1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __ctanhl = ctanhl 32 33 #include "libm.h" /* expl/expm1l/fabsl/isinfl/isnanl/sincosl/sinl/tanhl */ 34 #include "complex_wrapper.h" 35 #include "longdouble.h" 36 37 static const long double four = 4.0L, two = 2.0L, one = 1.0L, zero = 0.0L; 38 39 40 ldcomplex 41 ctanhl(ldcomplex z) 42 { 43 long double r, u, v, t, x, y, S, C; 44 int hx, ix, hy, iy; 45 ldcomplex ans; 46 47 x = LD_RE(z); 48 y = LD_IM(z); 49 hx = HI_XWORD(x); 50 ix = hx & 0x7fffffff; 51 hy = HI_XWORD(y); 52 iy = hy & 0x7fffffff; 53 x = fabsl(x); 54 y = fabsl(y); 55 56 if (y == zero) { /* ctanh(x,0) = (x,0) for x = 0 or NaN */ 57 LD_RE(ans) = tanhl(x); 58 LD_IM(ans) = zero; 59 } else if (iy >= 0x7fff0000) { /* y is inf or NaN */ 60 if (ix < 0x7fff0000) { /* catanh(finite x,inf/nan) is nan */ 61 LD_RE(ans) = LD_IM(ans) = y - y; 62 } else if (isinfl(x)) { /* x is inf */ 63 LD_RE(ans) = one; 64 LD_IM(ans) = zero; 65 } else { 66 LD_RE(ans) = x + y; 67 LD_IM(ans) = y - y; 68 } 69 } else if (ix >= 0x4004e000) { 70 71 /* 72 * |x| > 60 = prec/2 (14,28,34,60) 73 * ctanh z ~ 1 + i (sin2y)/(exp(2x)) 74 */ 75 LD_RE(ans) = one; 76 77 if (iy < 0x7ffe0000) { /* t = sin(2y) */ 78 S = sinl(y + y); 79 } else { 80 (void) sincosl(y, &S, &C); 81 S = (S + S) * C; 82 } 83 84 if (ix >= 0x7ffe0000) { /* |x| > max/2 */ 85 if (ix >= 0x7fff0000) { /* |x| is inf or NaN */ 86 if (isnanl(x)) /* x is NaN */ 87 LD_RE(ans) = LD_IM(ans) = x + y; 88 else 89 LD_IM(ans) = zero * S; /* x is inf */ 90 } else { 91 LD_IM(ans) = S * expl(-x); /* underflow */ 92 } 93 } else { 94 LD_IM(ans) = (S + S) * expl(-(x + x)); 95 } 96 97 /* 2 sin 2y / exp(2x) */ 98 } else { 99 /* BEGIN CSTYLED */ 100 /* 101 * t*t+2t 102 * ctanh z = --------------------------- 103 * t*t+[4(t+1)(cos y)](cos y) 104 * 105 * [4(t+1)(cos y)]*(sin y) 106 * i -------------------------- 107 * t*t+[4(t+1)(cos y)](cos y) 108 */ 109 /* END CSTYLED */ 110 sincosl(y, &S, &C); 111 t = expm1l(x + x); 112 r = (four * C) * (t + one); 113 u = t * t; 114 v = one / (u + r * C); 115 LD_RE(ans) = (u + two * t) * v; 116 LD_IM(ans) = (r * S) * v; 117 } 118 119 if (hx < 0) 120 LD_RE(ans) = -LD_RE(ans); 121 122 if (hy < 0) 123 LD_IM(ans) = -LD_IM(ans); 124 125 return (ans); 126 }