1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __catanl = catanl 32 33 34 /* 35 * ldcomplex catanl(ldcomplex z); 36 * 37 * Atan(z) return A + Bi where, 38 * 1 39 * A = --- * atan2(2x, 1-x*x-y*y) 40 * 2 41 * 42 * 1 [ x*x + (y+1)*(y+1) ] 1 4y 43 * B = --- log [ ----------------- ] = - log (1+ -----------------) 44 * 4 [ x*x + (y-1)*(y-1) ] 4 x*x + (y-1)*(y-1) 45 * 46 * 2 16 3 y 47 * = t - 2t + -- t - ..., where t = ----------------- 48 * 3 x*x + (y-1)*(y-1) 49 * Proof: 50 * Let w = atan(z=x+yi) = A + B i. Then tan(w) = z. 51 * Since sin(w) = (exp(iw)-exp(-iw))/(2i), cos(w)=(exp(iw)+exp(-iw))/(2), 52 * Let p = exp(iw), then z = tan(w) = ((p-1/p)/(p+1/p))/i, or 53 * iz = (p*p-1)/(p*p+1), or, after simplification, 54 * p*p = (1+iz)/(1-iz) ... (1) 55 * LHS of (1) = exp(2iw) = exp(2i(A+Bi)) = exp(-2B)*exp(2iA) 56 * = exp(-2B)*(cos(2A)+i*sin(2A)) ... (2) 57 * 1-y+ix (1-y+ix)*(1+y+ix) 1-x*x-y*y + 2xi 58 * RHS of (1) = ------ = ----------------- = --------------- ... (3) 59 * 1+y-ix (1+y)**2 + x**2 (1+y)**2 + x**2 60 * 61 * Comparing the real and imaginary parts of (2) and (3), we have: 62 * cos(2A) : 1-x*x-y*y = sin(2A) : 2x 63 * and hence 64 * tan(2A) = 2x/(1-x*x-y*y), or 65 * A = 0.5 * atan2(2x, 1-x*x-y*y) ... (4) 66 * 67 * For the imaginary part B, Note that |p*p| = exp(-2B), and 68 * |1+iz| |i-z| hypot(x,(y-1)) 69 * |----| = |---| = -------------- 70 * |1-iz| |i+z| hypot(x,(y+1)) 71 * Thus 72 * x*x + (y+1)*(y+1) 73 * exp(4B) = -----------------, or 74 * x*x + (y-1)*(y-1) 75 * 76 * 1 [x^2+(y+1)^2] 1 4y 77 * B = - log [-----------] = - log(1+ -------------) ... (5) 78 * 4 [x^2+(y-1)^2] 4 x^2+(y-1)^2 79 * 80 * QED. 81 * 82 * Note that: if catan( x, y) = ( u, v), then 83 * catan(-x, y) = (-u, v) 84 * catan( x,-y) = ( u,-v) 85 * 86 * Also, catan(x,y) = -i*catanh(-y,x), or 87 * catanh(x,y) = i*catan(-y,x) 88 * So, if catanh(y,x) = (v,u), then catan(x,y) = -i*(-v,u) = (u,v), i.e., 89 * catan(x,y) = (u,v) 90 * 91 * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): 92 * catan( 0 , 0 ) = (0 , 0 ) 93 * catan( NaN, 0 ) = (NaN , 0 ) 94 * catan( 0 , 1 ) = (0 , +inf) with divide-by-zero 95 * catan( inf, y ) = (pi/2 , 0 ) for finite +y 96 * catan( NaN, y ) = (NaN , NaN ) with invalid for finite y != 0 97 * catan( x , inf ) = (pi/2 , 0 ) for finite +x 98 * catan( inf, inf ) = (pi/2 , 0 ) 99 * catan( NaN, inf ) = (NaN , 0 ) 100 * catan( x , NaN ) = (NaN , NaN ) with invalid for finite x 101 * catan( inf, NaN ) = (pi/2 , +-0 ) 102 */ 103 104 #include "libm.h" /* atan2l/atanl/fabsl/isinfl/iszerol/log1pl/logl */ 105 #include "complex_wrapper.h" 106 #include "longdouble.h" 107 108 /* BEGIN CSTYLED */ 109 static const long double zero = 0.0L, 110 one = 1.0L, 111 two = 2.0L, 112 half = 0.5L, 113 ln2 = 6.931471805599453094172321214581765680755e-0001L, 114 pi_2 = 1.570796326794896619231321691639751442098584699687552910487472L, 115 #if defined(__x86) 116 E = 2.910383045673370361328125000000000000000e-11L, /* 2**-35 */ 117 Einv = 3.435973836800000000000000000000000000000e+10L; /* 2**+35 */ 118 #else 119 E = 8.673617379884035472059622406959533691406e-19L, /* 2**-60 */ 120 Einv = 1.152921504606846976000000000000000000000e18L; /* 2**+60 */ 121 #endif 122 /* END CSTYLED */ 123 124 ldcomplex 125 catanl(ldcomplex z) 126 { 127 ldcomplex ans; 128 long double x, y, t1, ax, ay, t; 129 int hx, hy, ix, iy; 130 131 x = LD_RE(z); 132 y = LD_IM(z); 133 ax = fabsl(x); 134 ay = fabsl(y); 135 hx = HI_XWORD(x); 136 hy = HI_XWORD(y); 137 ix = hx & 0x7fffffff; 138 iy = hy & 0x7fffffff; 139 140 /* x is inf or NaN */ 141 if (ix >= 0x7fff0000) { 142 if (isinfl(x)) { 143 LD_RE(ans) = pi_2; 144 LD_IM(ans) = zero; 145 } else { 146 LD_RE(ans) = x + x; 147 148 if (iszerol(y) || (isinfl(y))) 149 LD_IM(ans) = zero; 150 else 151 LD_IM(ans) = (fabsl(y) - ay) / (fabsl(y) - ay); 152 } 153 } else if (iy >= 0x7fff0000) { 154 /* y is inf or NaN */ 155 if (isinfl(y)) { 156 LD_RE(ans) = pi_2; 157 LD_IM(ans) = zero; 158 } else { 159 LD_RE(ans) = (fabsl(x) - ax) / (fabsl(x) - ax); 160 LD_IM(ans) = y; 161 } 162 } else if (iszerol(x)) { 163 /* BEGIN CSTYLED */ 164 /* 165 * x = 0 166 * 1 1 167 * A = --- * atan2(2x, 1-x*x-y*y) = --- atan2(0,1-|y|) 168 * 2 2 169 * 170 * 1 [ (y+1)*(y+1) ] 1 2 1 2y 171 * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----) 172 * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y 173 */ 174 /* END CSTYLED */ 175 t = one - ay; 176 177 if (ay == one) { 178 /* y=1: catan(0,1)=(0,+inf) with 1/0 signal */ 179 LD_IM(ans) = ay / ax; 180 LD_RE(ans) = zero; 181 } else if (ay > one) { /* y>1 */ 182 LD_IM(ans) = half * log1pl(two / (-t)); 183 LD_RE(ans) = pi_2; 184 } else { /* y<1 */ 185 LD_IM(ans) = half * log1pl((ay + ay) / t); 186 LD_RE(ans) = zero; 187 } 188 } else if (ay < E * (one + ax)) { 189 /* BEGIN CSTYLED */ 190 /* 191 * Tiny y (relative to 1+|x|) 192 * |y| < E*(1+|x|) 193 * where E=2**-29, -35, -60 for double, extended, quad precision 194 * 195 * 1 [x<=1: atan(x) 196 * A = - * atan2(2x,1-x*x-y*y) ~ [ 1 1+x 197 * 2 [x>=1: - atan2(2,(1-x)*(-----)) 198 * 2 x 199 * 200 * y/x 201 * B ~ t*(1-2t), where t = ----------------- is tiny 202 * x + (y-1)*(y-1)/x 203 * 204 * y 205 * (when x < 2**-60, t = ----------- ) 206 * (y-1)*(y-1) 207 */ 208 /* END CSTYLED */ 209 if (ay == zero) { 210 LD_IM(ans) = ay; 211 } else { 212 t1 = ay - one; 213 214 if (ix < 0x3fc30000) 215 t = ay / (t1 * t1); 216 else if (ix > 0x403b0000) 217 t = (ay / ax) / ax; 218 else 219 t = ay / (ax * ax + t1 * t1); 220 221 LD_IM(ans) = t * (one - two * t); 222 } 223 224 if (ix < 0x3fff0000) 225 LD_RE(ans) = atanl(ax); 226 else 227 LD_RE(ans) = half * atan2l(two, (one - ax) * (one + 228 one / ax)); 229 } else if (ay > Einv * (one + ax)) { 230 /* BEGIN CSTYLED */ 231 /* 232 * Huge y relative to 1+|x| 233 * |y| > Einv*(1+|x|), where Einv~2**(prec/2+3), 234 * 1 235 * A ~ --- * atan2(2x, -y*y) ~ pi/2 236 * 2 237 * y 238 * B ~ t*(1-2t), where t = --------------- is tiny 239 * (y-1)*(y-1) 240 */ 241 /* END CSTYLED */ 242 LD_RE(ans) = pi_2; 243 t = (ay / (ay - one)) / (ay - one); 244 LD_IM(ans) = t * (one - (t + t)); 245 } else if (ay == one) { 246 /* BEGIN CSTYLED */ 247 /* 248 * y=1 249 * 1 1 250 * A = - * atan2(2x, -x*x) = --- atan2(2,-x) 251 * 2 2 252 * 253 * 1 [ x*x+4] 1 4 [ 0.5(log2-logx) if 254 * B = - log [ -----] = - log (1+ ---) = [ |x|<E, else 0.25* 255 * 4 [ x*x ] 4 x*x [ log1p((2/x)*(2/x)) 256 */ 257 /* END CSTYLED */ 258 LD_RE(ans) = half * atan2l(two, -ax); 259 260 if (ax < E) { 261 LD_IM(ans) = half * (ln2 - logl(ax)); 262 } else { 263 t = two / ax; 264 LD_IM(ans) = 0.25L * log1pl(t * t); 265 } 266 } else if (ax > Einv * Einv) { 267 /* BEGIN CSTYLED */ 268 /* 269 * Huge x: 270 * when |x| > 1/E^2, 271 * 1 pi 272 * A ~ --- * atan2(2x, -x*x-y*y) ~ --- 273 * 2 2 274 * y y/x 275 * B ~ t*(1-2t), where t = --------------- = (-------------- )/x 276 * x*x+(y-1)*(y-1) 1+((y-1)/x)^2 277 */ 278 /* END CSTYLED */ 279 LD_RE(ans) = pi_2; 280 t = ((ay / ax) / (one + ((ay - one) / ax) * ((ay - one) / 281 ax))) / ax; 282 LD_IM(ans) = t * (one - (t + t)); 283 } else if (ax < E * E * E * E) { 284 /* BEGIN CSTYLED */ 285 /* 286 * Tiny x: 287 * when |x| < E^4, (note that y != 1) 288 * 1 1 289 * A = --- * atan2(2x, 1-x*x-y*y) ~ --- * atan2(2x,1-y*y) 290 * 2 2 291 * 292 * 1 [ (y+1)*(y+1) ] 1 2 1 2y 293 * B = - log [ ----------- ] = - log (1+ ---) or - log(1+ ----) 294 * 4 [ (y-1)*(y-1) ] 2 y-1 2 1-y 295 */ 296 /* END CSTYLED */ 297 LD_RE(ans) = half * atan2l(ax + ax, (one - ay) * (one + ay)); 298 299 if (ay > one) /* y>1 */ 300 LD_IM(ans) = half * log1pl(two / (ay - one)); 301 else /* y<1 */ 302 LD_IM(ans) = half * log1pl((ay + ay) / (one - ay)); 303 } else { 304 /* BEGIN CSTYLED */ 305 /* 306 * normal x,y 307 * 1 308 * A = --- * atan2(2x, 1-x*x-y*y) 309 * 2 310 * 311 * 1 [ x*x+(y+1)*(y+1) ] 1 4y 312 * B = - log [ --------------- ] = - log (1+ -----------------) 313 * 4 [ x*x+(y-1)*(y-1) ] 4 x*x + (y-1)*(y-1) 314 */ 315 /* END CSTYLED */ 316 t = one - ay; 317 318 if (iy >= 0x3ffe0000 && iy < 0x40000000) { 319 /* y close to 1 */ 320 LD_RE(ans) = half * (atan2l((ax + ax), (t * (one + ay) - 321 ax * ax))); 322 } else if (ix >= 0x3ffe0000 && ix < 0x40000000) { 323 /* x close to 1 */ 324 LD_RE(ans) = half * atan2l((ax + ax), ((one - ax) * 325 (one + ax) - ay * ay)); 326 } else { 327 LD_RE(ans) = half * atan2l((ax + ax), ((one - ax * ax) - 328 ay * ay)); 329 } 330 331 LD_IM(ans) = 0.25L * log1pl((4.0L * ay) / (ax * ax + t * t)); 332 } 333 334 if (hx < 0) 335 LD_RE(ans) = -LD_RE(ans); 336 337 if (hy < 0) 338 LD_IM(ans) = -LD_IM(ans); 339 340 return (ans); 341 }