Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/casinl.c
+++ new/usr/src/lib/libm/common/complex/casinl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __casinl = casinl
31 32
32 -#include "libm.h" /* asinl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 +#include "libm.h" /* asinl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 34 #include "complex_wrapper.h"
34 35 #include "longdouble.h"
35 36
36 -/* INDENT OFF */
37 -static const long double
38 -zero = 0.0L,
39 -one = 1.0L,
40 -Acrossover = 1.5L,
41 -Bcrossover = 0.6417L,
42 -half = 0.5L,
43 -ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 -Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */
37 +/* BEGIN CSTYLED */
38 +static const long double zero = 0.0L,
39 + one = 1.0L,
40 + Acrossover = 1.5L,
41 + Bcrossover = 0.6417L,
42 + half = 0.5L,
43 + ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 + Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */
45 45 #if defined(__x86)
46 -E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */
47 -pi_4 = 0.7853981633974483095739921312272713294078130L,
48 -pi_4_l = 4.1668714592604391641479322342670193036704898e-20L,
49 -pi_2 = 1.5707963267948966191479842624545426588156260L,
50 -pi_2_l = 8.3337429185208783282958644685340386073409796e-20L;
51 -
46 + E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */
47 + pi_4 = 0.7853981633974483095739921312272713294078130L,
48 + pi_4_l = 4.1668714592604391641479322342670193036704898e-20L,
49 + pi_2 = 1.5707963267948966191479842624545426588156260L,
50 + pi_2_l = 8.3337429185208783282958644685340386073409796e-20L;
52 51 #else
53 -E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */
54 -pi_4 = 0.7853981633974483096156608458198756993697670L,
55 -pi_4_l = 2.1679525325309452561992610065108379921905808e-35L,
56 -pi_2 = 1.5707963267948966192313216916397513987395340L,
57 -pi_2_l = 4.3359050650618905123985220130216759843811616e-35L;
58 -
52 + E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */
53 + pi_4 = 0.7853981633974483096156608458198756993697670L,
54 + pi_4_l = 2.1679525325309452561992610065108379921905808e-35L,
55 + pi_2 = 1.5707963267948966192313216916397513987395340L,
56 + pi_2_l = 4.3359050650618905123985220130216759843811616e-35L;
59 57 #endif
60 -/* INDENT ON */
58 +/* END CSTYLED */
61 59
62 60 #if defined(__x86)
63 61 static const int ip1 = 0x40400000; /* 2**65 */
64 62 #else
65 63 static const int ip1 = 0x40710000; /* 2**114 */
66 64 #endif
67 65
68 66 ldcomplex
69 -casinl(ldcomplex z) {
67 +casinl(ldcomplex z)
68 +{
70 69 long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx;
71 70 int ix, iy, hx, hy;
72 71 ldcomplex ans;
73 72
74 73 x = LD_RE(z);
75 74 y = LD_IM(z);
76 75 hx = HI_XWORD(x);
77 76 hy = HI_XWORD(y);
78 77 ix = hx & 0x7fffffff;
79 78 iy = hy & 0x7fffffff;
80 79 x = fabsl(x);
81 80 y = fabsl(y);
82 81
83 82 /* special cases */
84 83
85 84 /* x is inf or NaN */
86 - if (ix >= 0x7fff0000) { /* x is inf or NaN */
85 + if (ix >= 0x7fff0000) { /* x is inf or NaN */
87 86 if (isinfl(x)) { /* x is INF */
88 87 LD_IM(ans) = x;
88 +
89 89 if (iy >= 0x7fff0000) {
90 90 if (isinfl(y))
91 91 /* casin(inf + i inf) = pi/4 + i inf */
92 92 LD_RE(ans) = pi_4 + pi_4_l;
93 93 else /* casin(inf + i NaN) = NaN + i inf */
94 94 LD_RE(ans) = y + y;
95 - } else /* casin(inf + iy) = pi/2 + i inf */
95 + } else { /* casin(inf + iy) = pi/2 + i inf */
96 96 LD_RE(ans) = pi_2 + pi_2_l;
97 + }
97 98 } else { /* x is NaN */
98 99 if (iy >= 0x7fff0000) {
99 - /* INDENT OFF */
100 +
100 101 /*
101 102 * casin(NaN + i inf) = NaN + i inf
102 103 * casin(NaN + i NaN) = NaN + i NaN
103 104 */
104 - /* INDENT ON */
105 105 LD_IM(ans) = y + y;
106 106 LD_RE(ans) = x + x;
107 107 } else {
108 - /* INDENT OFF */
109 - /* casin(NaN + i y ) = NaN + i NaN */
110 - /* INDENT ON */
108 + /*
109 + * casin(NaN + i y ) = NaN + i NaN
110 + */
111 111 LD_IM(ans) = LD_RE(ans) = x + y;
112 112 }
113 113 }
114 +
114 115 if (hx < 0)
115 116 LD_RE(ans) = -LD_RE(ans);
117 +
116 118 if (hy < 0)
117 119 LD_IM(ans) = -LD_IM(ans);
120 +
118 121 return (ans);
119 122 }
120 123
121 124 /* casin(+0 + i 0) = 0 + i 0. */
122 125 if (x == zero && y == zero)
123 126 return (z);
124 127
125 - if (iy >= 0x7fff0000) { /* y is inf or NaN */
128 + if (iy >= 0x7fff0000) { /* y is inf or NaN */
126 129 if (isinfl(y)) { /* casin(x + i inf) = 0 + i inf */
127 130 LD_IM(ans) = y;
128 131 LD_RE(ans) = zero;
129 132 } else { /* casin(x + i NaN) = NaN + i NaN */
130 133 LD_IM(ans) = x + y;
134 +
131 135 if (x == zero)
132 136 LD_RE(ans) = x;
133 137 else
134 138 LD_RE(ans) = y;
135 139 }
140 +
136 141 if (hx < 0)
137 142 LD_RE(ans) = -LD_RE(ans);
143 +
138 144 if (hy < 0)
139 145 LD_IM(ans) = -LD_IM(ans);
146 +
140 147 return (ans);
141 148 }
142 149
143 - if (y == zero) { /* region 1: y=0 */
150 + if (y == zero) { /* region 1: y=0 */
144 151 if (ix < 0x3fff0000) { /* |x| < 1 */
145 152 LD_RE(ans) = asinl(x);
146 153 LD_IM(ans) = zero;
147 154 } else {
148 155 LD_RE(ans) = pi_2 + pi_2_l;
149 - if (ix >= ip1) /* |x| >= i386 ? 2**65 : 2**114 */
156 +
157 + if (ix >= ip1) { /* |x| >= i386 ? 2**65 : 2**114 */
150 158 LD_IM(ans) = ln2 + logl(x);
151 - else if (ix >= 0x3fff8000) /* x > Acrossover */
159 + } else if (ix >= 0x3fff8000) { /* x > Acrossover */
152 160 LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
153 - one)));
154 - else {
161 + one)));
162 + } else {
155 163 xm1 = x - one;
156 164 LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x +
157 - one)));
165 + one)));
158 166 }
159 167 }
160 168 } else if (y <= E * fabsl(x - one)) { /* region 2: y < tiny*|x-1| */
161 - if (ix < 0x3fff0000) { /* x < 1 */
169 + if (ix < 0x3fff0000) { /* x < 1 */
162 170 LD_RE(ans) = asinl(x);
163 171 LD_IM(ans) = y / sqrtl((one + x) * (one - x));
164 172 } else {
165 173 LD_RE(ans) = pi_2 + pi_2_l;
166 - if (ix >= ip1) /* i386 ? 2**65 : 2**114 */
174 +
175 + if (ix >= ip1) /* i386 ? 2**65 : 2**114 */
167 176 LD_IM(ans) = ln2 + logl(x);
168 177 else if (ix >= 0x3fff8000) /* x > Acrossover */
169 178 LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
170 - one)));
179 + one)));
171 180 else
172 181 LD_IM(ans) = log1pl((x - one) + sqrtl((x -
173 - one) * (x + one)));
182 + one) * (x + one)));
174 183 }
175 184 } else if (y < Foursqrtu) { /* region 3 */
176 185 t = sqrtl(y);
177 186 LD_RE(ans) = pi_2 - (t - pi_2_l);
178 187 LD_IM(ans) = t;
179 188 } else if (E * y - one >= x) { /* region 4 */
180 189 LD_RE(ans) = x / y; /* need to fix underflow cases */
181 190 LD_IM(ans) = ln2 + logl(y);
182 191 } else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) {
183 192 /* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */
184 193 t = x / y;
185 194 LD_RE(ans) = atanl(t);
186 195 LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t);
187 196 } else if (x < Foursqrtu) {
188 197 /* region 6: x is very small, < 4sqrt(min) */
189 198 A = sqrtl(one + y * y);
190 199 LD_RE(ans) = x / A; /* may underflow */
200 +
191 201 if (iy >= 0x3fff8000) /* if y > Acrossover */
192 202 LD_IM(ans) = logl(y + A);
193 203 else
194 204 LD_IM(ans) = half * log1pl((y + y) * (y + A));
195 - } else { /* safe region */
205 + } else { /* safe region */
196 206 y2 = y * y;
197 207 xp1 = x + one;
198 208 xm1 = x - one;
199 209 R = sqrtl(xp1 * xp1 + y2);
200 210 S = sqrtl(xm1 * xm1 + y2);
201 211 A = half * (R + S);
202 212 B = x / A;
203 - if (B <= Bcrossover)
213 +
214 + if (B <= Bcrossover) {
204 215 LD_RE(ans) = asinl(B);
205 - else { /* use atan and an accurate approx to a-x */
216 + } else { /* use atan and an accurate approx to a-x */
206 217 Apx = A + x;
218 +
207 219 if (x <= one)
208 220 LD_RE(ans) = atanl(x / sqrtl(half * Apx * (y2 /
209 - (R + xp1) + (S - xm1))));
221 + (R + xp1) + (S - xm1))));
210 222 else
211 223 LD_RE(ans) = atanl(x / (y * sqrtl(half * (Apx /
212 - (R + xp1) + Apx / (S + xm1)))));
224 + (R + xp1) + Apx / (S + xm1)))));
213 225 }
226 +
214 227 if (A <= Acrossover) {
215 228 /* use log1p and an accurate approx to A-1 */
216 229 if (x < one)
217 230 Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1));
218 231 else
219 232 Am1 = half * (y2 / (R + xp1) + (S + xm1));
233 +
220 234 LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one)));
221 235 } else {
222 236 LD_IM(ans) = logl(A + sqrtl(A * A - one));
223 237 }
224 238 }
225 239
226 240 if (hx < 0)
227 241 LD_RE(ans) = -LD_RE(ans);
242 +
228 243 if (hy < 0)
229 244 LD_IM(ans) = -LD_IM(ans);
230 245
231 246 return (ans);
232 247 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX