Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/cexp.c
+++ new/usr/src/lib/libm/common/complex/cexp.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __cexp = cexp
31 32
32 -/* INDENT OFF */
33 +
33 34 /*
34 35 * dcomplex cexp(dcomplex z);
35 36 *
36 37 * x+iy x
37 38 * e = e (cos(y)+i*sin(y))
38 39 *
39 40 * Over/underflow issue
40 41 * --------------------
41 42 * exp(x) may be huge but cos(y) or sin(y) may be tiny. So we use
42 43 * function __k_cexp(x,&n) to return exp(x) = __k_cexp(x,&n)*2**n.
43 44 * Thus if exp(x+iy) = A + Bi and t = __k_cexp(x,&n), then
44 45 * A = t*cos(y)*2**n, B = t*sin(y)*2**n
45 46 *
46 47 * Purge off all exceptional arguments:
47 48 * (x,0) --> (exp(x),0) for all x, include inf and NaN
48 49 * (+inf, y) --> (+inf, NaN) for inf, nan
↓ open down ↓ |
6 lines elided |
↑ open up ↑ |
49 50 * (-inf, y) --> (+-0, +-0) for y = inf, nan
50 51 * (x,+-inf/NaN) --> (NaN,NaN) for finite x
51 52 * For all other cases, return
52 53 * (x,y) --> exp(x)*cos(y)+i*exp(x)*sin(y))
53 54 *
54 55 * Algorithm for out of range x and finite y
55 56 * 1. compute exp(x) in factor form (t=__k_cexp(x,&n))*2**n
56 57 * 2. compute sincos(y,&s,&c)
57 58 * 3. compute t*s+i*(t*c), then scale back to 2**n and return.
58 59 */
59 -/* INDENT ON */
60 60
61 -#include "libm.h" /* exp/scalbn/sincos/__k_cexp */
61 +#include "libm.h" /* exp/scalbn/sincos/__k_cexp */
62 62 #include "complex_wrapper.h"
63 63
64 64 static const double zero = 0.0;
65 65
66 66 dcomplex
67 -cexp(dcomplex z) {
67 +cexp(dcomplex z)
68 +{
68 69 dcomplex ans;
69 70 double x, y, t, c, s;
70 71 int n, ix, iy, hx, hy, lx, ly;
71 72
72 73 x = D_RE(z);
73 74 y = D_IM(z);
74 75 hx = HI_WORD(x);
75 76 lx = LO_WORD(x);
76 77 hy = HI_WORD(y);
77 78 ly = LO_WORD(y);
78 79 ix = hx & 0x7fffffff;
79 80 iy = hy & 0x7fffffff;
80 - if ((iy | ly) == 0) { /* y = 0 */
81 +
82 + if ((iy | ly) == 0) { /* y = 0 */
81 83 D_RE(ans) = exp(x);
82 84 D_IM(ans) = y;
83 85 } else if (ISINF(ix, lx)) { /* x is +-inf */
84 86 if (hx < 0) {
85 87 if (iy >= 0x7ff00000) {
86 88 D_RE(ans) = zero;
87 89 D_IM(ans) = zero;
88 90 } else {
89 91 sincos(y, &s, &c);
90 92 D_RE(ans) = zero * c;
91 93 D_IM(ans) = zero * s;
92 94 }
93 95 } else {
94 96 if (iy >= 0x7ff00000) {
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
95 97 D_RE(ans) = x;
96 98 D_IM(ans) = y - y;
97 99 } else {
98 100 (void) sincos(y, &s, &c);
99 101 D_RE(ans) = x * c;
100 102 D_IM(ans) = x * s;
101 103 }
102 104 }
103 105 } else {
104 106 (void) sincos(y, &s, &c);
107 +
105 108 if (ix >= 0x40862E42) { /* |x| > 709.78... ~ log(2**1024) */
106 109 t = __k_cexp(x, &n);
107 110 D_RE(ans) = scalbn(t * c, n);
108 111 D_IM(ans) = scalbn(t * s, n);
109 112 } else {
110 113 t = exp(x);
111 114 D_RE(ans) = t * c;
112 115 D_IM(ans) = t * s;
113 116 }
114 117 }
118 +
115 119 return (ans);
116 120 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX