1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __ctanhf = ctanhf 32 33 #include "libm.h" /* expf/expm1f/fabsf/sincosf/sinf/tanhf */ 34 #include "complex_wrapper.h" 35 36 static const float four = 4.0F, two = 2.0F, one = 1.0F, zero = 0.0F; 37 38 39 fcomplex 40 ctanhf(fcomplex z) 41 { 42 float r, u, v, t, x, y, S, C; 43 int hx, ix, hy, iy; 44 fcomplex ans; 45 46 x = F_RE(z); 47 y = F_IM(z); 48 hx = THE_WORD(x); 49 ix = hx & 0x7fffffff; 50 hy = THE_WORD(y); 51 iy = hy & 0x7fffffff; 52 x = fabsf(x); 53 y = fabsf(y); 54 55 if (iy == 0) { /* ctanh(x,0) = (x,0) for x = 0 or NaN */ 56 F_RE(ans) = tanhf(x); 57 F_IM(ans) = zero; 58 } else if (iy >= 0x7f800000) { /* y is inf or NaN */ 59 if (ix < 0x7f800000) { /* catanh(finite x,inf/nan) is nan */ 60 F_RE(ans) = F_IM(ans) = y - y; 61 } else if (ix == 0x7f800000) { /* x is inf */ 62 F_RE(ans) = one; 63 F_IM(ans) = zero; 64 } else { 65 F_RE(ans) = x + y; 66 F_IM(ans) = y - y; 67 } 68 } else if (ix >= 0x41600000) { 69 /* 70 * |x| > 14 = prec/2 (14,28,34,60) 71 * ctanh z ~ 1 + i (sin2y)/(exp(2x)) 72 */ 73 F_RE(ans) = one; 74 75 if (iy < 0x7f000000) { /* t = sin(2y) */ 76 S = sinf(y + y); 77 } else { 78 (void) sincosf(y, &S, &C); 79 S = (S + S) * C; 80 } 81 82 if (ix >= 0x7f000000) { /* |x| > max/2 */ 83 if (ix >= 0x7f800000) { /* |x| is inf or NaN */ 84 if (ix > 0x7f800000) /* x is NaN */ 85 F_RE(ans) = F_IM(ans) = x + y; 86 else 87 F_IM(ans) = zero * S; /* x is inf */ 88 } else { 89 F_IM(ans) = S * expf(-x); /* underflow */ 90 } 91 } else { 92 F_IM(ans) = (S + S) * expf(-(x + x)); 93 } 94 95 /* 2 sin 2y / exp(2x) */ 96 } else { 97 /* BEGIN CSTYLED */ 98 /* 99 * t*t+2t 100 * ctanh z = --------------------------- 101 * t*t+[4(t+1)(cos y)](cos y) 102 * 103 * [4(t+1)(cos y)]*(sin y) 104 * i -------------------------- 105 * t*t+[4(t+1)(cos y)](cos y) 106 */ 107 /* END CSTYLED */ 108 (void) sincosf(y, &S, &C); 109 t = expm1f(x + x); 110 r = (four * C) * (t + one); 111 u = t * t; 112 v = one / (u + r * C); 113 F_RE(ans) = (u + two * t) * v; 114 F_IM(ans) = (r * S) * v; 115 } 116 117 if (hx < 0) 118 F_RE(ans) = -F_RE(ans); 119 120 if (hy < 0) 121 F_IM(ans) = -F_IM(ans); 122 123 return (ans); 124 }