1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __csqrtl = csqrtl 32 33 #include "libm.h" /* fabsl/isinfl/sqrtl */ 34 #include "complex_wrapper.h" 35 #include "longdouble.h" 36 37 static const long double 38 twom9001 = 2.6854002716003034957421765100615693043656e-2710L, 39 twom4500 = 2.3174987687592429423263242862381544149252e-1355L, 40 two8999 = 9.3095991180122343502582347372163290310934e+2708L, 41 two4500 = 4.3149968987270974283777803545571722250806e+1354L, 42 zero = 0.0L, 43 half = 0.5L, 44 two = 2.0L; 45 46 47 ldcomplex 48 csqrtl(ldcomplex z) 49 { 50 ldcomplex ans; 51 long double x, y, t, ax, ay; 52 int n, ix, iy, hx, hy; 53 54 x = LD_RE(z); 55 y = LD_IM(z); 56 hx = HI_XWORD(x); 57 hy = HI_XWORD(y); 58 ix = hx & 0x7fffffff; 59 iy = hy & 0x7fffffff; 60 ay = fabsl(y); 61 ax = fabsl(x); 62 63 if (ix >= 0x7fff0000 || iy >= 0x7fff0000) { 64 /* x or y is Inf or NaN */ 65 if (isinfl(y)) { 66 LD_IM(ans) = LD_RE(ans) = ay; 67 } else if (isinfl(x)) { 68 if (hx > 0) { 69 LD_RE(ans) = ax; 70 LD_IM(ans) = ay * zero; 71 } else { 72 LD_RE(ans) = ay * zero; 73 LD_IM(ans) = ax; 74 } 75 } else { 76 LD_IM(ans) = LD_RE(ans) = ax + ay; 77 } 78 } else if (y == zero) { 79 if (hx >= 0) { 80 LD_RE(ans) = sqrtl(ax); 81 LD_IM(ans) = zero; 82 } else { 83 LD_IM(ans) = sqrtl(ax); 84 LD_RE(ans) = zero; 85 } 86 } else if (ix >= iy) { 87 n = (ix - iy) >> 16; 88 #if defined(__x86) /* 64 significant bits */ 89 if (n >= 35) 90 #else /* 113 significant bits */ 91 if (n >= 60) 92 #endif 93 { 94 t = sqrtl(ax); 95 } else if (ix >= 0x5f3f0000) { /* x > 2**8000 */ 96 ax *= twom9001; 97 y *= twom9001; 98 t = two4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 99 } else if (iy <= 0x20bf0000) { /* y < 2**-8000 */ 100 ax *= two8999; 101 y *= two8999; 102 t = twom4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 103 } else { 104 t = sqrtl(half * (ax + sqrtl(ax * ax + y * y))); 105 } 106 107 if (hx >= 0) { 108 LD_RE(ans) = t; 109 LD_IM(ans) = ay / (t + t); 110 } else { 111 LD_IM(ans) = t; 112 LD_RE(ans) = ay / (t + t); 113 } 114 } else { 115 n = (iy - ix) >> 16; 116 #if defined(__x86) /* 64 significant bits */ 117 if (n >= 35) { /* } */ 118 #else /* 113 significant bits */ 119 if (n >= 60) { 120 #endif 121 122 if (n >= 120) 123 t = sqrtl(half * ay); 124 else if (iy >= 0x7ffe0000) 125 t = sqrtl(half * ay + half * ax); 126 else if (ix <= 0x00010000) 127 t = half * (sqrtl(two * (ax + ay))); 128 else 129 t = sqrtl(half * (ax + ay)); 130 } else if (iy >= 0x5f3f0000) { /* y > 2**8000 */ 131 ax *= twom9001; 132 y *= twom9001; 133 t = two4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 134 } else if (ix <= 0x20bf0000) { 135 ax *= two8999; 136 y *= two8999; 137 t = twom4500 * sqrtl(ax + sqrtl(ax * ax + y * y)); 138 } else { 139 t = sqrtl(half * (ax + sqrtl(ax * ax + y * y))); 140 } 141 142 if (hx >= 0) { 143 LD_RE(ans) = t; 144 LD_IM(ans) = ay / (t + t); 145 } else { 146 LD_IM(ans) = t; 147 LD_RE(ans) = ay / (t + t); 148 } 149 } 150 151 if (hy < 0) 152 LD_IM(ans) = -LD_IM(ans); 153 154 return (ans); 155 }