Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/ctanhf.c
+++ new/usr/src/lib/libm/common/complex/ctanhf.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __ctanhf = ctanhf
31 32
32 -#include "libm.h" /* expf/expm1f/fabsf/sincosf/sinf/tanhf */
33 +#include "libm.h" /* expf/expm1f/fabsf/sincosf/sinf/tanhf */
33 34 #include "complex_wrapper.h"
34 35
35 -/* INDENT OFF */
36 36 static const float four = 4.0F, two = 2.0F, one = 1.0F, zero = 0.0F;
37 -/* INDENT ON */
37 +
38 38
39 39 fcomplex
40 -ctanhf(fcomplex z) {
40 +ctanhf(fcomplex z)
41 +{
41 42 float r, u, v, t, x, y, S, C;
42 43 int hx, ix, hy, iy;
43 44 fcomplex ans;
44 45
45 46 x = F_RE(z);
46 47 y = F_IM(z);
47 48 hx = THE_WORD(x);
48 49 ix = hx & 0x7fffffff;
49 50 hy = THE_WORD(y);
50 51 iy = hy & 0x7fffffff;
51 52 x = fabsf(x);
52 53 y = fabsf(y);
53 54
54 55 if (iy == 0) { /* ctanh(x,0) = (x,0) for x = 0 or NaN */
55 56 F_RE(ans) = tanhf(x);
56 57 F_IM(ans) = zero;
57 - } else if (iy >= 0x7f800000) { /* y is inf or NaN */
58 - if (ix < 0x7f800000) /* catanh(finite x,inf/nan) is nan */
58 + } else if (iy >= 0x7f800000) { /* y is inf or NaN */
59 + if (ix < 0x7f800000) { /* catanh(finite x,inf/nan) is nan */
59 60 F_RE(ans) = F_IM(ans) = y - y;
60 - else if (ix == 0x7f800000) { /* x is inf */
61 + } else if (ix == 0x7f800000) { /* x is inf */
61 62 F_RE(ans) = one;
62 63 F_IM(ans) = zero;
63 64 } else {
64 65 F_RE(ans) = x + y;
65 66 F_IM(ans) = y - y;
66 67 }
67 68 } else if (ix >= 0x41600000) {
68 69 /*
69 70 * |x| > 14 = prec/2 (14,28,34,60)
70 71 * ctanh z ~ 1 + i (sin2y)/(exp(2x))
71 72 */
72 73 F_RE(ans) = one;
73 - if (iy < 0x7f000000) /* t = sin(2y) */
74 +
75 + if (iy < 0x7f000000) { /* t = sin(2y) */
74 76 S = sinf(y + y);
75 - else {
77 + } else {
76 78 (void) sincosf(y, &S, &C);
77 79 S = (S + S) * C;
78 80 }
79 - if (ix >= 0x7f000000) { /* |x| > max/2 */
81 +
82 + if (ix >= 0x7f000000) { /* |x| > max/2 */
80 83 if (ix >= 0x7f800000) { /* |x| is inf or NaN */
81 - if (ix > 0x7f800000) /* x is NaN */
84 + if (ix > 0x7f800000) /* x is NaN */
82 85 F_RE(ans) = F_IM(ans) = x + y;
83 86 else
84 87 F_IM(ans) = zero * S; /* x is inf */
85 - } else
88 + } else {
86 89 F_IM(ans) = S * expf(-x); /* underflow */
87 - } else
90 + }
91 + } else {
88 92 F_IM(ans) = (S + S) * expf(-(x + x));
89 - /* 2 sin 2y / exp(2x) */
93 + }
94 +
95 + /* 2 sin 2y / exp(2x) */
90 96 } else {
91 - /* INDENT OFF */
97 + /* BEGIN CSTYLED */
92 98 /*
93 99 * t*t+2t
94 100 * ctanh z = ---------------------------
95 101 * t*t+[4(t+1)(cos y)](cos y)
96 102 *
97 103 * [4(t+1)(cos y)]*(sin y)
98 104 * i --------------------------
99 105 * t*t+[4(t+1)(cos y)](cos y)
100 106 */
101 - /* INDENT ON */
107 + /* END CSTYLED */
102 108 (void) sincosf(y, &S, &C);
103 109 t = expm1f(x + x);
104 110 r = (four * C) * (t + one);
105 111 u = t * t;
106 112 v = one / (u + r * C);
107 113 F_RE(ans) = (u + two * t) * v;
108 114 F_IM(ans) = (r * S) * v;
109 115 }
116 +
110 117 if (hx < 0)
111 118 F_RE(ans) = -F_RE(ans);
119 +
112 120 if (hy < 0)
113 121 F_IM(ans) = -F_IM(ans);
122 +
114 123 return (ans);
115 124 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX