1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __cpowl = cpowl 32 33 #include "libm.h" /* __k_clog_rl/__k_atan2l */ 34 /* atan2l/atan2pil/exp2l/expl/fabsl/hypotl/isinfl/logl/powl/sincosl/sincospil */ 35 #include "complex_wrapper.h" 36 #include "longdouble.h" 37 38 #if defined(__sparc) 39 #define HALF(x) ((int *)&x)[3] = 0; ((int *)&x)[2] &= 0xfe000000 40 #define LAST(x) ((int *)&x)[3] 41 #elif defined(__x86) 42 #define HALF(x) ((int *)&x)[0] = 0 43 #define LAST(x) ((int *)&x)[0] 44 #endif 45 46 static const int hiinf = 0x7fff0000; 47 static const long double tiny = 1.0e-4000L, 48 huge = 1.0e4000L, 49 #if defined(__x86) 50 /* 43 significant bits, 21 trailing zeros */ 51 ln2hil = 0.693147180559890330187045037746429443359375L, 52 ln2lol = 5.497923018708371174712471612513436025525412068e-14L, 53 #else /* sparc */ 54 /* 0x3FF962E4 2FEFA39E F35793C7 00000000 */ 55 ln2hil = 0.693147180559945309417231592858066493070671489074L, 56 ln2lol = 5.28600110075004828645286235820646730106802446566153e-25L, 57 #endif 58 invln2 = 1.442695040888963407359924681001892137427e+0000L, 59 one = 1.0L, 60 zero = 0.0L; 61 62 /* 63 * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fpl subroutine 64 * compute t[0] + t[1] + t[2] + t[3] into two long double fp numbers. 65 */ 66 static long double 67 sum4fpl(long double ta[], long double *w) 68 { 69 long double t1, t2, t3, t4, w1, w2, t; 70 71 t1 = ta[0]; 72 t2 = ta[1]; 73 t3 = ta[2]; 74 t4 = ta[3]; 75 76 /* 77 * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4| 78 */ 79 if (fabsl(t4) > fabsl(t1)) { 80 t = t1; 81 t1 = t3; 82 t3 = t; 83 t = t2; 84 t2 = t4; 85 t4 = t; 86 } else if (fabsl(t3) > fabsl(t1)) { 87 t = t1; 88 t1 = t3; 89 90 if (fabsl(t4) > fabsl(t2)) { 91 t3 = t4; 92 t4 = t2; 93 t2 = t; 94 } else { 95 t3 = t2; 96 t2 = t; 97 } 98 } else if (fabsl(t3) > fabsl(t2)) { 99 t = t2; 100 t2 = t3; 101 102 if (fabsl(t4) > fabsl(t2)) { 103 t3 = t4; 104 t4 = t; 105 } else { 106 t3 = t; 107 } 108 } 109 110 /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */ 111 w1 = t3 + t4; 112 w2 = t4 - (w1 - t3); 113 t = t2 + w1; 114 w2 += w1 - (t - t2); 115 w1 = t + w2; 116 w2 += t - w1; 117 t = t1 + w1; 118 w2 += w1 - (t - t1); 119 w1 = t + w2; 120 *w = w2 - (w1 - t); 121 return (w1); 122 } 123 124 ldcomplex 125 cpowl(ldcomplex z, ldcomplex w) 126 { 127 ldcomplex ans; 128 long double x, y, u, v, t, c, s, r; 129 long double t1, t2, t3, t4, x1, x2, y1, y2, u1, v1, b[4], w1, w2; 130 int ix, iy, hx, hy, hv, hu, iu, iv, i, j, k; 131 132 x = LD_RE(z); 133 y = LD_IM(z); 134 u = LD_RE(w); 135 v = LD_IM(w); 136 hx = HI_XWORD(x); 137 hy = HI_XWORD(y); 138 hu = HI_XWORD(u); 139 hv = HI_XWORD(v); 140 ix = hx & 0x7fffffff; 141 iy = hy & 0x7fffffff; 142 iu = hu & 0x7fffffff; 143 iv = hv & 0x7fffffff; 144 145 j = 0; 146 147 if (v == zero) { /* z**(real) */ 148 if (u == one) { /* (anything) ** 1 is itself */ 149 LD_RE(ans) = x; 150 LD_IM(ans) = y; 151 } else if (u == zero) { /* (anything) ** 0 is 1 */ 152 LD_RE(ans) = one; 153 LD_IM(ans) = zero; 154 } else if (y == zero) { /* real ** real */ 155 LD_IM(ans) = zero; 156 157 if (hx < 0 && ix < hiinf && iu < hiinf) { 158 /* -x ** u is exp(i*pi*u)*pow(x,u) */ 159 r = powl(-x, u); 160 sincospil(u, &s, &c); 161 LD_RE(ans) = (c == zero) ? c : c *r; 162 LD_IM(ans) = (s == zero) ? s : s *r; 163 } else { 164 LD_RE(ans) = powl(x, u); 165 } 166 } else if (x == zero || ix >= hiinf || iy >= hiinf) { 167 if (isnanl(x) || isnanl(y) || isnanl(u)) { 168 LD_RE(ans) = LD_IM(ans) = x + y + u; 169 } else { 170 if (x == zero) 171 r = fabsl(y); 172 else 173 r = fabsl(x) + fabsl(y); 174 175 t = atan2pil(y, x); 176 sincospil(t * u, &s, &c); 177 LD_RE(ans) = (c == zero) ? c : c *r; 178 LD_IM(ans) = (s == zero) ? s : s *r; 179 } 180 } else if (fabsl(x) == fabsl(y)) { /* |x| = |y| */ 181 if (hx >= 0) { 182 t = (hy >= 0) ? 0.25L : -0.25L; 183 sincospil(t * u, &s, &c); 184 } else if ((LAST(u) & 3) == 0) { 185 t = (hy >= 0) ? 0.75L : -0.75L; 186 sincospil(t * u, &s, &c); 187 } else { 188 r = (hy >= 0) ? u : -u; 189 t = -0.25L * r; 190 w1 = r + t; 191 w2 = t - (w1 - r); 192 sincospil(w1, &t1, &t2); 193 sincospil(w2, &t3, &t4); 194 s = t1 * t4 + t3 * t2; 195 c = t2 * t4 - t1 * t3; 196 } 197 198 if (ix < 0x3ffe0000) /* |x| < 1/2 */ 199 r = powl(fabsl(x + x), u) * exp2l(-0.5L * u); 200 else if (ix >= 0x3fff0000 || iu < 0x400cfff8) 201 /* |x| >= 1 or |u| < 16383 */ 202 r = powl(fabsl(x), u) * exp2l(0.5L * u); 203 else /* special treatment */ 204 j = 2; 205 206 if (j == 0) { 207 LD_RE(ans) = (c == zero) ? c : c *r; 208 LD_IM(ans) = (s == zero) ? s : s *r; 209 } 210 } else { 211 j = 1; 212 } 213 214 if (j == 0) 215 return (ans); 216 } 217 218 if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) { 219 /* 220 * non-zero imag part(s) with inf component(s) yields NaN 221 */ 222 t = fabsl(x) + fabsl(y) + fabsl(u) + fabsl(v); 223 LD_RE(ans) = LD_IM(ans) = t - t; 224 } else { 225 k = 0; /* no scaling */ 226 227 if (iu > 0x7ffe0000 || iv > 0x7ffe0000) { 228 u *= 1.52587890625000000000e-05L; 229 v *= 1.52587890625000000000e-05L; 230 k = 1; /* scale u and v by 2**-16 */ 231 } 232 233 /* 234 * Use similated higher precision arithmetic to compute: 235 * r = u * log(hypot(x, y)) - v * atan2(y, x) 236 * q = u * atan2(y, x) + v * log(hypot(x, y)) 237 */ 238 239 t1 = __k_clog_rl(x, y, &t2); 240 t3 = __k_atan2l(y, x, &t4); 241 x1 = t1; 242 HALF(x1); 243 y1 = t3; 244 HALF(y1); 245 u1 = u; 246 HALF(u1); 247 v1 = v; 248 HALF(v1); 249 x2 = t2 - (x1 - t1); /* log(hypot(x,y)) = x1 + x2 */ 250 y2 = t4 - (y1 - t3); /* atan2(y,x) = y1 + y2 */ 251 252 /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */ 253 if (j != 2) { 254 b[0] = u1 * y1; 255 b[1] = (u - u1) * y1 + u * y2; 256 257 if (j == 1) { /* v = 0 */ 258 w1 = b[0] + b[1]; 259 w2 = b[1] - (w1 - b[0]); 260 } else { 261 b[2] = v1 * x1; 262 b[3] = (v - v1) * x1 + v * x2; 263 w1 = sum4fpl(b, &w2); 264 } 265 266 sincosl(w1, &t1, &t2); 267 sincosl(w2, &t3, &t4); 268 s = t1 * t4 + t3 * t2; 269 c = t2 * t4 - t1 * t3; 270 271 if (k == 1) { /* square j times */ 272 for (i = 0; i < 10; i++) { 273 t1 = s * c; 274 c = (c + s) * (c - s); 275 s = t1 + t1; 276 } 277 } 278 } 279 280 /* compute r = u * (t1, t2) - v * (t3, t4) */ 281 b[0] = u1 * x1; 282 b[1] = (u - u1) * x1 + u * x2; 283 284 if (j == 1) { /* v = 0 */ 285 w1 = b[0] + b[1]; 286 w2 = b[1] - (w1 - b[0]); 287 } else { 288 b[2] = -v1 * y1; 289 b[3] = (v1 - v) * y1 - v * y2; 290 w1 = sum4fpl(b, &w2); 291 } 292 293 /* scale back unless w1 is large enough to cause exception */ 294 if (k != 0 && fabsl(w1) < 20000.0L) { 295 w1 *= 65536.0L; 296 w2 *= 65536.0L; 297 } 298 299 hx = HI_XWORD(w1); 300 ix = hx & 0x7fffffff; 301 /* compute exp(w1 + w2) */ 302 k = 0; 303 304 if (ix < 0x3f8c0000) { /* exp(tiny < 2**-115) = 1 */ 305 r = one; 306 } else if (ix >= 0x400c6760) { /* overflow/underflow */ 307 r = (hx < 0) ? tiny * tiny : huge * huge; 308 } else { /* compute exp(w1 + w2) */ 309 k = (int)(invln2 * w1 + ((hx >= 0) ? 0.5L : -0.5L)); 310 t1 = (long double)k; 311 t2 = w1 - t1 * ln2hil; 312 t3 = w2 - t1 * ln2lol; 313 r = expl(t2 + t3); 314 } 315 316 if (c != zero) 317 c *= r; 318 319 if (s != zero) 320 s *= r; 321 322 if (k != 0) { 323 c = scalbnl(c, k); 324 s = scalbnl(s, k); 325 } 326 327 LD_RE(ans) = c; 328 LD_IM(ans) = s; 329 } 330 331 return (ans); 332 }