1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #include "libm.h" /* __k_atan2 */ 32 #include "complex_wrapper.h" 33 34 /* 35 * double __k_atan2(double y, double x, double *e) 36 * 37 * Compute atan2 with error terms. 38 * 39 * Important formula: 40 * 3 5 41 * x x 42 * atan(x) = x - ----- + ----- - ... (for x <= 1) 43 * 3 5 44 * 45 * pi 1 1 46 * = --- - --- + --- - ... (for x > 1) 47 * 3 48 * 2 x 3x 49 * 50 * Arg(x + y i) = sign(y) * atan2(|y|, x) 51 * = sign(y) * atan(|y|/x) (for x > 0) 52 * sign(y) * (PI - atan(|y|/|x|)) (for x < 0) 53 * Thus if x >> y (IEEE double: EXP(x) - EXP(y) >= 60): 54 * 1. (x > 0): atan2(y,x) ~ y/x 55 * 2. (x < 0): atan2(y,x) ~ sign(y) (PI - |y/x|)) 56 * Otherwise if x << y: 57 * atan2(y,x) ~ sign(y)*PI/2 - x/y 58 * 59 * __k_atan2 call static functions mx_poly, mx_atan 60 */ 61 62 /* 63 * (void) mx_poly (double *z, double *a, double *e, int n) 64 * return 65 * e = a + z*(a + z*(a + ... z*(a + e)...)) 66 * 0 2 4 2n 67 * Note: 68 * 1. e and coefficient ai are represented by two double numbers. 69 * For e, the first one contain the leading 24 bits rounded, and the 70 * second one contain the remaining 53 bits (total 77 bits accuracy). 71 * For ai, the first one contian the leading 53 bits rounded, and the 72 * second is the remaining 53 bits (total 106 bits accuracy). 73 * 2. z is an array of three doubles. 74 * z[0] : the rounded value of Z (the intended value of z) 75 * z[1] : the leading 24 bits of Z rounded 76 * z[2] : the remaining 53 bits of Z 77 * Note that z[0] = z[1]+z[2] rounded. 78 * 79 */ 80 static void 81 mx_poly(const double *z, const double *a, double *e, int n) 82 { 83 double r, s, t, p_h, p_l, z_h, z_l, p; 84 int i; 85 86 n = n + n; 87 p = e[0] + a[n]; 88 p_l = a[n + 1]; 89 p_h = (double)((float)p); 90 p = a[n - 2] + z[0] * p; 91 z_h = z[1]; 92 z_l = z[2]; 93 p_l += e[0] - (p_h - a[n]); 94 95 for (i = n - 2; i >= 2; i -= 2) { 96 /* compute p = ai + z * p */ 97 t = z_h * p_h; 98 s = z[0] * p_l + p_h * z_l; 99 p_h = (double)((float)p); 100 s += a[i + 1]; 101 r = t - (p_h - a[i]); 102 p = a[i - 2] + z[0] * p; 103 p_l = r + s; 104 } 105 106 e[0] = (double)((float)p); 107 t = z_h * p_h; 108 s = z[0] * p_l + p_h * z_l; 109 r = t - (e[0] - a[0]); 110 e[1] = r + s; 111 } 112 113 /* 114 * Table of constants for atan from 0.125 to 8 115 * 0.125 -- 0x3fc00000 --- (increment at bit 16) 116 * 0x3fc10000 117 * 0x3fc20000 118 * ... ... 119 * 0x401f0000 120 * 8.000 -- 0x40200000 (total: 97) 121 * By K.C. Ng, March 9, 1989 122 */ 123 124 static const double TBL_atan_hi[] = { 125 1.243549945467614382e-01, 1.320397616146387620e-01, 126 1.397088742891636204e-01, 1.473614810886516302e-01, 127 1.549967419239409727e-01, 1.626138285979485676e-01, 128 1.702119252854744080e-01, 1.777902289926760471e-01, 129 1.853479499956947607e-01, 1.928843122579746439e-01, 130 2.003985538258785115e-01, 2.078899272022629863e-01, 131 2.153576996977380476e-01, 2.228011537593945213e-01, 132 2.302195872768437179e-01, 2.376123138654712419e-01, 133 2.449786631268641435e-01, 2.596296294082575118e-01, 134 2.741674511196587893e-01, 2.885873618940774099e-01, 135 3.028848683749714166e-01, 3.170557532091470287e-01, 136 3.310960767041321029e-01, 3.450021772071051318e-01, 137 3.587706702705721895e-01, 3.723984466767542023e-01, 138 3.858826693980737521e-01, 3.992207695752525431e-01, 139 4.124104415973872673e-01, 4.254496373700422662e-01, 140 4.383365598579578304e-01, 4.510696559885234436e-01, 141 4.636476090008060935e-01, 4.883339510564055352e-01, 142 5.123894603107377321e-01, 5.358112379604637043e-01, 143 5.585993153435624414e-01, 5.807563535676704136e-01, 144 6.022873461349641522e-01, 6.231993299340659043e-01, 145 6.435011087932843710e-01, 6.632029927060932861e-01, 146 6.823165548747480713e-01, 7.008544078844501923e-01, 147 7.188299996216245269e-01, 7.362574289814280970e-01, 148 7.531512809621944138e-01, 7.695264804056582975e-01, 149 7.853981633974482790e-01, 8.156919233162234217e-01, 150 8.441539861131710509e-01, 8.709034570756529758e-01, 151 8.960553845713439269e-01, 9.197196053504168578e-01, 152 9.420000403794636101e-01, 9.629943306809362058e-01, 153 9.827937232473290541e-01, 1.001483135694234639e+00, 154 1.019141344266349725e+00, 1.035841253008800145e+00, 155 1.051650212548373764e+00, 1.066630365315743623e+00, 156 1.080839000541168327e+00, 1.094328907321189925e+00, 157 1.107148717794090409e+00, 1.130953743979160375e+00, 158 1.152571997215667610e+00, 1.172273881128476303e+00, 159 1.190289949682531656e+00, 1.206817370285252489e+00, 160 1.222025323210989667e+00, 1.236059489478081863e+00, 161 1.249045772398254428e+00, 1.261093382252440387e+00, 162 1.272297395208717319e+00, 1.282740879744270757e+00, 163 1.292496667789785336e+00, 1.301628834009196156e+00, 164 1.310193935047555547e+00, 1.318242051016837113e+00, 165 1.325817663668032553e+00, 1.339705659598999565e+00, 166 1.352127380920954636e+00, 1.363300100359693845e+00, 167 1.373400766945015894e+00, 1.382574821490125894e+00, 168 1.390942827002418447e+00, 1.398605512271957618e+00, 169 1.405647649380269870e+00, 1.412141064608495311e+00, 170 1.418146998399631542e+00, 1.423717971406494032e+00, 171 1.428899272190732761e+00, 1.433730152484709031e+00, 172 1.438244794498222623e+00, 1.442473099109101931e+00, 173 1.446441332248135092e+00, 174 }; 175 176 static const double TBL_atan_lo[] = { 177 -3.125324142453938311e-18, -1.276925400709959526e-17, 178 2.479758919089733066e-17, 5.409599147666297957e-18, 179 9.585415594114323829e-18, 7.784470643106252464e-18, 180 -3.541164079802125137e-18, 2.372599351477449041e-17, 181 4.180692268843078977e-18, 2.034098543938166622e-17, 182 3.139954287184449286e-18, 7.333160666520898500e-18, 183 4.738160130078732886e-19, -5.498822172446843173e-18, 184 1.231340452914270316e-17, 1.058231431371112987e-17, 185 1.069875561873445139e-17, 1.923875492461530410e-17, 186 8.261353575163771936e-18, -1.428369957377257085e-17, 187 -1.101082790300136900e-17, -1.893928924292642146e-17, 188 -7.952610375793798701e-18, -2.293880475557830393e-17, 189 3.088733564861919217e-17, 1.961231150484565340e-17, 190 2.378822732491940868e-17, 2.246598105617042065e-17, 191 3.963462895355093301e-17, 2.331553074189288466e-17, 192 -2.494277030626540909e-17, 3.280735600183735558e-17, 193 2.269877745296168709e-17, -1.137323618932958456e-17, 194 -2.546278147285580353e-17, -4.063795683482557497e-18, 195 -5.455630548591626394e-18, -1.441464378193066908e-17, 196 2.950430737228402307e-17, 2.672403885140095079e-17, 197 1.583478505144428617e-17, -3.076054864429649001e-17, 198 6.943223671560007740e-18, -1.987626234335816123e-17, 199 -2.147838844445698302e-17, 3.473937648299456719e-17, 200 -2.425693465918206812e-17, -3.704991905602721293e-17, 201 3.061616997868383018e-17, -1.071456562778743077e-17, 202 -4.841337011934916763e-17, -2.269823590747287052e-17, 203 2.923876285774304890e-17, -4.057439412852767923e-17, 204 5.460837485846687627e-17, -3.986660595210752445e-18, 205 1.390331103123099845e-17, 9.438308023545392000e-17, 206 1.000401886936679889e-17, 3.194313981784503706e-17, 207 -9.650564731467513515e-17, -5.956589637160374564e-17, 208 -1.567632251135907253e-17, -5.490676155022364226e-18, 209 9.404471373566379412e-17, 7.123833804538446299e-17, 210 -9.159738508900378819e-17, 8.385188614028674371e-17, 211 7.683333629842068806e-17, 4.172467638861439118e-17, 212 -2.979162864892849274e-17, 7.879752739459421280e-17, 213 -2.196203799612310905e-18, 3.242139621534960503e-17, 214 2.245875015034507026e-17, -9.283188754266129476e-18, 215 -6.830804768926660334e-17, -1.236918499824626670e-17, 216 8.745413734780278834e-17, -6.319394031144676258e-17, 217 -8.824429373951136321e-17, -2.599011860304134377e-17, 218 2.147674250751150961e-17, 1.093246171526936217e-16, 219 -3.307710355769516504e-17, -3.561490438648230100e-17, 220 -9.843712133488842595e-17, -2.324061182591627982e-17, 221 -8.922630138234492386e-17, -9.573807110557223276e-17, 222 -8.263883782511013632e-17, 8.721870922223967507e-17, 223 -6.457134743238754385e-17, -4.396204466767636187e-17, 224 -2.493019910264565554e-17, -1.105119435430315713e-16, 225 9.211323971545051565e-17, 226 }; 227 228 /* 229 * mx_atan(x,err) 230 * Table look-up algorithm 231 * By K.C. Ng, March 9, 1989 232 * 233 * Algorithm. 234 * 235 * The algorithm is based on atan(x)=atan(y)+atan((x-y)/(1+x*y)). 236 * We use poly1(x) to approximate atan(x) for x in [0,1/8] with 237 * error (relative) 238 * |(atan(x)-poly1(x))/x|<= 2^-83.41 239 * 240 * and use poly2(x) to approximate atan(x) for x in [0,1/65] with 241 * error 242 * |atan(x)-poly2(x)|<= 2^-86.8 243 * 244 * Here poly1 and poly2 are odd polynomial with the following form: 245 * x + x^3*(a1+x^2*(a2+...)) 246 * 247 * (0). Purge off Inf and NaN and 0 248 * (1). Reduce x to positive by atan(x) = -atan(-x). 249 * (2). For x <= 1/8, use 250 * (2.1) if x < 2^(-prec/2), atan(x) = x with inexact flag raised 251 * (2.2) Otherwise 252 * atan(x) = poly1(x) 253 * (3). For x >= 8 then (prec = 78) 254 * (3.1) if x >= 2^prec, atan(x) = atan(inf) - pio2lo 255 * (3.2) if x >= 2^(prec/3), atan(x) = atan(inf) - 1/x 256 * (3.3) if x > 65, atan(x) = atan(inf) - poly2(1/x) 257 * (3.4) Otherwise, atan(x) = atan(inf) - poly1(1/x) 258 * 259 * (4). Now x is in (0.125, 8) 260 * Find y that match x to 4.5 bit after binary (easy). 261 * If iy is the high word of y, then 262 * single : j = (iy - 0x3e000000) >> 19 263 * double : j = (iy - 0x3fc00000) >> 16 264 * quad : j = (iy - 0x3ffc0000) >> 12 265 * 266 * Let s = (x-y)/(1+x*y). Then 267 * atan(x) = atan(y) + poly1(s) 268 * = _TBL_atan_hi[j] + (_TBL_atan_lo[j] + poly2(s) ) 269 * 270 * Note. |s| <= 1.5384615385e-02 = 1/65. Maxium occurs at x = 1.03125 271 * 272 */ 273 274 #define P1 p[2] 275 #define P4 p[8] 276 #define P5 p[9] 277 #define P6 p[10] 278 #define P7 p[11] 279 #define P8 p[12] 280 #define P9 p[13] 281 282 static const double p[] = { 283 1.0, 284 0.0, 285 -3.33333333333333314830e-01, /* p1 = BFD55555 55555555 */ 286 -1.85030852238476921863e-17, /* p1_l = BC755525 9783A49C */ 287 2.00000000000000011102e-01, /* p2 = 3FC99999 9999999A */ 288 -1.27263196576150347368e-17, /* p2_l = BC6D584B 0D874007 */ 289 -1.42857142857141405923e-01, /* p3 = BFC24924 9249245E */ 290 -1.34258204847170493327e-17, /* p3_l = BC6EF534 A112500D */ 291 1.11111111110486909803e-01, /* p4 = 3FBC71C7 1C71176A */ 292 -9.09090907557387889470e-02, /* p5 = BFB745D1 73B47A7D */ 293 7.69230541541713053189e-02, /* p6 = 3FB3B13A B1E68DE6 */ 294 -6.66645815401964159097e-02, /* p7 = BFB110EE 1584446A */ 295 5.87081768778560317279e-02, /* p8 = 3FAE0EFF 87657733 */ 296 -4.90818147456113240690e-02, /* p9 = BFA92140 6A524B5C */ 297 }; 298 299 #define Q1 q[2] 300 #define Q3 q[6] 301 #define Q4 q[7] 302 #define Q5 q[8] 303 304 static const double q[] = { 305 1.0, 306 0.0, 307 -3.33333333333333314830e-01, /* q1 = BFD55555 55555555 */ 308 -1.85022941571278638733e-17, /* q1_l = BC7554E9 D20EFA66 */ 309 1.99999999999999927836e-01, /* q2 = 3FC99999 99999997 */ 310 -1.28782564407438833398e-17, /* q2_l = BC6DB1FB 17217417 */ 311 -1.42857142855492280642e-01, /* q3 = BFC24924 92483C46 */ 312 1.11111097130183356096e-01, /* q4 = 3FBC71C6 E06595CC */ 313 -9.08553303569109294013e-02, /* q5 = BFB7424B 808CDA76 */ 314 }; 315 316 static const double one = 1.0, 317 pio2hi = 1.570796326794896558e+00, 318 pio2lo = 6.123233995736765886e-17; 319 320 static double 321 mx_atan(double x, double *err) 322 { 323 double y, z, r, s, t, w, s_h, s_l, x_h, x_l, zz[3], ee[2], z_h, z_l, 324 r_h, r_l, u, v; 325 int ix, iy, sign, j; 326 327 ix = ((int *)&x)[HIWORD]; 328 sign = ix & 0x80000000; 329 ix ^= sign; 330 331 /* for |x| < 1/8 */ 332 if (ix < 0x3fc00000) { 333 if (ix < 0x3f300000) { /* when |x| < 2**-12 */ 334 if (ix < 0x3d800000) { /* if |x| < 2**-39 */ 335 *err = (double)((int)x); 336 return (x); 337 } 338 339 z = x * x; 340 t = x * z * (q[2] + z * (q[4] + z * q[6])); 341 r = x + t; 342 *err = t - (r - x); 343 return (r); 344 } 345 346 z = x * x; 347 348 /* use double precision at p4 and on */ 349 ee[0] = z * (P4 + z * (P5 + z * (P6 + z * (P7 + z * (P8 + z * 350 P9))))); 351 352 x_h = (double)((float)x); 353 z_h = (double)((float)z); 354 x_l = x - x_h; 355 z_l = (x_h * x_h - z_h); 356 zz[0] = z; 357 zz[1] = z_h; 358 zz[2] = z_l + x_l * (x + x_h); 359 360 /* 361 * compute (1+z*(p1+z*(p2+z*(p3+e)))) by call 362 * mx_poly 363 */ 364 365 mx_poly(zz, p, ee, 3); 366 367 /* finally x*(1+z*(p1+...)) */ 368 r = x_h * ee[0]; 369 t = x * ee[1] + x_l * ee[0]; 370 s = t + r; 371 *err = t - (s - r); 372 return (s); 373 } 374 375 /* for |x| >= 8.0 */ 376 if (ix >= 0x40200000) { /* x >= 8 */ 377 x = fabs(x); 378 379 if (ix >= 0x42600000) { /* x >= 2**39 */ 380 if (ix >= 0x44c00000) /* x >= 2**77 */ 381 y = -pio2lo; 382 else 383 y = one / x - pio2lo; 384 385 if (sign == 0) { 386 t = pio2hi - y; 387 *err = -(y - (pio2hi - t)); 388 } else { 389 t = y - pio2hi; 390 *err = y - (pio2hi + t); 391 } 392 393 return (t); 394 } else { 395 /* compute r = 1/x */ 396 r = one / x; 397 z = r * r; 398 399 if (ix < 0x40504000) { /* 8 < x < 65 */ 400 /* use double precision at p4 and on */ 401 ee[0] = z * (P4 + z * (P5 + z * (P6 + z * (P7 + 402 z * (P8 + z * P9))))); 403 x_h = (double)((float)x); 404 r_h = (double)((float)r); 405 z_h = (double)((float)z); 406 r_l = r * ((x_h - x) * r_h - (x_h * r_h - one)); 407 z_l = (r_h * r_h - z_h); 408 zz[0] = z; 409 zz[1] = z_h; 410 zz[2] = z_l + r_l * (r + r_h); 411 412 /* 413 * compute (1+z*(p1+z*(p2+z*(p3+e)))) by call 414 * mx_poly 415 */ 416 mx_poly(zz, p, ee, 3); 417 } else { /* x < 65 < 2**39 */ 418 /* use double precision at q3 and on */ 419 ee[0] = z * (Q3 + z * (Q4 + z * Q5)); 420 x_h = (double)((float)x); 421 r_h = (double)((float)r); 422 z_h = (double)((float)z); 423 r_l = r * ((x_h - x) * r_h - (x_h * r_h - one)); 424 z_l = (r_h * r_h - z_h); 425 zz[0] = z; 426 zz[1] = z_h; 427 zz[2] = z_l + r_l * (r + r_h); 428 429 /* 430 * compute (1+z*(q1+z*(q2+e))) by call 431 * mx_poly 432 */ 433 mx_poly(zz, q, ee, 2); 434 } 435 436 /* pio2 - r*(1+...) */ 437 v = r_h * ee[0]; 438 t = pio2lo - (r * ee[1] + r_l * ee[0]); 439 440 if (sign == 0) { 441 s = pio2hi - v; 442 t -= (v - (pio2hi - s)); 443 } else { 444 s = v - pio2hi; 445 t = -(t - (v - (s + pio2hi))); 446 } 447 448 w = s + t; 449 *err = t - (w - s); 450 return (w); 451 } 452 } 453 454 /* now x is between 1/8 and 8 */ 455 ((int *)&x)[HIWORD] = ix; 456 iy = (ix + 0x00008000) & 0x7fff0000; 457 ((int *)&y)[HIWORD] = iy; 458 ((int *)&y)[LOWORD] = 0; 459 j = (iy - 0x3fc00000) >> 16; 460 461 w = (x - y); 462 v = 1 / (one + x * y); 463 s = w * v; 464 z = s * s; 465 /* use double precision at q3 and on */ 466 ee[0] = z * (Q3 + z * (Q4 + z * Q5)); 467 s_h = (double)((float)s); 468 z_h = (double)((float)z); 469 x_h = (double)((float)x); 470 t = (double)((float)(one + x * y)); 471 r = -((x_h - x) * y - (x_h * y - (t - one))); 472 s_l = -v * (s_h * r - (w - s_h * t)); 473 z_l = (s_h * s_h - z_h); 474 zz[0] = z; 475 zz[1] = z_h; 476 zz[2] = z_l + s_l * (s + s_h); 477 /* compute (1+z*(q1+z*(q2+e))) by call mx_poly */ 478 mx_poly(zz, q, ee, 2); 479 v = s_h * ee[0]; 480 t = TBL_atan_lo[j] + (s * ee[1] + s_l * ee[0]); 481 u = TBL_atan_hi[j]; 482 s = u + v; 483 t += (v - (s - u)); 484 w = s + t; 485 *err = t - (w - s); 486 487 if (sign != 0) { 488 w = -w; 489 *err = -*err; 490 } 491 492 return (w); 493 } 494 495 static const double twom768 = 6.441148769597133308e-232, /* 2^-768 */ 496 two768 = 1.552518092300708935e+231, /* 2^768 */ 497 pi = 3.1415926535897931159979634685, 498 pi_lo = 1.224646799147353177e-16, 499 pio2 = 1.570796326794896558e+00, 500 pio2_lo = 6.123233995736765886e-17, 501 pio4 = 0.78539816339744827899949, 502 pio4_lo = 3.061616997868382943e-17, 503 pi3o4 = 2.356194490192344836998, 504 pi3o4_lo = 9.184850993605148829195e-17; 505 506 double 507 __k_atan2(double y, double x, double *w) 508 { 509 double t, xh, th, t1, t2, w1, w2; 510 int ix, iy, hx, hy, lx, ly; 511 512 hy = ((int *)&y)[HIWORD]; 513 ly = ((int *)&y)[LOWORD]; 514 iy = hy & ~0x80000000; 515 516 hx = ((int *)&x)[HIWORD]; 517 lx = ((int *)&x)[LOWORD]; 518 ix = hx & ~0x80000000; 519 520 *w = 0.0; 521 522 if (ix >= 0x7ff00000 || iy >= 0x7ff00000) { /* ignore inexact */ 523 if (isnan(x) || isnan(y)) { 524 return (x * y); 525 } else if (iy < 0x7ff00000) { 526 if (hx >= 0) { /* ATAN2(+-finite, +inf) is +-0 */ 527 *w *= y; 528 return (*w); 529 } else { /* ATAN2(+-finite, -inf) is +-pi */ 530 *w = copysign(pi_lo, y); 531 return (copysign(pi, y)); 532 } 533 } else if (ix < 0x7ff00000) { 534 /* ATAN2(+-inf, finite) is +-pi/2 */ 535 *w = (hy >= 0) ? pio2_lo : -pio2_lo; 536 return ((hy >= 0) ? pio2 : -pio2); 537 } else if (hx > 0) { /* ATAN2(+-INF,+INF) = +-pi/4 */ 538 *w = (hy >= 0) ? pio4_lo : -pio4_lo; 539 return ((hy >= 0) ? pio4 : -pio4); 540 } else { /* ATAN2(+-INF,-INF) = +-3pi/4 */ 541 *w = (hy >= 0) ? pi3o4_lo : -pi3o4_lo; 542 return ((hy >= 0) ? pi3o4 : -pi3o4); 543 } 544 } else if ((ix | lx) == 0 || (iy | ly) == 0) { 545 if ((iy | ly) == 0) { 546 if (hx >= 0) { /* ATAN2(+-0, +(0 <= x <= inf)) is +-0 */ 547 return (y); 548 } else { /* ATAN2(+-0, -(0 <= x <= inf)) is +-pi */ 549 *w = (hy >= 0) ? pi_lo : -pi_lo; 550 return ((hy >= 0) ? pi : -pi); 551 } 552 } else { /* ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2 */ 553 *w = (hy >= 0) ? pio2_lo : -pio2_lo; 554 return ((hy >= 0) ? pio2 : -pio2); 555 } 556 } else if (iy - ix > 0x06400000) { /* |x/y| < 2 ** -100 */ 557 *w = (hy >= 0) ? pio2_lo : -pio2_lo; 558 return ((hy >= 0) ? pio2 : -pio2); 559 } else if (ix - iy > 0x06400000) { /* |y/x| < 2 ** -100 */ 560 if (hx < 0) { 561 *w = (hy >= 0) ? pi_lo : -pi_lo; 562 return ((hy >= 0) ? pi : -pi); 563 } else { 564 t = y / x; 565 th = t; 566 ((int *)&th)[LOWORD] &= 0xf8000000; 567 xh = x; 568 ((int *)&xh)[LOWORD] &= 0xf8000000; 569 t1 = (x - xh) * t + xh * (t - th); 570 t2 = y - xh * th; 571 *w = (t2 - t1) / x; 572 return (t); 573 } 574 } else { 575 if (ix >= 0x5f300000) { 576 x *= twom768; 577 y *= twom768; 578 } else if (ix < 0x23d00000) { 579 x *= two768; 580 y *= two768; 581 } 582 583 y = fabs(y); 584 x = fabs(x); 585 t = y / x; 586 th = t; 587 ((int *)&th)[LOWORD] &= 0xf8000000; 588 xh = x; 589 ((int *)&xh)[LOWORD] &= 0xf8000000; 590 t1 = (x - xh) * t + xh * (t - th); 591 t2 = y - xh * th; 592 w1 = mx_atan(t, &w2); 593 w2 += (t2 - t1) / (x + y * t); 594 595 if (hx < 0) { 596 t1 = pi - w1; 597 t2 = pi - t1; 598 w2 = (pi_lo - w2) - (w1 - t2); 599 w1 = t1; 600 } 601 602 *w = (hy >= 0) ? w2 : -w2; 603 return ((hy >= 0) ? w1 : -w1); 604 } 605 }