1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 32 /* 33 * double __k_cexp(double x, int *n); 34 * Returns the exponential of x in the form of 2**n * y, y=__k_cexp(x,&n). 35 * 36 * Method 37 * 1. Argument reduction: 38 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. 39 * Given x, find r and integer k such that 40 * 41 * x = k*ln2 + r, |r| <= 0.5*ln2. 42 * 43 * Here r will be represented as r = hi-lo for better 44 * accuracy. 45 * 46 * 2. Approximation of exp(r) by a special rational function on 47 * the interval [0,0.34658]: 48 * Write 49 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... 50 * We use a special Remez algorithm on [0,0.34658] to generate 51 * a polynomial of degree 5 to approximate R. The maximum error 52 * of this polynomial approximation is bounded by 2**-59. In 53 * other words, 54 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 55 * (where z=r*r, and the values of P1 to P5 are listed below) 56 * and 57 * | 5 | -59 58 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 59 * | | 60 * The computation of exp(r) thus becomes 61 * 2*r 62 * exp(r) = 1 + ------- 63 * R - r 64 * r*R1(r) 65 * = 1 + r + ----------- (for better accuracy) 66 * 2 - R1(r) 67 * where 68 * 2 4 10 69 * R1(r) = r - (P1*r + P2*r + ... + P5*r ). 70 * 71 * 3. Return n = k and __k_cexp = exp(r). 72 * 73 * Special cases: 74 * exp(INF) is INF, exp(NaN) is NaN; 75 * exp(-INF) is 0, and 76 * for finite argument, only exp(0)=1 is exact. 77 * 78 * Range and Accuracy: 79 * When |x| is really big, say |x| > 50000, the accuracy 80 * is not important because the ultimate result will over or under 81 * flow. So we will simply replace n = 50000 and r = 0.0. For 82 * moderate size x, according to an error analysis, the error is 83 * always less than 1 ulp (unit in the last place). 84 * 85 * Constants: 86 * The hexadecimal values are the intended ones for the following 87 * constants. The decimal values may be used, provided that the 88 * compiler will convert from decimal to binary accurately enough 89 * to produce the hexadecimal values shown. 90 */ 91 92 #include "libm.h" /* __k_cexp */ 93 #include "complex_wrapper.h" /* HI_WORD/LO_WORD */ 94 95 static const double one = 1.0, 96 two128 = 3.40282366920938463463e+38; 97 98 static const double halF[2] = { 0.5, -0.5, }; 99 100 static const double ln2HI[2] = { 101 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ 102 -6.93147180369123816490e-01, /* 0xbfe62e42, 0xfee00000 */ 103 }; 104 105 static const double ln2LO[2] = { 106 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ 107 -1.90821492927058770002e-10, /* 0xbdea39ef, 0x35793c76 */ 108 }; 109 110 static const double 111 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ 112 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ 113 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ 114 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ 115 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ 116 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ 117 118 119 double 120 __k_cexp(double x, int *n) 121 { 122 double hi = 0.0L, lo = 0.0L, c, t; 123 int k, xsb; 124 unsigned hx, lx; 125 126 hx = HI_WORD(x); /* high word of x */ 127 lx = LO_WORD(x); /* low word of x */ 128 xsb = (hx >> 31) & 1; /* sign bit of x */ 129 hx &= 0x7fffffff; /* high word of |x| */ 130 131 /* filter out non-finite argument */ 132 if (hx >= 0x40e86a00) { /* if |x| > 50000 */ 133 if (hx >= 0x7ff00000) { 134 *n = 1; 135 136 if (((hx & 0xfffff) | lx) != 0) 137 return (x + x); /* NaN */ 138 else 139 return ((xsb == 0) ? x : 0.0); 140 141 /* exp(+-inf)={inf,0} */ 142 } 143 144 *n = (xsb == 0) ? 50000 : -50000; 145 return (one + ln2LO[1] * ln2LO[1]); /* generate inexact */ 146 } 147 148 *n = 0; 149 150 /* argument reduction */ 151 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ 152 if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ 153 hi = x - ln2HI[xsb]; 154 lo = ln2LO[xsb]; 155 k = 1 - xsb - xsb; 156 } else { 157 k = (int)(invln2 * x + halF[xsb]); 158 t = k; 159 hi = x - t * ln2HI[0]; 160 /* t*ln2HI is exact for t<2**20 */ 161 lo = t * ln2LO[0]; 162 } 163 164 x = hi - lo; 165 *n = k; 166 } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ 167 return (one + x); 168 } else { 169 k = 0; 170 } 171 172 /* x is now in primary range */ 173 t = x * x; 174 c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); 175 176 if (k == 0) { 177 return (one - ((x * c) / (c - 2.0) - x)); 178 } else { 179 t = one - ((lo - (x * c) / (2.0 - c)) - hi); 180 181 if (k > 128) { 182 t *= two128; 183 *n = k - 128; 184 } else if (k > 0) { 185 HI_WORD(t) += (k << 20); 186 *n = 0; 187 } 188 189 return (t); 190 } 191 }