Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/complex/k_cexp.c
          +++ new/usr/src/lib/libm/common/complex/k_cexp.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30      -/* INDENT OFF */
       31 +
  31   32  /*
  32   33   * double __k_cexp(double x, int *n);
  33   34   * Returns the exponential of x in the form of 2**n * y, y=__k_cexp(x,&n).
  34   35   *
  35   36   * Method
  36   37   *   1. Argument reduction:
  37   38   *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  38   39   *      Given x, find r and integer k such that
  39   40   *
  40   41   *               x = k*ln2 + r,  |r| <= 0.5*ln2.
  41   42   *
  42   43   *      Here r will be represented as r = hi-lo for better
  43   44   *      accuracy.
  44   45   *
  45   46   *   2. Approximation of exp(r) by a special rational function on
  46   47   *      the interval [0,0.34658]:
  47   48   *      Write
  48   49   *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  49   50   *      We use a special Remez algorithm on [0,0.34658] to generate
  50      - *      a polynomial of degree 5 to approximate R. The maximum error
       51 + *      a polynomial of degree 5 to approximate R. The maximum error
  51   52   *      of this polynomial approximation is bounded by 2**-59. In
  52   53   *      other words,
  53   54   *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  54      - *      (where z=r*r, and the values of P1 to P5 are listed below)
       55 + *      (where z=r*r, and the values of P1 to P5 are listed below)
  55   56   *      and
  56   57   *          |                  5          |     -59
  57   58   *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
  58   59   *          |                             |
  59   60   *      The computation of exp(r) thus becomes
  60   61   *                             2*r
  61   62   *              exp(r) = 1 + -------
  62   63   *                            R - r
  63   64   *                                 r*R1(r)
  64   65   *                     = 1 + r + ----------- (for better accuracy)
↓ open down ↓ 15 lines elided ↑ open up ↑
  80   81   *      flow. So we will simply replace n = 50000 and r = 0.0. For
  81   82   *      moderate size x, according to an error analysis, the error is
  82   83   *      always less than 1 ulp (unit in the last place).
  83   84   *
  84   85   * Constants:
  85   86   * The hexadecimal values are the intended ones for the following
  86   87   * constants. The decimal values may be used, provided that the
  87   88   * compiler will convert from decimal to binary accurately enough
  88   89   * to produce the hexadecimal values shown.
  89   90   */
  90      -/* INDENT ON */
  91   91  
  92      -#include "libm.h"               /* __k_cexp */
  93      -#include "complex_wrapper.h"    /* HI_WORD/LO_WORD */
       92 +#include "libm.h"                       /* __k_cexp */
       93 +#include "complex_wrapper.h"            /* HI_WORD/LO_WORD */
  94   94  
  95      -/* INDENT OFF */
  96      -static const double
  97      -one = 1.0,
  98      -two128 = 3.40282366920938463463e+38,
  99      -halF[2] = {
 100      -        0.5, -0.5,
 101      -},
 102      -ln2HI[2] = {
       95 +static const double one = 1.0,
       96 +        two128 = 3.40282366920938463463e+38;
       97 +
       98 +static const double halF[2] = { 0.5, -0.5, };
       99 +
      100 +static const double ln2HI[2] = {
 103  101          6.93147180369123816490e-01,     /* 0x3fe62e42, 0xfee00000 */
 104  102          -6.93147180369123816490e-01,    /* 0xbfe62e42, 0xfee00000 */
 105      -},
 106      -ln2LO[2] = {
      103 +};
      104 +
      105 +static const double ln2LO[2] = {
 107  106          1.90821492927058770002e-10,     /* 0x3dea39ef, 0x35793c76 */
 108  107          -1.90821492927058770002e-10,    /* 0xbdea39ef, 0x35793c76 */
 109      -},
 110      -invln2 = 1.44269504088896338700e+00,    /* 0x3ff71547, 0x652b82fe */
 111      -P1 = 1.66666666666666019037e-01,        /* 0x3FC55555, 0x5555553E */
 112      -P2 = -2.77777777770155933842e-03,       /* 0xBF66C16C, 0x16BEBD93 */
 113      -P3 = 6.61375632143793436117e-05,        /* 0x3F11566A, 0xAF25DE2C */
 114      -P4 = -1.65339022054652515390e-06,       /* 0xBEBBBD41, 0xC5D26BF1 */
 115      -P5 = 4.13813679705723846039e-08;        /* 0x3E663769, 0x72BEA4D0 */
 116      -/* INDENT ON */
      108 +};
      109 +
      110 +static const double
      111 +        invln2 = 1.44269504088896338700e+00,    /* 0x3ff71547, 0x652b82fe */
      112 +        P1 = 1.66666666666666019037e-01,        /* 0x3FC55555, 0x5555553E */
      113 +        P2 = -2.77777777770155933842e-03,       /* 0xBF66C16C, 0x16BEBD93 */
      114 +        P3 = 6.61375632143793436117e-05,        /* 0x3F11566A, 0xAF25DE2C */
      115 +        P4 = -1.65339022054652515390e-06,       /* 0xBEBBBD41, 0xC5D26BF1 */
      116 +        P5 = 4.13813679705723846039e-08;        /* 0x3E663769, 0x72BEA4D0 */
      117 +
 117  118  
 118  119  double
 119      -__k_cexp(double x, int *n) {
      120 +__k_cexp(double x, int *n)
      121 +{
 120  122          double hi = 0.0L, lo = 0.0L, c, t;
 121  123          int k, xsb;
 122  124          unsigned hx, lx;
 123  125  
 124      -        hx = HI_WORD(x);        /* high word of x */
 125      -        lx = LO_WORD(x);        /* low word of x */
 126      -        xsb = (hx >> 31) & 1;   /* sign bit of x */
 127      -        hx &= 0x7fffffff;       /* high word of |x| */
      126 +        hx = HI_WORD(x);                /* high word of x */
      127 +        lx = LO_WORD(x);                /* low word of x */
      128 +        xsb = (hx >> 31) & 1;           /* sign bit of x */
      129 +        hx &= 0x7fffffff;               /* high word of |x| */
 128  130  
 129  131          /* filter out non-finite argument */
 130      -        if (hx >= 0x40e86a00) { /* if |x| > 50000 */
      132 +        if (hx >= 0x40e86a00) {         /* if |x| > 50000 */
 131  133                  if (hx >= 0x7ff00000) {
 132  134                          *n = 1;
      135 +
 133  136                          if (((hx & 0xfffff) | lx) != 0)
 134      -                                return (x + x); /* NaN */
      137 +                                return (x + x);         /* NaN */
 135  138                          else
 136  139                                  return ((xsb == 0) ? x : 0.0);
 137      -                                                        /* exp(+-inf)={inf,0} */
      140 +
      141 +                        /* exp(+-inf)={inf,0} */
 138  142                  }
      143 +
 139  144                  *n = (xsb == 0) ? 50000 : -50000;
 140  145                  return (one + ln2LO[1] * ln2LO[1]);     /* generate inexact */
 141  146          }
 142  147  
 143  148          *n = 0;
      149 +
 144  150          /* argument reduction */
 145      -        if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */
      151 +        if (hx > 0x3fd62e42) {          /* if  |x| > 0.5 ln2 */
 146  152                  if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */
 147  153                          hi = x - ln2HI[xsb];
 148  154                          lo = ln2LO[xsb];
 149  155                          k = 1 - xsb - xsb;
 150  156                  } else {
 151      -                        k = (int) (invln2 * x + halF[xsb]);
      157 +                        k = (int)(invln2 * x + halF[xsb]);
 152  158                          t = k;
 153  159                          hi = x - t * ln2HI[0];
 154      -                                        /* t*ln2HI is exact for t<2**20 */
      160 +                        /* t*ln2HI is exact for t<2**20 */
 155  161                          lo = t * ln2LO[0];
 156  162                  }
      163 +
 157  164                  x = hi - lo;
 158  165                  *n = k;
 159  166          } else if (hx < 0x3e300000) {   /* when |x|<2**-28 */
 160  167                  return (one + x);
 161      -        } else
      168 +        } else {
 162  169                  k = 0;
      170 +        }
 163  171  
 164  172          /* x is now in primary range */
 165  173          t = x * x;
 166  174          c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 167      -        if (k == 0)
      175 +
      176 +        if (k == 0) {
 168  177                  return (one - ((x * c) / (c - 2.0) - x));
 169      -        else {
      178 +        } else {
 170  179                  t = one - ((lo - (x * c) / (2.0 - c)) - hi);
      180 +
 171  181                  if (k > 128) {
 172  182                          t *= two128;
 173  183                          *n = k - 128;
 174  184                  } else if (k > 0) {
 175  185                          HI_WORD(t) += (k << 20);
 176  186                          *n = 0;
 177  187                  }
      188 +
 178  189                  return (t);
 179  190          }
 180  191  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX