1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 #pragma weak __cpowl = cpowl
  32 
  33 #include "libm.h"                       /* __k_clog_rl/__k_atan2l */
  34 /* atan2l/atan2pil/exp2l/expl/fabsl/hypotl/isinfl/logl/powl/sincosl/sincospil */
  35 #include "complex_wrapper.h"
  36 #include "longdouble.h"
  37 
  38 #if defined(__sparc)
  39 #define HALF(x)         ((int *)&x)[3] = 0; ((int *)&x)[2] &= 0xfe000000
  40 #define LAST(x)         ((int *)&x)[3]
  41 #elif defined(__x86)
  42 #define HALF(x)         ((int *)&x)[0] = 0
  43 #define LAST(x)         ((int *)&x)[0]
  44 #endif
  45 
  46 static const int hiinf = 0x7fff0000;
  47 static const long double tiny = 1.0e-4000L,
  48         huge = 1.0e4000L,
  49 #if defined(__x86)
  50 /* 43 significant bits, 21 trailing zeros */
  51         ln2hil = 0.693147180559890330187045037746429443359375L,
  52         ln2lol = 5.497923018708371174712471612513436025525412068e-14L,
  53 #else /* sparc */
  54 /* 0x3FF962E4 2FEFA39E F35793C7 00000000 */
  55         ln2hil = 0.693147180559945309417231592858066493070671489074L,
  56         ln2lol = 5.28600110075004828645286235820646730106802446566153e-25L,
  57 #endif
  58         invln2 = 1.442695040888963407359924681001892137427e+0000L,
  59         one = 1.0L,
  60         zero = 0.0L;
  61 
  62 /*
  63  * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fpl subroutine
  64  * compute t[0] + t[1] + t[2] + t[3] into two long double fp numbers.
  65  */
  66 static long double
  67 sum4fpl(long double ta[], long double *w)
  68 {
  69         long double t1, t2, t3, t4, w1, w2, t;
  70 
  71         t1 = ta[0];
  72         t2 = ta[1];
  73         t3 = ta[2];
  74         t4 = ta[3];
  75 
  76         /*
  77          * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4|
  78          */
  79         if (fabsl(t4) > fabsl(t1)) {
  80                 t = t1;
  81                 t1 = t3;
  82                 t3 = t;
  83                 t = t2;
  84                 t2 = t4;
  85                 t4 = t;
  86         } else if (fabsl(t3) > fabsl(t1)) {
  87                 t = t1;
  88                 t1 = t3;
  89 
  90                 if (fabsl(t4) > fabsl(t2)) {
  91                         t3 = t4;
  92                         t4 = t2;
  93                         t2 = t;
  94                 } else {
  95                         t3 = t2;
  96                         t2 = t;
  97                 }
  98         } else if (fabsl(t3) > fabsl(t2)) {
  99                 t = t2;
 100                 t2 = t3;
 101 
 102                 if (fabsl(t4) > fabsl(t2)) {
 103                         t3 = t4;
 104                         t4 = t;
 105                 } else {
 106                         t3 = t;
 107                 }
 108         }
 109 
 110         /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */
 111         w1 = t3 + t4;
 112         w2 = t4 - (w1 - t3);
 113         t = t2 + w1;
 114         w2 += w1 - (t - t2);
 115         w1 = t + w2;
 116         w2 += t - w1;
 117         t = t1 + w1;
 118         w2 += w1 - (t - t1);
 119         w1 = t + w2;
 120         *w = w2 - (w1 - t);
 121         return (w1);
 122 }
 123 
 124 ldcomplex
 125 cpowl(ldcomplex z, ldcomplex w)
 126 {
 127         ldcomplex ans;
 128         long double x, y, u, v, t, c, s, r;
 129         long double t1, t2, t3, t4, x1, x2, y1, y2, u1, v1, b[4], w1, w2;
 130         int ix, iy, hx, hy, hv, hu, iu, iv, i, j, k;
 131 
 132         x = LD_RE(z);
 133         y = LD_IM(z);
 134         u = LD_RE(w);
 135         v = LD_IM(w);
 136         hx = HI_XWORD(x);
 137         hy = HI_XWORD(y);
 138         hu = HI_XWORD(u);
 139         hv = HI_XWORD(v);
 140         ix = hx & 0x7fffffff;
 141         iy = hy & 0x7fffffff;
 142         iu = hu & 0x7fffffff;
 143         iv = hv & 0x7fffffff;
 144 
 145         j = 0;
 146 
 147         if (v == zero) {                /* z**(real) */
 148                 if (u == one) {         /* (anything) ** 1  is itself */
 149                         LD_RE(ans) = x;
 150                         LD_IM(ans) = y;
 151                 } else if (u == zero) { /* (anything) ** 0  is 1 */
 152                         LD_RE(ans) = one;
 153                         LD_IM(ans) = zero;
 154                 } else if (y == zero) { /* real ** real */
 155                         LD_IM(ans) = zero;
 156 
 157                         if (hx < 0 && ix < hiinf && iu < hiinf) {
 158                                 /* -x ** u  is exp(i*pi*u)*pow(x,u) */
 159                                 r = powl(-x, u);
 160                                 sincospil(u, &s, &c);
 161                                 LD_RE(ans) = (c == zero) ? c : c *r;
 162                                 LD_IM(ans) = (s == zero) ? s : s *r;
 163                         } else {
 164                                 LD_RE(ans) = powl(x, u);
 165                         }
 166                 } else if (x == zero || ix >= hiinf || iy >= hiinf) {
 167                         if (isnanl(x) || isnanl(y) || isnanl(u)) {
 168                                 LD_RE(ans) = LD_IM(ans) = x + y + u;
 169                         } else {
 170                                 if (x == zero)
 171                                         r = fabsl(y);
 172                                 else
 173                                         r = fabsl(x) + fabsl(y);
 174 
 175                                 t = atan2pil(y, x);
 176                                 sincospil(t * u, &s, &c);
 177                                 LD_RE(ans) = (c == zero) ? c : c *r;
 178                                 LD_IM(ans) = (s == zero) ? s : s *r;
 179                         }
 180                 } else if (fabsl(x) == fabsl(y)) {      /* |x| = |y| */
 181                         if (hx >= 0) {
 182                                 t = (hy >= 0) ? 0.25L : -0.25L;
 183                                 sincospil(t * u, &s, &c);
 184                         } else if ((LAST(u) & 3) == 0) {
 185                                 t = (hy >= 0) ? 0.75L : -0.75L;
 186                                 sincospil(t * u, &s, &c);
 187                         } else {
 188                                 r = (hy >= 0) ? u : -u;
 189                                 t = -0.25L * r;
 190                                 w1 = r + t;
 191                                 w2 = t - (w1 - r);
 192                                 sincospil(w1, &t1, &t2);
 193                                 sincospil(w2, &t3, &t4);
 194                                 s = t1 * t4 + t3 * t2;
 195                                 c = t2 * t4 - t1 * t3;
 196                         }
 197 
 198                         if (ix < 0x3ffe0000) /* |x| < 1/2 */
 199                                 r = powl(fabsl(x + x), u) * exp2l(-0.5L * u);
 200                         else if (ix >= 0x3fff0000 || iu < 0x400cfff8)
 201                                 /* |x| >= 1 or |u| < 16383 */
 202                                 r = powl(fabsl(x), u) * exp2l(0.5L * u);
 203                         else            /* special treatment */
 204                                 j = 2;
 205 
 206                         if (j == 0) {
 207                                 LD_RE(ans) = (c == zero) ? c : c *r;
 208                                 LD_IM(ans) = (s == zero) ? s : s *r;
 209                         }
 210                 } else {
 211                         j = 1;
 212                 }
 213 
 214                 if (j == 0)
 215                         return (ans);
 216         }
 217 
 218         if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) {
 219                 /*
 220                  * non-zero imag part(s) with inf component(s) yields NaN
 221                  */
 222                 t = fabsl(x) + fabsl(y) + fabsl(u) + fabsl(v);
 223                 LD_RE(ans) = LD_IM(ans) = t - t;
 224         } else {
 225                 k = 0;                  /* no scaling */
 226 
 227                 if (iu > 0x7ffe0000 || iv > 0x7ffe0000) {
 228                         u *= 1.52587890625000000000e-05L;
 229                         v *= 1.52587890625000000000e-05L;
 230                         k = 1;          /* scale u and v by 2**-16 */
 231                 }
 232 
 233                 /*
 234                  * Use similated higher precision arithmetic to compute:
 235                  * r = u * log(hypot(x, y)) - v * atan2(y, x)
 236                  * q = u * atan2(y, x) + v * log(hypot(x, y))
 237                  */
 238 
 239                 t1 = __k_clog_rl(x, y, &t2);
 240                 t3 = __k_atan2l(y, x, &t4);
 241                 x1 = t1;
 242                 HALF(x1);
 243                 y1 = t3;
 244                 HALF(y1);
 245                 u1 = u;
 246                 HALF(u1);
 247                 v1 = v;
 248                 HALF(v1);
 249                 x2 = t2 - (x1 - t1);    /* log(hypot(x,y)) = x1 + x2 */
 250                 y2 = t4 - (y1 - t3);    /* atan2(y,x) = y1 + y2 */
 251 
 252                 /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */
 253                 if (j != 2) {
 254                         b[0] = u1 * y1;
 255                         b[1] = (u - u1) * y1 + u * y2;
 256 
 257                         if (j == 1) {   /* v = 0 */
 258                                 w1 = b[0] + b[1];
 259                                 w2 = b[1] - (w1 - b[0]);
 260                         } else {
 261                                 b[2] = v1 * x1;
 262                                 b[3] = (v - v1) * x1 + v * x2;
 263                                 w1 = sum4fpl(b, &w2);
 264                         }
 265 
 266                         sincosl(w1, &t1, &t2);
 267                         sincosl(w2, &t3, &t4);
 268                         s = t1 * t4 + t3 * t2;
 269                         c = t2 * t4 - t1 * t3;
 270 
 271                         if (k == 1) {   /* square j times */
 272                                 for (i = 0; i < 10; i++) {
 273                                         t1 = s * c;
 274                                         c = (c + s) * (c - s);
 275                                         s = t1 + t1;
 276                                 }
 277                         }
 278                 }
 279 
 280                 /* compute r = u * (t1, t2) - v * (t3, t4) */
 281                 b[0] = u1 * x1;
 282                 b[1] = (u - u1) * x1 + u * x2;
 283 
 284                 if (j == 1) {           /* v = 0 */
 285                         w1 = b[0] + b[1];
 286                         w2 = b[1] - (w1 - b[0]);
 287                 } else {
 288                         b[2] = -v1 * y1;
 289                         b[3] = (v1 - v) * y1 - v * y2;
 290                         w1 = sum4fpl(b, &w2);
 291                 }
 292 
 293                 /* scale back unless w1 is large enough to cause exception */
 294                 if (k != 0 && fabsl(w1) < 20000.0L) {
 295                         w1 *= 65536.0L;
 296                         w2 *= 65536.0L;
 297                 }
 298 
 299                 hx = HI_XWORD(w1);
 300                 ix = hx & 0x7fffffff;
 301                 /* compute exp(w1 + w2) */
 302                 k = 0;
 303 
 304                 if (ix < 0x3f8c0000) {               /* exp(tiny < 2**-115) = 1 */
 305                         r = one;
 306                 } else if (ix >= 0x400c6760) {       /* overflow/underflow */
 307                         r = (hx < 0) ? tiny * tiny : huge * huge;
 308                 } else { /* compute exp(w1 + w2) */
 309                         k = (int)(invln2 * w1 + ((hx >= 0) ? 0.5L : -0.5L));
 310                         t1 = (long double)k;
 311                         t2 = w1 - t1 * ln2hil;
 312                         t3 = w2 - t1 * ln2lol;
 313                         r = expl(t2 + t3);
 314                 }
 315 
 316                 if (c != zero)
 317                         c *= r;
 318 
 319                 if (s != zero)
 320                         s *= r;
 321 
 322                 if (k != 0) {
 323                         c = scalbnl(c, k);
 324                         s = scalbnl(s, k);
 325                 }
 326 
 327                 LD_RE(ans) = c;
 328                 LD_IM(ans) = s;
 329         }
 330 
 331         return (ans);
 332 }