Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/k_cexpl.c
+++ new/usr/src/lib/libm/common/complex/k_cexpl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 -/* INDENT OFF */
31 +
31 32 /*
32 33 * long double __k_cexpl(long double x, int *n);
33 34 * Returns the exponential of x in the form of 2**n * y, y=__k_cexpl(x,&n).
34 35 *
35 36 * 1. Argument Reduction: given the input x, find r and integer k
36 37 * and j such that
37 38 * x = (32k+j)*ln2 + r, |r| <= (1/64)*ln2 .
38 39 *
39 40 * 2. expl(x) = 2^k * (2^(j/32) + 2^(j/32)*expm1(r))
40 41 * Note:
41 42 * a. expm1(r) = (2r)/(2-R), R = r - r^2*(t1 + t2*r^2)
42 43 * b. 2^(j/32) is represented as
43 44 * exp2_32_hi[j]+exp2_32_lo[j]
44 45 * where
45 46 * exp2_32_hi[j] = 2^(j/32) rounded
46 47 * exp2_32_lo[j] = 2^(j/32) - exp2_32_hi[j].
47 48 *
48 49 * Special cases:
49 50 * expl(INF) is INF, expl(NaN) is NaN;
50 51 * expl(-INF)= 0;
51 52 * for finite argument, only expl(0)=1 is exact.
52 53 *
53 54 * Accuracy:
54 55 * according to an error analysis, the error is always less than
55 56 * an ulp (unit in the last place).
56 57 *
57 58 * Misc. info.
58 59 * When |x| is really big, say |x| > 1000000, the accuracy
↓ open down ↓ |
18 lines elided |
↑ open up ↑ |
59 60 * is not important because the ultimate result will over or under
60 61 * flow. So we will simply replace n = 1000000 and r = 0.0. For
61 62 * moderate size x, according to an error analysis, the error is
62 63 * always less than 1 ulp (unit in the last place).
63 64 *
64 65 * Constants:
65 66 * Only decimal values are given. We assume that the compiler will convert
66 67 * from decimal to binary accurately enough to produce the correct
67 68 * hexadecimal values.
68 69 */
69 -/* INDENT ON */
70 70
71 -#include "libm.h" /* __k_cexpl */
72 -#include "complex_wrapper.h" /* HI_XWORD */
71 +#include "libm.h" /* __k_cexpl */
72 +#include "complex_wrapper.h" /* HI_XWORD */
73 73
74 -/* INDENT OFF */
75 -/* ln2/32 = 0.0216608493924982909192885037955680177523593791987579766912713 */
74 +/*
75 + * ln2/32 = 0.0216608493924982909192885037955680177523593791987579766912713
76 + */
76 77 #if defined(__x86)
77 78 static const long double
78 - /* 43 significant bits, 21 trailing zeros */
79 -ln2_32hi = 2.166084939249657281834515742957592010498046875e-2L,
80 -ln2_32lo = 1.7181009433463659920976473789104487579766912713e-15L;
81 -static const long double exp2_32_hi[] = { /* exp2_32[j] = 2^(j/32) */
82 - 1.0000000000000000000000000e+00L,
83 - 1.0218971486541166782081522e+00L,
84 - 1.0442737824274138402382006e+00L,
85 - 1.0671404006768236181297224e+00L,
86 - 1.0905077326652576591003302e+00L,
87 - 1.1143867425958925362894369e+00L,
88 - 1.1387886347566916536971221e+00L,
89 - 1.1637248587775775137938619e+00L,
90 - 1.1892071150027210666875674e+00L,
91 - 1.2152473599804688780476325e+00L,
92 - 1.2418578120734840485256747e+00L,
93 - 1.2690509571917332224885722e+00L,
94 - 1.2968395546510096659215822e+00L,
95 - 1.3252366431597412945939118e+00L,
96 - 1.3542555469368927282668852e+00L,
97 - 1.3839098819638319548151403e+00L,
98 - 1.4142135623730950487637881e+00L,
99 - 1.4451808069770466200253470e+00L,
100 - 1.4768261459394993113155431e+00L,
101 - 1.5091644275934227397133885e+00L,
102 - 1.5422108254079408235859630e+00L,
103 - 1.5759808451078864864006862e+00L,
104 - 1.6104903319492543080837174e+00L,
105 - 1.6457554781539648445110730e+00L,
106 - 1.6817928305074290860378350e+00L,
107 - 1.7186192981224779156032914e+00L,
108 - 1.7562521603732994831094730e+00L,
109 - 1.7947090750031071864148413e+00L,
110 - 1.8340080864093424633989166e+00L,
111 - 1.8741676341102999013002103e+00L,
112 - 1.9152065613971472938202589e+00L,
113 - 1.9571441241754002689657438e+00L,
79 + /* 43 significant bits, 21 trailing zeros */
80 + ln2_32hi = 2.166084939249657281834515742957592010498046875e-2L,
81 + ln2_32lo = 1.7181009433463659920976473789104487579766912713e-15L;
82 +
83 +static const long double exp2_32_hi[] = { /* exp2_32[j] = 2^(j/32) */
84 + 1.0000000000000000000000000e+00L, 1.0218971486541166782081522e+00L,
85 + 1.0442737824274138402382006e+00L, 1.0671404006768236181297224e+00L,
86 + 1.0905077326652576591003302e+00L, 1.1143867425958925362894369e+00L,
87 + 1.1387886347566916536971221e+00L, 1.1637248587775775137938619e+00L,
88 + 1.1892071150027210666875674e+00L, 1.2152473599804688780476325e+00L,
89 + 1.2418578120734840485256747e+00L, 1.2690509571917332224885722e+00L,
90 + 1.2968395546510096659215822e+00L, 1.3252366431597412945939118e+00L,
91 + 1.3542555469368927282668852e+00L, 1.3839098819638319548151403e+00L,
92 + 1.4142135623730950487637881e+00L, 1.4451808069770466200253470e+00L,
93 + 1.4768261459394993113155431e+00L, 1.5091644275934227397133885e+00L,
94 + 1.5422108254079408235859630e+00L, 1.5759808451078864864006862e+00L,
95 + 1.6104903319492543080837174e+00L, 1.6457554781539648445110730e+00L,
96 + 1.6817928305074290860378350e+00L, 1.7186192981224779156032914e+00L,
97 + 1.7562521603732994831094730e+00L, 1.7947090750031071864148413e+00L,
98 + 1.8340080864093424633989166e+00L, 1.8741676341102999013002103e+00L,
99 + 1.9152065613971472938202589e+00L, 1.9571441241754002689657438e+00L,
114 100 };
101 +
115 102 static const long double exp2_32_lo[] = {
116 - 0.0000000000000000000000000e+00L,
117 - 2.6327965667180882569382524e-20L,
118 - 8.3765863521895191129661899e-20L,
119 - 3.9798705777454504249209575e-20L,
120 - 1.0668046596651558640993042e-19L,
121 - 1.9376009847285360448117114e-20L,
122 - 6.7081819456112953751277576e-21L,
123 - 1.9711680502629186462729727e-20L,
124 - 2.9932584438449523689104569e-20L,
125 - 6.8887754153039109411061914e-20L,
126 - 6.8002718741225378942847820e-20L,
127 - 6.5846917376975403439742349e-20L,
128 - 1.2171958727511372194876001e-20L,
129 - 3.5625253228704087115438260e-20L,
130 - 3.1129551559077560956309179e-20L,
131 - 5.7519192396164779846216492e-20L,
132 - 3.7900651177865141593101239e-20L,
133 - 1.1659262405698741798080115e-20L,
134 - 7.1364385105284695967172478e-20L,
135 - 5.2631003710812203588788949e-20L,
136 - 2.6328853788732632868460580e-20L,
137 - 5.4583950085438242788190141e-20L,
138 - 9.5803254376938269960718656e-20L,
139 - 7.6837733983874245823512279e-21L,
140 - 2.4415965910835093824202087e-20L,
141 - 2.6052966871016580981769728e-20L,
142 - 2.6876456344632553875309579e-21L,
143 - 1.2861930155613700201703279e-20L,
144 - 8.8166633394037485606572294e-20L,
145 - 2.9788615389580190940837037e-20L,
146 - 5.2352341619805098677422139e-20L,
147 - 5.2578463064010463732242363e-20L,
103 + 0.0000000000000000000000000e+00L, 2.6327965667180882569382524e-20L,
104 + 8.3765863521895191129661899e-20L, 3.9798705777454504249209575e-20L,
105 + 1.0668046596651558640993042e-19L, 1.9376009847285360448117114e-20L,
106 + 6.7081819456112953751277576e-21L, 1.9711680502629186462729727e-20L,
107 + 2.9932584438449523689104569e-20L, 6.8887754153039109411061914e-20L,
108 + 6.8002718741225378942847820e-20L, 6.5846917376975403439742349e-20L,
109 + 1.2171958727511372194876001e-20L, 3.5625253228704087115438260e-20L,
110 + 3.1129551559077560956309179e-20L, 5.7519192396164779846216492e-20L,
111 + 3.7900651177865141593101239e-20L, 1.1659262405698741798080115e-20L,
112 + 7.1364385105284695967172478e-20L, 5.2631003710812203588788949e-20L,
113 + 2.6328853788732632868460580e-20L, 5.4583950085438242788190141e-20L,
114 + 9.5803254376938269960718656e-20L, 7.6837733983874245823512279e-21L,
115 + 2.4415965910835093824202087e-20L, 2.6052966871016580981769728e-20L,
116 + 2.6876456344632553875309579e-21L, 1.2861930155613700201703279e-20L,
117 + 8.8166633394037485606572294e-20L, 2.9788615389580190940837037e-20L,
118 + 5.2352341619805098677422139e-20L, 5.2578463064010463732242363e-20L,
148 119 };
149 -#else /* sparc */
120 +#else /* sparc */
150 121 static const long double
151 - /* 0x3FF962E4 2FEFA39E F35793C7 00000000 */
152 -ln2_32hi = 2.166084939249829091928849858592451515688e-2L,
153 -ln2_32lo = 5.209643502595475652782654157501186731779e-27L;
154 -static const long double exp2_32_hi[] = { /* exp2_32[j] = 2^(j/32) */
122 + /* 0x3FF962E4 2FEFA39E F35793C7 00000000 */
123 + ln2_32hi = 2.166084939249829091928849858592451515688e-2L,
124 + ln2_32lo = 5.209643502595475652782654157501186731779e-27L;
125 +static const long double exp2_32_hi[] = { /* exp2_32[j] = 2^(j/32) */
155 126 1.000000000000000000000000000000000000000e+0000L,
156 127 1.021897148654116678234480134783299439782e+0000L,
157 128 1.044273782427413840321966478739929008785e+0000L,
158 129 1.067140400676823618169521120992809162607e+0000L,
159 130 1.090507732665257659207010655760707978993e+0000L,
160 131 1.114386742595892536308812956919603067800e+0000L,
161 132 1.138788634756691653703830283841511254720e+0000L,
162 133 1.163724858777577513813573599092185312343e+0000L,
163 134 1.189207115002721066717499970560475915293e+0000L,
164 135 1.215247359980468878116520251338798457624e+0000L,
165 136 1.241857812073484048593677468726595605511e+0000L,
166 137 1.269050957191733222554419081032338004715e+0000L,
167 138 1.296839554651009665933754117792451159835e+0000L,
168 139 1.325236643159741294629537095498721674113e+0000L,
169 140 1.354255546936892728298014740140702804343e+0000L,
170 141 1.383909881963831954872659527265192818002e+0000L,
171 142 1.414213562373095048801688724209698078570e+0000L,
172 143 1.445180806977046620037006241471670905678e+0000L,
173 144 1.476826145939499311386907480374049923924e+0000L,
174 145 1.509164427593422739766019551033193531420e+0000L,
175 146 1.542210825407940823612291862090734841307e+0000L,
176 147 1.575980845107886486455270160181905008906e+0000L,
177 148 1.610490331949254308179520667357400583459e+0000L,
178 149 1.645755478153964844518756724725822445667e+0000L,
179 150 1.681792830507429086062250952466429790080e+0000L,
180 151 1.718619298122477915629344376456312504516e+0000L,
181 152 1.756252160373299483112160619375313221294e+0000L,
182 153 1.794709075003107186427703242127781814354e+0000L,
183 154 1.834008086409342463487083189588288856077e+0000L,
184 155 1.874167634110299901329998949954446534439e+0000L,
185 156 1.915206561397147293872611270295830887850e+0000L,
186 157 1.957144124175400269018322251626871491190e+0000L,
187 158 };
188 159
189 160 static const long double exp2_32_lo[] = {
190 161 +0.000000000000000000000000000000000000000e+0000L,
191 162 +1.805067874203309547455733330545737864651e-0035L,
192 163 -9.374520292280427421957567419730832143843e-0035L,
193 164 -1.596968447292758770712909630231499971233e-0035L,
194 165 +9.112493410125022978511686101672486662119e-0035L,
195 166 -6.504228206978548287230374775259388710985e-0035L,
196 167 -8.148468844525851137325691767488155323605e-0035L,
197 168 -5.066214576721800313372330745142903350963e-0035L,
198 169 -1.359830974688816973749875638245919118924e-0035L,
199 170 +9.497427635563196470307710566433246597109e-0035L,
200 171 -3.283170523176998601615065965333915261932e-0036L,
201 172 -5.017235709387190410290186530458428950862e-0035L,
202 173 -2.391474797689109171622834301602640139258e-0035L,
203 174 -8.350571357633908815298890737944083853080e-0036L,
204 175 +7.036756889073265042421737190671876440729e-0035L,
205 176 -5.182484853064646457536893018566956189817e-0035L,
206 177 +9.422242548621832065692116736394064879758e-0035L,
207 178 -3.967500825398862309167306130216418281103e-0035L,
208 179 +7.143528991563300614523273615092767243521e-0035L,
209 180 +1.159871252867985124246517834100444327747e-0035L,
210 181 +4.696933478358115495309739213201874466685e-0035L,
211 182 -3.386513175995004710799241984999819165197e-0035L,
212 183 -8.587318774298247068868655935103874453522e-0035L,
213 184 -9.605951548749350503185499362246069088835e-0035L,
214 185 +9.609733932128012784507558697141785813655e-0035L,
↓ open down ↓ |
50 lines elided |
↑ open up ↑ |
215 186 +6.378397921440028439244761449780848545957e-0035L,
216 187 +7.792430785695864249456461125169277701177e-0035L,
217 188 +7.361337767588456524131930836633932195088e-0035L,
218 189 -6.472995147913347230035214575612170525266e-0035L,
219 190 +8.587474417953698694278798062295229624207e-0035L,
220 191 +2.371815422825174835691651228302690977951e-0035L,
221 192 -3.026891682096118773004597373421900314256e-0037L,
222 193 };
223 194 #endif
224 195
225 -static const long double
226 - one = 1.0L,
196 +static const long double one = 1.0L,
227 197 two = 2.0L,
228 198 ln2_64 = 1.083042469624914545964425189778400898568e-2L,
229 199 invln2_32 = 4.616624130844682903551758979206054839765e+1L;
230 200
231 201 /* rational approximation coeffs for [-(ln2)/64,(ln2)/64] */
232 -static const long double
233 - t1 = 1.666666666666666666666666666660876387437e-1L,
202 +static const long double t1 = 1.666666666666666666666666666660876387437e-1L,
234 203 t2 = -2.777777777777777777777707812093173478756e-3L,
235 - t3 = 6.613756613756613482074280932874221202424e-5L,
204 + t3 = 6.613756613756613482074280932874221202424e-5L,
236 205 t4 = -1.653439153392139954169609822742235851120e-6L,
237 - t5 = 4.175314851769539751387852116610973796053e-8L;
238 -/* INDENT ON */
206 + t5 = 4.175314851769539751387852116610973796053e-8L;
239 207
240 208 long double
241 -__k_cexpl(long double x, int *n) {
209 +__k_cexpl(long double x, int *n)
210 +{
242 211 int hx, ix, j, k;
243 212 long double t, r;
244 213
245 214 *n = 0;
246 215 hx = HI_XWORD(x);
247 216 ix = hx & 0x7fffffff;
217 +
248 218 if (hx >= 0x7fff0000)
249 - return (x + x); /* NaN of +inf */
250 - if (((unsigned) hx) >= 0xffff0000)
219 + return (x + x); /* NaN of +inf */
220 +
221 + if (((unsigned)hx) >= 0xffff0000)
251 222 return (-one / x); /* NaN or -inf */
223 +
252 224 if (ix < 0x3fc30000)
253 225 return (one + x); /* |x|<2^-60 */
226 +
254 227 if (hx > 0) {
255 228 if (hx > 0x401086a0) { /* x > 200000 */
256 229 *n = 200000;
257 230 return (one);
258 231 }
259 - k = (int) (invln2_32 * (x + ln2_64));
232 +
233 + k = (int)(invln2_32 * (x + ln2_64));
260 234 } else {
261 235 if (ix > 0x401086a0) { /* x < -200000 */
262 236 *n = -200000;
263 237 return (one);
264 238 }
265 - k = (int) (invln2_32 * (x - ln2_64));
239 +
240 + k = (int)(invln2_32 * (x - ln2_64));
266 241 }
242 +
267 243 j = k & 0x1f;
268 244 *n = k >> 5;
269 - t = (long double) k;
245 + t = (long double)k;
270 246 x = (x - t * ln2_32hi) - t * ln2_32lo;
271 247 t = x * x;
272 248 r = (x - t * (t1 + t * (t2 + t * (t3 + t * (t4 + t * t5))))) - two;
273 249 x = exp2_32_hi[j] - ((exp2_32_hi[j] * (x + x)) / r - exp2_32_lo[j]);
274 250 k >>= 5;
251 +
275 252 if (k > 240) {
276 253 XFSCALE(x, 240);
277 254 *n -= 240;
278 255 } else if (k > 0) {
279 256 XFSCALE(x, k);
280 257 *n = 0;
281 258 }
259 +
282 260 return (x);
283 261 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX