835103739e-13,
+        3.07025035294827830512e-01, 8.40315630479242455758e-14,
+        3.12755710003330023028e-01, 5.66865358290073900922e-13,
+        3.18453731118097493891e-01, 4.37121919574291444278e-13,
+        3.24119468653407238889e-01, 8.04737201185162774515e-13,
+        3.29753286371669673827e-01, 7.98307987877335024112e-13,
+        3.35355541920762334485e-01, 3.75495772572598557174e-13,
+        3.40926586970454081893e-01, 1.39128412121975659358e-13,
+        3.46466767346100823488e-01, 1.07757430375726404546e-13,
+        3.51976423156884266064e-01, 2.93918591876480007730e-13,
+        3.57455888921322184615e-01, 4.81589611172320539489e-13,
+        3.62905493689140712377e-01, 2.27740761140395561986e-13,
+        3.68325561158599157352e-01, 1.08495696229679121506e-13,
+        3.73716409792905324139e-01, 6.78756682315870616582e-13,
+        3.79078352934811846353e-01, 1.57612037739694350287e-13,
+        3.84411698910298582632e-01, 3.34571026954408237380e-14,
+        3.89716751139530970249e-01, 4.94243121138567024911e-13,
+        3.94993808240542421117e-01, 3.26556988969071456956e-13,
+        4.00243164126550254878e-01, 4.62452051668403792833e-13,
+        4.05465108107819105498e-01, 3.45276479520397708744e-13,
+        4.10659924984429380856e-01, 8.39005077851830734139e-13,
+        4.15827895143593195826e-01, 1.17769787513692141889e-13,
+        4.20969294643327884842e-01, 8.01751287156832458079e-13,
+        4.26084395310681429692e-01, 2.18633432932159103190e-13,
+        4.31173464818130014464e-01, 2.41326394913331314894e-13,
+        4.36236766774527495727e-01, 3.90574622098307022265e-13,
+        4.41274560804231441580e-01, 6.43787909737320689684e-13,
+        4.46287102628048160113e-01, 3.71351419195920213229e-13,
+        4.51274644138720759656e-01, 7.37825488412103968058e-13,
+        4.56237433480964682531e-01, 6.22911850193784704748e-13,
+        4.61175715121498797089e-01, 6.71369279138460114513e-13,
+        4.66089729924533457961e-01, 6.57665976858006147528e-14,
+        4.70979715218163619284e-01, 6.27393263311115598424e-13,
+        4.75845904869856894948e-01, 1.07019317621142549209e-13,
+        4.80688529345570714213e-01, 1.81193463664411114729e-13,
+        4.85507815781602403149e-01, 9.84046527823262695501e-14,
+        4.90303988044615834951e-01, 5.78003198945402769376e-13,
+        4.95077266797125048470e-01, 7.26466128212511528295e-13,
+        4.99827869555701909121e-01, 7.47420700205478712293e-13,
+        5.04556010751912253909e-01, 4.83033149495532022300e-13,
+        5.09261901789614057634e-01, 1.93889170049107088943e-13,
+        5.13945751101346104406e-01, 8.88212395185718544720e-13,
+        5.18607764207445143256e-01, 6.00488896640545761201e-13,
+        5.23248143764249107335e-01, 2.98729182044413286731e-13,
+        5.27867089620485785417e-01, 3.56599696633478298092e-13,
+        5.32464798869114019908e-01, 3.57823965912763837621e-13,
+        5.37041465896436420735e-01, 4.47233831757482468946e-13,
+        5.41597282432121573947e-01, 6.22797629172251525649e-13,
+        5.46132437597407260910e-01, 7.28389472720657362987e-13,
+        5.50647117952394182794e-01, 2.68096466152116723636e-13,
+        5.55141507539701706264e-01, 7.99886451312335479470e-13,
+        5.59615787935399566777e-01, 2.31194938380053776320e-14,
+        5.64070138284478161950e-01, 3.24804121719935740729e-13,
+        5.68504735351780254859e-01, 8.88457219261483317716e-13,
+        5.72919753561109246220e-01, 6.76262872317054154667e-13,
+        5.77315365034337446559e-01, 4.86157758891509033842e-13,
+        5.81691739634152327199e-01, 4.70155322075549811780e-13,
+        5.86049045003164792433e-01, 4.13416470738355643357e-13,
+        5.90387446602107957006e-01, 6.84176364159146659095e-14,
+        5.94707107746216934174e-01, 4.75855340044306376333e-13,
+        5.99008189645246602595e-01, 8.36796786747576938145e-13,
+        6.03290851438032404985e-01, 5.18573553063418286042e-14,
+        6.07555250224322662689e-01, 2.19132812293400917731e-13,
+        6.11801541105705837253e-01, 2.87066276408616768331e-13,
+        6.16029877214714360889e-01, 7.99658758518543977451e-13,
+        6.20240409751204424538e-01, 6.53104313776336534177e-13,
+        6.24433288011459808331e-01, 4.33692711555820529733e-13,
+        6.28608659421843185555e-01, 5.30952189118357790115e-13,
+        6.32766669570628437214e-01, 4.09392332186786656392e-13,
+        6.36907462236194987781e-01, 8.74243839148582888557e-13,
+        6.41031179420679109171e-01, 2.52181884568428814231e-13,
+        6.45137961372711288277e-01, 8.73413388168702670246e-13,
+        6.49227946624705509748e-01, 4.04309142530119209805e-13,
+        6.53301272011958644725e-01, 7.86994033233553225797e-13,
+        6.57358072708120744210e-01, 2.39285932153437645135e-13,
+        6.61398482245203922503e-01, 1.61085757539324585156e-13,
+        6.65422632544505177066e-01, 5.85271884362515112697e-13,
+        6.69430653942072240170e-01, 5.57027128793880294600e-13,
+        6.73422675211440946441e-01, 7.25773856816637653180e-13,
+        6.77398823590920073912e-01, 8.86066898134949155668e-13,
+        6.81359224807238206267e-01, 6.64862680714687006264e-13,
+        6.85304003098281100392e-01, 6.38316151706465171657e-13,
+        6.89233281238557538018e-01, 2.51442307283760746611e-13,
 };
 
 /*
  * Compute N*log2 + log(1+zk+zh+zt) in extra precision
  */
-static double k_log_NKz(int N, int K, double zh, double *zt)
+static double
+k_log_NKz(int N, int K, double zh, double *zt)
 {
         double y, r, w, s2, s2h, s2t, t, zk, v, P;
 
         ((int *)&zk)[HIWORD] = 0x3ff00000 + (K << 13);
         ((int *)&zk)[LOWORD] = 0;

@@ -235,11 +235,11 @@
         v = half * s2h;
         w = s2 * s2;
         s2t = r * ((((zh - s2h * zk) - v * zh) + (*zt)) - v * (*zt));
         P = s2t + (w * s2) * ((P1 + w * P2) + (w * w) * P3);
         P += N * ln2_t + TBL_log1k[K + K + 1];
-        t = N*ln2_h + TBL_log1k[K+K];
+        t = N * ln2_h + TBL_log1k[K + K];
         y = t + (P + s2h);
         P -= ((y - t) - s2h);
         *zt = P;
         return (y);
 }

@@ -253,65 +253,81 @@
 
         ix = (((int *)&x)[HIWORD]) & ~0x80000000;
         lx = ((unsigned *)&x)[LOWORD];
         iy = (((int *)&y)[HIWORD]) & ~0x80000000;
         ly = ((unsigned *)&y)[LOWORD];
-        y = fabs(y); x = fabs(x);
+        y = fabs(y);
+        x = fabs(x);
+
         if (ix < iy || (ix == iy && lx < ly)) {         /* force x >= y */
-                tk = x;  x = y;   y = tk;
-                n = ix, ix = iy; iy = n;
-                n = lx, lx = ly; ly = n;
+                tk = x;
+                x = y;
+                y = tk;
+                n = ix, ix = iy;
+                iy = n;
+                n = lx, lx = ly;
+                ly = n;
         }
+
         *er = zero;
-        nx = ix >> 20; ny = iy >> 20;
+        nx = ix >> 20;
+        ny = iy >> 20;
+
         if (nx >= 0x7ff) {      /* x or y is Inf or NaN */
                 if (ISINF(ix, lx))
                         return (x);
                 else if (ISINF(iy, ly))
                         return (y);
                 else
-                        return (x+y);
+                        return (x + y);
         }
+
 /*
  * for tiny y (double y < 2^-35, extended y < 2^-46, quad y < 2^-70):
  *      log(sqrt(1+y^2)) = (y^2)/2 - (y^4)/8 + ... ~= (y^2)/2
  */
         if ((((ix - 0x3ff00000) | lx) == 0) && ny < (0x3ff - 35))  {
                 t2 = y * y;
+
                 if (ny >= 565) {        /* compute er = tail of t2 */
                         ((int *)&wh)[HIWORD] =  iy;
                         ((unsigned *)&wh)[LOWORD] = ly & 0xf8000000;
                         *er = half * ((y - wh) * (y + wh) - (t2 - wh * wh));
                 }
+
                 return (half * t2);
         }
+
 /*
  * x or y is subnormal or zero
  */
         if (nx == 0) {
-                if ((ix | lx) == 0)
+                if ((ix | lx) == 0) {
                         return (-1.0 / x);
-                else {
+                } else {
                         x *= two120;
                         y *= two120;
                         ix = ((int *)&x)[HIWORD];
                         lx = ((unsigned *)&x)[LOWORD];
                         iy = ((int *)&y)[HIWORD];
                         ly = ((unsigned *)&y)[LOWORD];
                         nx = (ix >> 20) - 120;
                         ny = (iy >> 20) - 120;
+
                         /* guard subnormal flush to 0 */
                         if ((ix | lx) == 0)
                                 return (-1.0 / x);
                 }
         } else if (ny == 0) {   /* y subnormal, scale it */
                 y *= two120;
                 iy = ((int *)&y)[HIWORD];
                 ly = ((unsigned *)&y)[LOWORD];
                 ny = (iy >> 20) - 120;
         }
+
         n = nx - ny;
+
 /*
  * return log(x) when y is zero or x >> y so that
  * log(x) ~ log(sqrt(x*x+y*y)) to 27 extra bits
  * (n > 62 for double, 78 for i386 extended, 122 for quad)
  */

@@ -325,88 +341,119 @@
                 zh = (double)((float)z);
                 i >>= 13;
                 k = i & 0x7f;   /* index of zk */
                 n = nx - 0x3ff;
                 *er = z - zh;
+
                 if (i >> 17) {  /* if zk = 2.0, adjust scaling */
                         n += 1;
-                        zh *= 0.5;  *er *= 0.5;
+                        zh *= 0.5;
+                        *er *= 0.5;
                 }
+
                 w = k_log_NKz(n, k, zh, er);
         } else {
 /*
  * compute z = x*x + y*y
  */
                 ix = (ix & 0xfffff) | 0x3ff00000;
                 iy = (iy & 0xfffff) | (0x3ff00000 - (n << 20));
-                ((int *)&x)[HIWORD] = ix; ((int *)&y)[HIWORD] = iy;
-                t1 = x * x; t2 = y * y;
+                ((int *)&x)[HIWORD] = ix;
+                ((int *)&y)[HIWORD] = iy;
+                t1 = x * x;
+                t2 = y * y;
                 j = ((lx >> 26) + 1) >> 1;
                 ((int *)&wh)[HIWORD] = ix + (j >> 5);
                 ((unsigned *)&wh)[LOWORD] = (j << 27);
-                z = t1+t2;
+                z = t1 + t2;
+
 /*
  * higher precision simulation x*x = t1 + t3, y*y = t2 + t4
  */
                 tk = wh - x;
                 t3 = tk * tk - (two * wh * tk - (wh * wh - t1));
                 j = ((ly >> 26) + 1) >> 1;
                 ((int *)&wh)[HIWORD] = iy + (j >> 5);
                 ((unsigned *)&wh)[LOWORD] = (j << 27);
                 tk = wh - y;
                 t4 = tk * tk - (two * wh * tk - (wh * wh - t2));
+
 /*
  * find zk matches z to 7.5 bits
  */
                 nx -= 0x3ff;
                 iz = ((int *)&z)[HIWORD] + 0x1000;
                 k = (iz >> 13) & 0x7f;
                 nz = (iz >> 20) - 0x3ff;
                 ((int *)&zk)[HIWORD] = iz & 0xffffe000;
                 ((int *)&zk)[LOWORD] = 0;
+
 /*
  * order t1,t2,t3,t4 according to their size
  */
                 if (t2 >= fabs(t3)) {
                         if (fabs(t3) < fabs(t4)) {
-                                wh = t3;  t3 = t4; t4 = wh;
+                                wh = t3;
+                                t3 = t4;
+                                t4 = wh;
                         }
                 } else {
-                        wh = t2; t2 = t3; t3 = wh;
+                        wh = t2;
+                        t2 = t3;
+                        t3 = wh;
                 }
+
 /*
  * higher precision simulation: x * x + y * y = t1 + t2 + t3 + t4
  * = zk (7 bits) + zh (24 bits) + *er (tail) and call k_log_NKz
  */
                 tk = t1 - zk;
                 zh = ((tk + t2) + t3) + t4;
                 ((int *)&zh)[LOWORD] &= 0xe0000000;
                 w = fabs(zh);
-                if (w >= fabs(t2))
+
+                if (w >= fabs(t2)) {
                         *er = (((tk - zh) + t2) + t3) + t4;
-                else {
+                } else {
                         if (n == 0) {
                                 wh = half * zk;
                                 wh = (t1 - wh) - (wh - t2);
-                        } else
+                        } else {
                                 wh = tk + t2;
-                        if (w >= fabs(t3))
+                        }
+
+                        if (w >= fabs(t3)) {
                                 *er = ((wh - zh) + t3) + t4;
-                        else {
+                        } else {
                                 z = t3;
                                 t3 += t4;
                                 t4 -= t3 - z;
+
                                 if (w >= fabs(t3))
                                         *er = ((wh - zh) + t3) + t4;
                                 else
                                         *er = ((wh + t3) - zh) + t4;
                         }
                 }
-                if (nz == 3) {zh *= 0.125; *er *= 0.125; }
-                if (nz == 2) {zh *= 0.25; *er *= 0.25; }
-                if (nz == 1) {zh *= half; *er *= half; }
+
+                if (nz == 3) {
+                        zh *= 0.125;
+                        *er *= 0.125;
+                }
+
+                if (nz == 2) {
+                        zh *= 0.25;
+                        *er *= 0.25;
+                }
+
+                if (nz == 1) {
+                        zh *= half;
+                        *er *= half;
+                }
+
                 nz += nx + nx;
                 w = half * k_log_NKz(nz, k, zh, er);
                 *er *= half;
         }
+
         return (w);
 }