1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __csinh = csinh 32 33 34 /* 35 * dcomplex csinh(dcomplex z); 36 * 37 * z -z x -x 38 * e - e e (cos(y)+i*sin(y)) - e (cos(-y)+i*sin(-y)) 39 * sinh z = -------------- = --------------------------------------------- 40 * 2 2 41 * x -x x -x 42 * cos(y) ( e - e ) + i*sin(y) (e + e ) 43 * = -------------------------------------------- 44 * 2 45 * 46 * = cos(y) sinh(x) + i sin(y) cosh(x) 47 * 48 * Implementation Note 49 * ------------------- 50 * 51 * |x| -|x| |x| -2|x| -2|x| -P-4 52 * Note that e +- e = e ( 1 +- e ). If e < 2 , where 53 * 54 * P stands for the number of significant bits of the machine precision, 55 * |x| 56 * then the result will be rounded to e . Therefore, we have 57 * 58 * z 59 * e 60 * sinh z = ----- if |x| >= (P/2 + 2)*ln2 61 * 2 62 * 63 * EXCEPTION (conform to ISO/IEC 9899:1999(E)): 64 * csinh(0,0)=(0,0) 65 * csinh(0,inf)=(+-0,NaN) 66 * csinh(0,NaN)=(+-0,NaN) 67 * csinh(x,inf) = (NaN,NaN) for finite positive x 68 * csinh(x,NaN) = (NaN,NaN) for finite non-zero x 69 * csinh(inf,0) = (inf, 0) 70 * csinh(inf,y) = (inf*cos(y),inf*sin(y)) for positive finite y 71 * csinh(inf,inf) = (+-inf,NaN) 72 * csinh(inf,NaN) = (+-inf,NaN) 73 * csinh(NaN,0) = (NaN,0) 74 * csinh(NaN,y) = (NaN,NaN) for non-zero y 75 * csinh(NaN,NaN) = (NaN,NaN) 76 */ 77 78 #include "libm.h" /* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */ 79 #include "complex_wrapper.h" 80 81 dcomplex 82 csinh(dcomplex z) 83 { 84 double t, x, y, S, C; 85 int hx, ix, lx, hy, iy, ly, n; 86 dcomplex ans; 87 88 x = D_RE(z); 89 y = D_IM(z); 90 hx = HI_WORD(x); 91 lx = LO_WORD(x); 92 ix = hx & 0x7fffffff; 93 hy = HI_WORD(y); 94 ly = LO_WORD(y); 95 iy = hy & 0x7fffffff; 96 x = fabs(x); 97 y = fabs(y); 98 99 (void) sincos(y, &S, &C); 100 101 if (ix >= 0x403c0000) { /* |x| > 28 = prec/2 (14,28,34,60) */ 102 if (ix >= 0x40862E42) { /* |x| > 709.78... ~ log(2**1024) */ 103 if (ix >= 0x7ff00000) { /* |x| is inf or NaN */ 104 if ((iy | ly) == 0) { 105 D_RE(ans) = x; 106 D_IM(ans) = y; 107 } else if (iy >= 0x7ff00000) { 108 D_RE(ans) = x; 109 D_IM(ans) = x - y; 110 } else { 111 D_RE(ans) = C * x; 112 D_IM(ans) = S * x; 113 } 114 } else { 115 /* return exp(x)=t*2**n */ 116 t = __k_cexp(x, &n); 117 D_RE(ans) = scalbn(C * t, n - 1); 118 D_IM(ans) = scalbn(S * t, n - 1); 119 } 120 } else { 121 t = exp(x) * 0.5; 122 D_RE(ans) = C * t; 123 D_IM(ans) = S * t; 124 } 125 } else { 126 if ((ix | lx) == 0) { /* x = 0, return (0,S) */ 127 D_RE(ans) = 0.0; 128 D_IM(ans) = S; 129 } else { 130 D_RE(ans) = C * sinh(x); 131 D_IM(ans) = S * cosh(x); 132 } 133 } 134 135 if (hx < 0) 136 D_RE(ans) = -D_RE(ans); 137 138 if (hy < 0) 139 D_IM(ans) = -D_IM(ans); 140 141 return (ans); 142 }