Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/ccosh.c
+++ new/usr/src/lib/libm/common/complex/ccosh.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __ccosh = ccosh
31 32
32 -/* INDENT OFF */
33 +
33 34 /*
34 35 * dcomplex ccosh(dcomplex z);
35 36 *
36 37 * z -z x -x
37 38 * e + e e (cos(y)+i*sin(y)) + e (cos(-y)+i*sin(-y))
38 39 * cosh z = -------------- = ---------------------------------------------
39 40 * 2 2
40 41 * x -x x -x
41 42 * cos(y) ( e + e ) + i*sin(y) (e - e )
42 43 * = --------------------------------------------
43 44 * 2
44 45 *
45 46 * = cos(y) cosh(x) + i sin(y) sinh(x)
46 47 *
47 48 * Implementation Note
48 49 * -------------------
49 50 *
50 51 * |x| -|x| |x| -2|x| -2|x| -P-4
51 52 * Note that e +- e = e ( 1 +- e ). If e < 2 , where
52 53 *
53 54 * P stands for the number of significant bits of the machine precision,
54 55 * |x|
55 56 * then the result will be rounded to e . Therefore, we have
56 57 *
57 58 * z
58 59 * e
59 60 * cosh z = ----- if |x| >= (P/2 + 2)*ln2
60 61 * 2
61 62 *
62 63 * EXCEPTION (conform to ISO/IEC 9899:1999(E)):
63 64 * ccosh(0,0)=(1,0)
64 65 * ccosh(0,inf)=(NaN,+-0)
65 66 * ccosh(0,NaN)=(NaN,+-0)
↓ open down ↓ |
23 lines elided |
↑ open up ↑ |
66 67 * ccosh(x,inf) = (NaN,NaN) for finite non-zero x
67 68 * ccosh(x,NaN) = (NaN,NaN) for finite non-zero x
68 69 * ccosh(inf,0) = (inf, 0)
69 70 * ccosh(inf,y) = (inf*cos(y),inf*sin(y)) for finite non-zero y
70 71 * ccosh(inf,inf) = (+-inf,NaN)
71 72 * ccosh(inf,NaN) = (+inf,NaN)
72 73 * ccosh(NaN,0) = (NaN,+-0)
73 74 * ccosh(NaN,y) = (NaN,NaN) for non-zero y
74 75 * ccosh(NaN,NaN) = (NaN,NaN)
75 76 */
76 -/* INDENT ON */
77 77
78 -#include "libm.h" /* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */
78 +#include "libm.h" /* cosh/exp/fabs/scalbn/sinh/sincos/__k_cexp */
79 79 #include "complex_wrapper.h"
80 80
81 81 dcomplex
82 -ccosh(dcomplex z) {
82 +ccosh(dcomplex z)
83 +{
83 84 double t, x, y, S, C;
84 85 int hx, ix, lx, hy, iy, ly, n;
85 86 dcomplex ans;
86 87
87 88 x = D_RE(z);
88 89 y = D_IM(z);
89 90 hx = HI_WORD(x);
90 91 lx = LO_WORD(x);
91 92 ix = hx & 0x7fffffff;
92 93 hy = HI_WORD(y);
93 94 ly = LO_WORD(y);
94 95 iy = hy & 0x7fffffff;
95 96 x = fabs(x);
96 97 y = fabs(y);
97 98
98 99 (void) sincos(y, &S, &C);
99 - if (ix >= 0x403c0000) { /* |x| > 28 = prec/2 (14,28,34,60) */
100 +
101 + if (ix >= 0x403c0000) { /* |x| > 28 = prec/2 (14,28,34,60) */
100 102 if (ix >= 0x40862E42) { /* |x| > 709.78... ~ log(2**1024) */
101 103 if (ix >= 0x7ff00000) { /* |x| is inf or NaN */
102 104 if ((iy | ly) == 0) {
103 105 D_RE(ans) = x;
104 106 D_IM(ans) = y;
105 107 } else if (iy >= 0x7ff00000) {
106 108 D_RE(ans) = x;
107 109 D_IM(ans) = x - y;
108 110 } else {
109 111 D_RE(ans) = C * x;
110 112 D_IM(ans) = S * x;
111 113 }
112 114 } else {
113 115 t = __k_cexp(x, &n);
114 - /* return exp(x)=t*2**n */
116 + /* return exp(x)=t*2**n */
115 117 D_RE(ans) = scalbn(C * t, n - 1);
116 118 D_IM(ans) = scalbn(S * t, n - 1);
117 119 }
118 120 } else {
119 121 t = exp(x) * 0.5;
120 122 D_RE(ans) = C * t;
121 123 D_IM(ans) = S * t;
122 124 }
123 125 } else {
124 126 if ((ix | lx) == 0) { /* x = 0, return (C,0) */
125 127 D_RE(ans) = C;
126 128 D_IM(ans) = 0.0;
127 129 } else {
128 130 D_RE(ans) = C * cosh(x);
129 131 D_IM(ans) = S * sinh(x);
130 132 }
131 133 }
134 +
132 135 if ((hx ^ hy) < 0)
133 136 D_IM(ans) = -D_IM(ans);
137 +
134 138 return (ans);
135 139 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX