Print this page
11210 libm should be cstyle(1ONBLD) clean

Split Close
Expand all
Collapse all
          --- old/usr/src/lib/libm/common/complex/ctanhl.c
          +++ new/usr/src/lib/libm/common/complex/ctanhl.c
↓ open down ↓ 14 lines elided ↑ open up ↑
  15   15   * If applicable, add the following below this CDDL HEADER, with the
  16   16   * fields enclosed by brackets "[]" replaced with your own identifying
  17   17   * information: Portions Copyright [yyyy] [name of copyright owner]
  18   18   *
  19   19   * CDDL HEADER END
  20   20   */
  21   21  
  22   22  /*
  23   23   * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24   24   */
       25 +
  25   26  /*
  26   27   * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  27   28   * Use is subject to license terms.
  28   29   */
  29   30  
  30   31  #pragma weak __ctanhl = ctanhl
  31   32  
  32   33  #include "libm.h"       /* expl/expm1l/fabsl/isinfl/isnanl/sincosl/sinl/tanhl */
  33   34  #include "complex_wrapper.h"
  34   35  #include "longdouble.h"
  35   36  
  36      -/* INDENT OFF */
  37   37  static const long double four = 4.0L, two = 2.0L, one = 1.0L, zero = 0.0L;
  38      -/* INDENT ON */
       38 +
  39   39  
  40   40  ldcomplex
  41      -ctanhl(ldcomplex z) {
       41 +ctanhl(ldcomplex z)
       42 +{
  42   43          long double r, u, v, t, x, y, S, C;
  43   44          int hx, ix, hy, iy;
  44   45          ldcomplex ans;
  45   46  
  46   47          x = LD_RE(z);
  47   48          y = LD_IM(z);
  48   49          hx = HI_XWORD(x);
  49   50          ix = hx & 0x7fffffff;
  50   51          hy = HI_XWORD(y);
  51   52          iy = hy & 0x7fffffff;
  52   53          x = fabsl(x);
  53   54          y = fabsl(y);
  54   55  
  55   56          if (y == zero) {        /* ctanh(x,0) = (x,0) for x = 0 or NaN */
  56   57                  LD_RE(ans) = tanhl(x);
  57   58                  LD_IM(ans) = zero;
  58   59          } else if (iy >= 0x7fff0000) {  /* y is inf or NaN */
  59      -                if (ix < 0x7fff0000)    /* catanh(finite x,inf/nan) is nan */
       60 +                if (ix < 0x7fff0000) {  /* catanh(finite x,inf/nan) is nan */
  60   61                          LD_RE(ans) = LD_IM(ans) = y - y;
  61      -                else if (isinfl(x)) {   /* x is inf */
       62 +                } else if (isinfl(x)) { /* x is inf */
  62   63                          LD_RE(ans) = one;
  63   64                          LD_IM(ans) = zero;
  64   65                  } else {
  65   66                          LD_RE(ans) = x + y;
  66   67                          LD_IM(ans) = y - y;
  67   68                  }
  68   69          } else if (ix >= 0x4004e000) {
  69      -                /* INDENT OFF */
       70 +
  70   71                  /*
  71   72                   * |x| > 60 = prec/2 (14,28,34,60)
  72   73                   * ctanh z ~ 1 + i (sin2y)/(exp(2x))
  73   74                   */
  74      -                /* INDENT ON */
  75   75                  LD_RE(ans) = one;
  76      -                if (iy < 0x7ffe0000)    /* t = sin(2y) */
       76 +
       77 +                if (iy < 0x7ffe0000) {  /* t = sin(2y) */
  77   78                          S = sinl(y + y);
  78      -                else {
       79 +                } else {
  79   80                          (void) sincosl(y, &S, &C);
  80   81                          S = (S + S) * C;
  81   82                  }
  82      -                if (ix >= 0x7ffe0000) { /* |x| > max/2 */
       83 +
       84 +                if (ix >= 0x7ffe0000) {         /* |x| > max/2 */
  83   85                          if (ix >= 0x7fff0000) { /* |x| is inf or NaN */
  84   86                                  if (isnanl(x))  /* x is NaN */
  85   87                                          LD_RE(ans) = LD_IM(ans) = x + y;
  86   88                                  else
  87   89                                          LD_IM(ans) = zero * S;  /* x is inf */
  88      -                        } else
       90 +                        } else {
  89   91                                  LD_IM(ans) = S * expl(-x);      /* underflow */
  90      -                } else
       92 +                        }
       93 +                } else {
  91   94                          LD_IM(ans) = (S + S) * expl(-(x + x));
  92      -                                                        /* 2 sin 2y / exp(2x) */
       95 +                }
       96 +
       97 +                /* 2 sin 2y / exp(2x) */
  93   98          } else {
  94      -                /* INDENT OFF */
       99 +                /* BEGIN CSTYLED */
  95  100                  /*
  96  101                   *                        t*t+2t
  97  102                   *    ctanh z = ---------------------------
  98  103                   *               t*t+[4(t+1)(cos y)](cos y)
  99  104                   *
 100  105                   *                  [4(t+1)(cos y)]*(sin y)
 101  106                   *              i --------------------------
 102  107                   *                t*t+[4(t+1)(cos y)](cos y)
 103  108                   */
 104      -                /* INDENT ON */
      109 +                /* END CSTYLED */
 105  110                  sincosl(y, &S, &C);
 106  111                  t = expm1l(x + x);
 107  112                  r = (four * C) * (t + one);
 108  113                  u = t * t;
 109  114                  v = one / (u + r * C);
 110  115                  LD_RE(ans) = (u + two * t) * v;
 111  116                  LD_IM(ans) = (r * S) * v;
 112  117          }
      118 +
 113  119          if (hx < 0)
 114  120                  LD_RE(ans) = -LD_RE(ans);
      121 +
 115  122          if (hy < 0)
 116  123                  LD_IM(ans) = -LD_IM(ans);
      124 +
 117  125          return (ans);
 118  126  }
    
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX