1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
  24  */
  25 
  26 /*
  27  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
  28  * Use is subject to license terms.
  29  */
  30 
  31 #pragma weak __cpow = cpow
  32 
  33 
  34 /*
  35  * dcomplex cpow(dcomplex z);
  36  *
  37  * z**w analytically equivalent to
  38  *
  39  * cpow(z,w) = cexp(w clog(z))
  40  *
  41  * Let z = x+iy, w = u+iv.
  42  * Since
  43  *                        _________
  44  *                       / 2    2            -1   y
  45  *     log(x+iy) = log(\/ x  + y    ) + i tan   (---)
  46  *                                                x
  47  *
  48  *                  1       2    2         -1   y
  49  *               = --- log(x  + y ) + i tan   (---)
  50  *                  2                           x
  51  *                       u       2    2         -1  y
  52  * (u+iv)* log(x+iy) =  --- log(x  + y ) - v tan  (---)  +          (1)
  53  *                       2                          x
  54  *
  55  *                            v       2    2         -1  y
  56  *                     i * [ --- log(x  + y ) + u tan  (---) ]      (2)
  57  *                            2                          x
  58  *
  59  *                   = r + i q
  60  *
  61  * Therefore,
  62  *      w     r+iq    r
  63  *     z  =  e     = e  (cos(q)+i*sin(q))
  64  *                                   _______
  65  *                                  / 2   2
  66  *       r                        \/ x + y     -v*atan2(y,x)
  67  * Here e  can be expressed as:  u          * e
  68  *
  69  * Special cases (in the order of appearance):
  70  *      1.  (anything) ** 0  is 1
  71  *      2.  (anything) ** 1  is itself
  72  *      3.  When v = 0, y = 0:
  73  *            If x is finite and negative, and u is finite, then
  74  *               x ** u = exp(u*pi i) * pow(|x|, u);
  75  *            otherwise,
  76  *               x ** u = pow(x, u);
  77  *      4.  When v = 0, x = 0 or |x| = |y| or x is inf or y is inf:
  78  *               (x + y i) ** u = r * exp(q i)
  79  *          where
  80  *               r = hypot(x,y) ** u
  81  *               q = u * atan2pi(y, x)
  82  *
  83  *      5.  otherwise, z**w is NAN if any x, y, u, v is a Nan or inf
  84  *
  85  *      Note: many results of special cases are obtained in terms of
  86  *      polar coordinate. In the conversion from polar to rectangle:
  87  *                  r exp(q i) = r * cos(q) + r * sin(q) i,
  88  *      we regard r * 0 is 0 except when r is a NaN.
  89  */
  90 
  91 /*
  92  * atan2/exp/fabs/hypot/log/pow/scalbn
  93  * atan2pi/exp2/sincos/sincospi/__k_clog_r/__k_atan2
  94  */
  95 #include "libm.h"
  96 #include "complex_wrapper.h"
  97 
  98 extern void sincospi(double, double *, double *);
  99 static const double huge = 1e300,
 100         tiny = 1e-300,
 101         invln2 = 1.44269504088896338700e+00,
 102         ln2hi = 6.93147180369123816490e-01,     /* 0x3fe62e42, 0xfee00000 */
 103         ln2lo = 1.90821492927058770002e-10,     /* 0x3dea39ef, 0x35793c76 */
 104         one = 1.0,
 105         zero = 0.0;
 106 static const int hiinf = 0x7ff00000;
 107 extern double atan2pi(double, double);
 108 
 109 /*
 110  * Assuming |t[0]| > |t[1]| and |t[2]| > |t[3]|, sum4fp subroutine
 111  * compute t[0] + t[1] + t[2] + t[3] into two double fp numbers.
 112  */
 113 static double
 114 sum4fp(double ta[], double *w)
 115 {
 116         double t1, t2, t3, t4, w1, w2, t;
 117 
 118         t1 = ta[0];
 119         t2 = ta[1];
 120         t3 = ta[2];
 121         t4 = ta[3];
 122 
 123         /*
 124          * Rearrange ti so that |t1| >= |t2| >= |t3| >= |t4|
 125          */
 126         if (fabs(t4) > fabs(t1)) {
 127                 t = t1;
 128                 t1 = t3;
 129                 t3 = t;
 130                 t = t2;
 131                 t2 = t4;
 132                 t4 = t;
 133         } else if (fabs(t3) > fabs(t1)) {
 134                 t = t1;
 135                 t1 = t3;
 136 
 137                 if (fabs(t4) > fabs(t2)) {
 138                         t3 = t4;
 139                         t4 = t2;
 140                         t2 = t;
 141                 } else {
 142                         t3 = t2;
 143                         t2 = t;
 144                 }
 145         } else if (fabs(t3) > fabs(t2)) {
 146                 t = t2;
 147                 t2 = t3;
 148 
 149                 if (fabs(t4) > fabs(t2)) {
 150                         t3 = t4;
 151                         t4 = t;
 152                 } else {
 153                         t3 = t;
 154                 }
 155         }
 156 
 157         /* summing r = t1 + t2 + t3 + t4 to w1 + w2 */
 158         w1 = t3 + t4;
 159         w2 = t4 - (w1 - t3);
 160         t = t2 + w1;
 161         w2 += w1 - (t - t2);
 162         w1 = t + w2;
 163         w2 += t - w1;
 164         t = t1 + w1;
 165         w2 += w1 - (t - t1);
 166         w1 = t + w2;
 167         *w = w2 - (w1 - t);
 168         return (w1);
 169 }
 170 
 171 dcomplex
 172 cpow(dcomplex z, dcomplex w)
 173 {
 174         dcomplex ans;
 175         double x, y, u, v, t, c, s, r, x2, y2;
 176         double b[4], t1, t2, t3, t4, w1, w2, u1, v1, x1, y1;
 177         int ix, iy, hx, lx, hy, ly, hv, hu, iu, iv, lu, lv;
 178         int i, j, k;
 179 
 180         x = D_RE(z);
 181         y = D_IM(z);
 182         u = D_RE(w);
 183         v = D_IM(w);
 184         hx = ((int *)&x)[HIWORD];
 185         lx = ((int *)&x)[LOWORD];
 186         hy = ((int *)&y)[HIWORD];
 187         ly = ((int *)&y)[LOWORD];
 188         hu = ((int *)&u)[HIWORD];
 189         lu = ((int *)&u)[LOWORD];
 190         hv = ((int *)&v)[HIWORD];
 191         lv = ((int *)&v)[LOWORD];
 192         ix = hx & 0x7fffffff;
 193         iy = hy & 0x7fffffff;
 194         iu = hu & 0x7fffffff;
 195         iv = hv & 0x7fffffff;
 196 
 197         j = 0;
 198 
 199         if ((iv | lv) == 0) {                           /* z**(real) */
 200                 if (((hu - 0x3ff00000) | lu) == 0) {    /* z ** 1 = z */
 201                         D_RE(ans) = x;
 202                         D_IM(ans) = y;
 203                 } else if ((iu | lu) == 0) {            /* z ** 0 = 1 */
 204                         D_RE(ans) = one;
 205                         D_IM(ans) = zero;
 206                 } else if ((iy | ly) == 0) {            /* (real)**(real) */
 207                         D_IM(ans) = zero;
 208 
 209                         if (hx < 0 && ix < hiinf && iu < hiinf) {
 210                                 /* -x ** u  is exp(i*pi*u)*pow(x,u) */
 211                                 r = pow(-x, u);
 212                                 sincospi(u, &s, &c);
 213                                 D_RE(ans) = (c == zero) ? c : c *r;
 214                                 D_IM(ans) = (s == zero) ? s : s *r;
 215                         } else {
 216                                 D_RE(ans) = pow(x, u);
 217                         }
 218                 } else if (((ix | lx) == 0) || ix >= hiinf || iy >= hiinf) {
 219                         if (isnan(x) || isnan(y) || isnan(u)) {
 220                                 D_RE(ans) = D_IM(ans) = x + y + u;
 221                         } else {
 222                                 if ((ix | lx) == 0)
 223                                         r = fabs(y);
 224                                 else
 225                                         r = fabs(x) + fabs(y);
 226 
 227                                 t = atan2pi(y, x);
 228                                 sincospi(t * u, &s, &c);
 229                                 D_RE(ans) = (c == zero) ? c : c *r;
 230                                 D_IM(ans) = (s == zero) ? s : s *r;
 231                         }
 232                 } else if (((ix - iy) | (lx - ly)) == 0) {      /* |x| = |y| */
 233                         if (hx >= 0) {
 234                                 t = (hy >= 0) ? 0.25 : -0.25;
 235                                 sincospi(t * u, &s, &c);
 236                         } else if ((lu & 3) == 0) {
 237                                 t = (hy >= 0) ? 0.75 : -0.75;
 238                                 sincospi(t * u, &s, &c);
 239                         } else {
 240                                 r = (hy >= 0) ? u : -u;
 241                                 t = -0.25 * r;
 242                                 w1 = r + t;
 243                                 w2 = t - (w1 - r);
 244                                 sincospi(w1, &t1, &t2);
 245                                 sincospi(w2, &t3, &t4);
 246                                 s = t1 * t4 + t3 * t2;
 247                                 c = t2 * t4 - t1 * t3;
 248                         }
 249 
 250                         if (ix < 0x3fe00000) /* |x| < 1/2 */
 251                                 r = pow(fabs(x + x), u) * exp2(-0.5 * u);
 252                         else if (ix >= 0x3ff00000 || iu < 0x408ff800)
 253                                 /* |x| >= 1 or |u| < 1023 */
 254                                 r = pow(fabs(x), u) * exp2(0.5 * u);
 255                         else            /* special treatment */
 256                                 j = 2;
 257 
 258                         if (j == 0) {
 259                                 D_RE(ans) = (c == zero) ? c : c *r;
 260                                 D_IM(ans) = (s == zero) ? s : s *r;
 261                         }
 262                 } else {
 263                         j = 1;
 264                 }
 265 
 266                 if (j == 0)
 267                         return (ans);
 268         }
 269 
 270         if (iu >= hiinf || iv >= hiinf || ix >= hiinf || iy >= hiinf) {
 271                 /*
 272                  * non-zero imag part(s) with inf component(s) yields NaN
 273                  */
 274                 t = fabs(x) + fabs(y) + fabs(u) + fabs(v);
 275                 D_RE(ans) = D_IM(ans) = t - t;
 276         } else {
 277                 k = 0;                          /* no scaling */
 278 
 279                 if (iu > 0x7f000000 || iv > 0x7f000000) {
 280                         u *= .0009765625; /* scale 2**-10 to avoid overflow */
 281                         v *= .0009765625;
 282                         k = 1;                  /* scale by 2**-10 */
 283                 }
 284 
 285                 /*
 286                  * Use similated higher precision arithmetic to compute:
 287                  * r = u * log(hypot(x, y)) - v * atan2(y, x)
 288                  * q = u * atan2(y, x) + v * log(hypot(x, y))
 289                  */
 290                 t1 = __k_clog_r(x, y, &t2);
 291                 t3 = __k_atan2(y, x, &t4);
 292                 x1 = t1;
 293                 y1 = t3;
 294                 u1 = u;
 295                 v1 = v;
 296                 ((int *)&u1)[LOWORD] &= 0xf8000000;
 297                 ((int *)&v1)[LOWORD] &= 0xf8000000;
 298                 ((int *)&x1)[LOWORD] &= 0xf8000000;
 299                 ((int *)&y1)[LOWORD] &= 0xf8000000;
 300                 x2 = t2 - (x1 - t1);    /* log(hypot(x,y)) = x1 + x2 */
 301                 y2 = t4 - (y1 - t3);    /* atan2(y,x) = y1 + y2 */
 302 
 303                 /* compute q = u * atan2(y, x) + v * log(hypot(x, y)) */
 304                 if (j != 2) {
 305                         b[0] = u1 * y1;
 306                         b[1] = (u - u1) * y1 + u * y2;
 307 
 308                         if (j == 1) {   /* v = 0 */
 309                                 w1 = b[0] + b[1];
 310                                 w2 = b[1] - (w1 - b[0]);
 311                         } else {
 312                                 b[2] = v1 * x1;
 313                                 b[3] = (v - v1) * x1 + v * x2;
 314                                 w1 = sum4fp(b, &w2);
 315                         }
 316 
 317                         sincos(w1, &t1, &t2);
 318                         sincos(w2, &t3, &t4);
 319                         s = t1 * t4 + t3 * t2;
 320                         c = t2 * t4 - t1 * t3;
 321 
 322                         if (k == 1) {
 323                                 /*
 324                                  * square (cos(q) + i sin(q)) k times to get
 325                                  * (cos(2^k * q + i sin(2^k * q)
 326                                  */
 327                                 for (i = 0; i < 10; i++) {
 328                                         t1 = s * c;
 329                                         c = (c + s) * (c - s);
 330                                         s = t1 + t1;
 331                                 }
 332                         }
 333                 }
 334 
 335                 /* compute r = u * (t1, t2) - v * (t3, t4) */
 336                 b[0] = u1 * x1;
 337                 b[1] = (u - u1) * x1 + u * x2;
 338 
 339                 if (j == 1) {           /* v = 0 */
 340                         w1 = b[0] + b[1];
 341                         w2 = b[1] - (w1 - b[0]);
 342                 } else {
 343                         b[2] = -v1 * y1;
 344                         b[3] = (v1 - v) * y1 - v * y2;
 345                         w1 = sum4fp(b, &w2);
 346                 }
 347 
 348                 /* check over/underflow for exp(w1 + w2) */
 349                 if (k && fabs(w1) < 1000.0) {
 350                         w1 *= 1024;
 351                         w2 *= 1024;
 352                         k = 0;
 353                 }
 354 
 355                 hx = ((int *)&w1)[HIWORD];
 356                 lx = ((int *)&w1)[LOWORD];
 357                 ix = hx & 0x7fffffff;
 358 
 359                 /* compute exp(w1 + w2) */
 360                 if (ix < 0x3c900000) {               /* exp(tiny < 2**-54) = 1 */
 361                         r = one;
 362                 } else if (ix >= 0x40880000) {       /* overflow/underflow */
 363                         r = (hx < 0) ? tiny * tiny : huge * huge;
 364                 } else { /* compute exp(w1 + w2) */
 365                         k = (int)(invln2 * w1 + ((hx >= 0) ? 0.5 : -0.5));
 366                         t1 = (double)k;
 367                         t2 = w1 - t1 * ln2hi;
 368                         t3 = w2 - t1 * ln2lo;
 369                         r = exp(t2 + t3);
 370                 }
 371 
 372                 if (c != zero)
 373                         c *= r;
 374 
 375                 if (s != zero)
 376                         s *= r;
 377 
 378                 if (k != 0) {
 379                         c = scalbn(c, k);
 380                         s = scalbn(s, k);
 381                 }
 382 
 383                 D_RE(ans) = c;
 384                 D_IM(ans) = s;
 385         }
 386 
 387         return (ans);
 388 }