Print this page
11210 libm should be cstyle(1ONBLD) clean

@@ -20,18 +20,19 @@
  */
 
 /*
  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  */
+
 /*
  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  * Use is subject to license terms.
  */
 
 #pragma weak __cpow = cpow
 
-/* INDENT OFF */
+
 /*
  * dcomplex cpow(dcomplex z);
  *
  * z**w analytically equivalent to
  *

@@ -84,58 +85,77 @@
  *      Note: many results of special cases are obtained in terms of
  *      polar coordinate. In the conversion from polar to rectangle:
  *                  r exp(q i) = r * cos(q) + r * sin(q) i,
  *      we regard r * 0 is 0 except when r is a NaN.
  */
-/* INDENT ON */
 
-#include "libm.h"       /* atan2/exp/fabs/hypot/log/pow/scalbn */
-                        /* atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2 */
+/*
+ * atan2/exp/fabs/hypot/log/pow/scalbn
+ * atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2
+ */
+#include "libm.h"
 #include "complex_wrapper.h"
 
 extern void sincospi(double, double *, double *);
-
-static const double
-        huge = 1e300,
+static const double huge = 1e300,
         tiny = 1e-300,
         invln2 = 1.44269504088896338700e+00,
         ln2hi = 6.93147180369123816490e-01,   /* 0x3fe62e42, 0xfee00000 */
         ln2lo = 1.90821492927058770002e-10,   /* 0x3dea39ef, 0x35793c76 */
         one = 1.0,
         zero = 0.0;
-
 static const int hiinf = 0x7ff00000;
 extern double atan2pi(double, double);
 
 /*
  * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine
  * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers.
  */
 static double
-sum4fp(double ta[], double *w) {
+sum4fp(double ta[], double *w)
+{
         double t1, t2, t3, t4, w1, w2, t;
-        t1 = ta[0]; t2 = ta[1]; t3 = ta[2]; t4 = ta[3];
+
+        t1 = ta[0];
+        t2 = ta[1];
+        t3 = ta[2];
+        t4 = ta[3];
+
         /*
          * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4|
          */
         if (fabs(t4) > fabs(t1)) {
-                t = t1; t1 = t3; t3 = t;
-                t = t2; t2 = t4; t4 = t;
+                t = t1;
+                t1 = t3;
+                t3 = t;
+                t = t2;
+                t2 = t4;
+                t4 = t;
         } else if (fabs(t3) > fabs(t1)) {
-                t = t1; t1 = t3;
+                t = t1;
+                t1 = t3;
+
                 if (fabs(t4) > fabs(t2)) {
-                        t3 = t4; t4 = t2; t2 = t;
+                        t3 = t4;
+                        t4 = t2;
+                        t2 = t;
                 } else {
-                        t3 = t2; t2 = t;
+                        t3 = t2;
+                        t2 = t;
                 }
         } else if (fabs(t3) > fabs(t2)) {
-                t = t2; t2 = t3;
+                t = t2;
+                t2 = t3;
+
                 if (fabs(t4) > fabs(t2)) {
-                        t3 = t4; t4 = t;
-                } else
+                        t3 = t4;
+                        t4 = t;
+                } else {
                         t3 = t;
         }
+        }
+
         /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */
         w1 = t3 + t4;
         w2 = t4 - (w1 - t3);
         t  = t2 + w1;
         w2 += w1 - (t - t2);

@@ -147,111 +167,123 @@
         *w = w2 - (w1 - t);
         return (w1);
 }
 
 dcomplex
-cpow(dcomplex z, dcomplex w) {
+cpow(dcomplex z, dcomplex w)
+{
         dcomplex ans;
         double x, y, u, v, t, c, s, r, x2, y2;
         double b[4], t1, t2, t3, t4, w1, w2, u1, v1, x1, y1;
         int ix, iy, hx, lx, hy, ly, hv, hu, iu, iv, lu, lv;
         int i, j, k;
 
         x = D_RE(z);
         y = D_IM(z);
         u = D_RE(w);
         v = D_IM(w);
-        hx = ((int *) &x)[HIWORD];
-        lx = ((int *) &x)[LOWORD];
-        hy = ((int *) &y)[HIWORD];
-        ly = ((int *) &y)[LOWORD];
-        hu = ((int *) &u)[HIWORD];
-        lu = ((int *) &u)[LOWORD];
-        hv = ((int *) &v)[HIWORD];
-        lv = ((int *) &v)[LOWORD];
+        hx = ((int *)&x)[HIWORD];
+        lx = ((int *)&x)[LOWORD];
+        hy = ((int *)&y)[HIWORD];
+        ly = ((int *)&y)[LOWORD];
+        hu = ((int *)&u)[HIWORD];
+        lu = ((int *)&u)[LOWORD];
+        hv = ((int *)&v)[HIWORD];
+        lv = ((int *)&v)[LOWORD];
         ix = hx & 0x7fffffff;
         iy = hy & 0x7fffffff;
         iu = hu & 0x7fffffff;
         iv = hv & 0x7fffffff;
 
         j = 0;
+
         if ((iv | lv) == 0) {   /* z**(real) */
                 if (((hu - 0x3ff00000) | lu) == 0) {    /* z ** 1 = z */
                         D_RE(ans) = x;
                         D_IM(ans) = y;
                 } else if ((iu | lu) == 0) {    /* z ** 0 = 1 */
                         D_RE(ans) = one;
                         D_IM(ans) = zero;
                 } else if ((iy | ly) == 0) {    /* (real)**(real) */
                         D_IM(ans) = zero;
+
                         if (hx < 0 && ix < hiinf && iu < hiinf) {
                                 /* -x ** u  is exp(i*pi*u)*pow(x,u) */
                                 r = pow(-x, u);
                                 sincospi(u, &s, &c);
-                                D_RE(ans) = (c == zero)? c: c * r;
-                                D_IM(ans) = (s == zero)? s: s * r;
-                        } else
+                                D_RE(ans) = (c == zero) ? c : c *r;
+                                D_IM(ans) = (s == zero) ? s : s *r;
+                        } else {
                                 D_RE(ans) = pow(x, u);
+                        }
                 } else if (((ix | lx) == 0) || ix >= hiinf || iy >= hiinf) {
-                        if (isnan(x) || isnan(y) || isnan(u))
+                        if (isnan(x) || isnan(y) || isnan(u)) {
                                 D_RE(ans) = D_IM(ans) = x + y + u;
-                        else {
+                        } else {
                                 if ((ix | lx) == 0)
                                         r = fabs(y);
                                 else
                                         r = fabs(x) + fabs(y);
+
                                 t = atan2pi(y, x);
                                 sincospi(t * u, &s, &c);
-                                D_RE(ans) = (c == zero)? c: c * r;
-                                D_IM(ans) = (s == zero)? s: s * r;
+                                D_RE(ans) = (c == zero) ? c : c *r;
+                                D_IM(ans) = (s == zero) ? s : s *r;
                         }
                 } else if (((ix - iy) | (lx - ly)) == 0) {   /* |x| = |y| */
                         if (hx >= 0) {
-                                t = (hy >= 0)? 0.25 : -0.25;
+                                t = (hy >= 0) ? 0.25 : -0.25;
                                 sincospi(t * u, &s, &c);
                         } else if ((lu & 3) == 0) {
-                                t = (hy >= 0)? 0.75 : -0.75;
+                                t = (hy >= 0) ? 0.75 : -0.75;
                                 sincospi(t * u, &s, &c);
                         } else {
-                                r = (hy >= 0)? u : -u;
+                                r = (hy >= 0) ? u : -u;
                                 t = -0.25 * r;
                                 w1 = r + t;
                                 w2 = t - (w1 - r);
                                 sincospi(w1, &t1, &t2);
                                 sincospi(w2, &t3, &t4);
                                 s = t1 * t4 + t3 * t2;
                                 c = t2 * t4 - t1 * t3;
                         }
+
                         if (ix < 0x3fe00000)    /* |x| < 1/2 */
                                 r = pow(fabs(x + x), u) * exp2(-0.5 * u);
                         else if (ix >= 0x3ff00000 || iu < 0x408ff800)
                                 /* |x| >= 1 or |u| < 1023 */
                                 r = pow(fabs(x), u) * exp2(0.5 * u);
                         else   /* special treatment */
                                 j = 2;
+
                         if (j == 0) {
-                                D_RE(ans) = (c == zero)? c: c * r;
-                                D_IM(ans) = (s == zero)? s: s * r;
+                                D_RE(ans) = (c == zero) ? c : c *r;
+                                D_IM(ans) = (s == zero) ? s : s *r;
                         }
-                } else
+                } else {
                         j = 1;
+                }
+
                 if (j == 0)
                         return (ans);
         }
+
         if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) {
                 /*
                  * non-zero imag part(s) with inf component(s) yields NaN
                  */
                 t = fabs(x) + fabs(y) + fabs(u) + fabs(v);
                 D_RE(ans) = D_IM(ans) = t - t;
         } else {
                 k = 0;  /* no scaling */
+
                 if (iu > 0x7f000000 || iv > 0x7f000000) {
                         u *= .0009765625; /* scale 2**-10 to avoid overflow */
                         v *= .0009765625;
                         k = 1;  /* scale by 2**-10 */
                 }
+
                 /*
                  * Use similated higher precision arithmetic to compute:
                  * r = u * log(hypot(x, y)) - v * atan2(y, x)
                  * q = u * atan2(y, x) + v * log(hypot(x, y))
                  */

@@ -259,79 +291,98 @@
                 t3 = __k_atan2(y, x, &t4);
                 x1 = t1;
                 y1 = t3;
                 u1 = u;
                 v1 = v;
-                ((int *) &u1)[LOWORD] &= 0xf8000000;
-                ((int *) &v1)[LOWORD] &= 0xf8000000;
-                ((int *) &x1)[LOWORD] &= 0xf8000000;
-                ((int *) &y1)[LOWORD] &= 0xf8000000;
+                ((int *)&u1)[LOWORD] &= 0xf8000000;
+                ((int *)&v1)[LOWORD] &= 0xf8000000;
+                ((int *)&x1)[LOWORD] &= 0xf8000000;
+                ((int *)&y1)[LOWORD] &= 0xf8000000;
                 x2 = t2 - (x1 - t1);    /* log(hypot(x,y)) = x1 + x2 */
                 y2 = t4 - (y1 - t3);    /* atan2(y,x) = y1 + y2 */
+
                 /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */
                 if (j != 2) {
                         b[0] = u1 * y1;
                         b[1] = (u - u1) * y1 + u * y2;
+
                         if (j == 1) {   /* v = 0 */
                                 w1 = b[0] + b[1];
                                 w2 = b[1] - (w1 - b[0]);
                         } else {
                                 b[2] = v1 * x1;
                                 b[3] = (v - v1) * x1 + v * x2;
                                 w1 = sum4fp(b, &w2);
                         }
+
                         sincos(w1, &t1, &t2);
                         sincos(w2, &t3, &t4);
                         s = t1 * t4 + t3 * t2;
                         c = t2 * t4 - t1 * t3;
-                        if (k == 1)
+
+                        if (k == 1) {
                         /*
                          * square (cos(q) + i sin(q)) k times to get
                          * (cos(2^k * q + i sin(2^k * q)
                          */
                                 for (i = 0; i < 10; i++) {
                                         t1 = s * c;
                                         c = (c + s) * (c - s);
                                         s = t1 + t1;
                                 }
                 }
+                }
+
                 /* compute r = u * (t1, t2) - v * (t3, t4) */
                 b[0] = u1 * x1;
                 b[1] = (u - u1) * x1 + u * x2;
+
                 if (j == 1) {   /* v = 0 */
                         w1 = b[0] + b[1];
                         w2 = b[1] - (w1 - b[0]);
                 } else {
                         b[2] = -v1 * y1;
                         b[3] = (v1 - v) * y1 - v * y2;
                         w1 = sum4fp(b, &w2);
                 }
+
                 /* check over/underflow for exp(w1 + w2) */
                 if (k && fabs(w1) < 1000.0) {
-                        w1 *= 1024; w2 *= 1024; k = 0;
+                        w1 *= 1024;
+                        w2 *= 1024;
+                        k = 0;
                 }
-                hx = ((int *) &w1)[HIWORD];
-                lx = ((int *) &w1)[LOWORD];
+
+                hx = ((int *)&w1)[HIWORD];
+                lx = ((int *)&w1)[LOWORD];
                 ix = hx & 0x7fffffff;
+
                 /* compute exp(w1 + w2) */
-                if (ix < 0x3c900000) /* exp(tiny < 2**-54) = 1 */
+                if (ix < 0x3c900000) {          /* exp(tiny < 2**-54) = 1 */
                         r = one;
-                else if (ix >= 0x40880000) /* overflow/underflow */
-                        r = (hx < 0)? tiny * tiny : huge * huge;
-                else {  /* compute exp(w1 + w2) */
-                        k = (int) (invln2 * w1 + ((hx >= 0)? 0.5 : -0.5));
-                        t1 = (double) k;
+                } else if (ix >= 0x40880000) {  /* overflow/underflow */
+                        r = (hx < 0) ? tiny * tiny : huge * huge;
+                } else { /* compute exp(w1 + w2) */
+                        k = (int)(invln2 * w1 + ((hx >= 0) ? 0.5 : -0.5));
+                        t1 = (double)k;
                         t2 = w1 - t1 * ln2hi;
                         t3 = w2 - t1 * ln2lo;
                         r = exp(t2 + t3);
                 }
-                if (c != zero) c *= r;
-                if (s != zero) s *= r;
+
+                if (c != zero)
+                        c *= r;
+
+                if (s != zero)
+                        s *= r;
+
                 if (k != 0) {
                         c = scalbn(c, k);
                         s = scalbn(s, k);
                 }
+
                 D_RE(ans) = c;
                 D_IM(ans) = s;
         }
+
         return (ans);
 }