1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __casinl = casinl 32 33 #include "libm.h" /* asinl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */ 34 #include "complex_wrapper.h" 35 #include "longdouble.h" 36 37 /* BEGIN CSTYLED */ 38 static const long double zero = 0.0L, 39 one = 1.0L, 40 Acrossover = 1.5L, 41 Bcrossover = 0.6417L, 42 half = 0.5L, 43 ln2 = 6.931471805599453094172321214581765680755e-0001L, 44 Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */ 45 #if defined(__x86) 46 E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */ 47 pi_4 = 0.7853981633974483095739921312272713294078130L, 48 pi_4_l = 4.1668714592604391641479322342670193036704898e-20L, 49 pi_2 = 1.5707963267948966191479842624545426588156260L, 50 pi_2_l = 8.3337429185208783282958644685340386073409796e-20L; 51 #else 52 E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */ 53 pi_4 = 0.7853981633974483096156608458198756993697670L, 54 pi_4_l = 2.1679525325309452561992610065108379921905808e-35L, 55 pi_2 = 1.5707963267948966192313216916397513987395340L, 56 pi_2_l = 4.3359050650618905123985220130216759843811616e-35L; 57 #endif 58 /* END CSTYLED */ 59 60 #if defined(__x86) 61 static const int ip1 = 0x40400000; /* 2**65 */ 62 #else 63 static const int ip1 = 0x40710000; /* 2**114 */ 64 #endif 65 66 ldcomplex 67 casinl(ldcomplex z) 68 { 69 long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx; 70 int ix, iy, hx, hy; 71 ldcomplex ans; 72 73 x = LD_RE(z); 74 y = LD_IM(z); 75 hx = HI_XWORD(x); 76 hy = HI_XWORD(y); 77 ix = hx & 0x7fffffff; 78 iy = hy & 0x7fffffff; 79 x = fabsl(x); 80 y = fabsl(y); 81 82 /* special cases */ 83 84 /* x is inf or NaN */ 85 if (ix >= 0x7fff0000) { /* x is inf or NaN */ 86 if (isinfl(x)) { /* x is INF */ 87 LD_IM(ans) = x; 88 89 if (iy >= 0x7fff0000) { 90 if (isinfl(y)) 91 /* casin(inf + i inf) = pi/4 + i inf */ 92 LD_RE(ans) = pi_4 + pi_4_l; 93 else /* casin(inf + i NaN) = NaN + i inf */ 94 LD_RE(ans) = y + y; 95 } else { /* casin(inf + iy) = pi/2 + i inf */ 96 LD_RE(ans) = pi_2 + pi_2_l; 97 } 98 } else { /* x is NaN */ 99 if (iy >= 0x7fff0000) { 100 101 /* 102 * casin(NaN + i inf) = NaN + i inf 103 * casin(NaN + i NaN) = NaN + i NaN 104 */ 105 LD_IM(ans) = y + y; 106 LD_RE(ans) = x + x; 107 } else { 108 /* 109 * casin(NaN + i y ) = NaN + i NaN 110 */ 111 LD_IM(ans) = LD_RE(ans) = x + y; 112 } 113 } 114 115 if (hx < 0) 116 LD_RE(ans) = -LD_RE(ans); 117 118 if (hy < 0) 119 LD_IM(ans) = -LD_IM(ans); 120 121 return (ans); 122 } 123 124 /* casin(+0 + i 0) = 0 + i 0. */ 125 if (x == zero && y == zero) 126 return (z); 127 128 if (iy >= 0x7fff0000) { /* y is inf or NaN */ 129 if (isinfl(y)) { /* casin(x + i inf) = 0 + i inf */ 130 LD_IM(ans) = y; 131 LD_RE(ans) = zero; 132 } else { /* casin(x + i NaN) = NaN + i NaN */ 133 LD_IM(ans) = x + y; 134 135 if (x == zero) 136 LD_RE(ans) = x; 137 else 138 LD_RE(ans) = y; 139 } 140 141 if (hx < 0) 142 LD_RE(ans) = -LD_RE(ans); 143 144 if (hy < 0) 145 LD_IM(ans) = -LD_IM(ans); 146 147 return (ans); 148 } 149 150 if (y == zero) { /* region 1: y=0 */ 151 if (ix < 0x3fff0000) { /* |x| < 1 */ 152 LD_RE(ans) = asinl(x); 153 LD_IM(ans) = zero; 154 } else { 155 LD_RE(ans) = pi_2 + pi_2_l; 156 157 if (ix >= ip1) { /* |x| >= i386 ? 2**65 : 2**114 */ 158 LD_IM(ans) = ln2 + logl(x); 159 } else if (ix >= 0x3fff8000) { /* x > Acrossover */ 160 LD_IM(ans) = logl(x + sqrtl((x - one) * (x + 161 one))); 162 } else { 163 xm1 = x - one; 164 LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x + 165 one))); 166 } 167 } 168 } else if (y <= E * fabsl(x - one)) { /* region 2: y < tiny*|x-1| */ 169 if (ix < 0x3fff0000) { /* x < 1 */ 170 LD_RE(ans) = asinl(x); 171 LD_IM(ans) = y / sqrtl((one + x) * (one - x)); 172 } else { 173 LD_RE(ans) = pi_2 + pi_2_l; 174 175 if (ix >= ip1) /* i386 ? 2**65 : 2**114 */ 176 LD_IM(ans) = ln2 + logl(x); 177 else if (ix >= 0x3fff8000) /* x > Acrossover */ 178 LD_IM(ans) = logl(x + sqrtl((x - one) * (x + 179 one))); 180 else 181 LD_IM(ans) = log1pl((x - one) + sqrtl((x - 182 one) * (x + one))); 183 } 184 } else if (y < Foursqrtu) { /* region 3 */ 185 t = sqrtl(y); 186 LD_RE(ans) = pi_2 - (t - pi_2_l); 187 LD_IM(ans) = t; 188 } else if (E * y - one >= x) { /* region 4 */ 189 LD_RE(ans) = x / y; /* need to fix underflow cases */ 190 LD_IM(ans) = ln2 + logl(y); 191 } else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) { 192 /* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */ 193 t = x / y; 194 LD_RE(ans) = atanl(t); 195 LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t); 196 } else if (x < Foursqrtu) { 197 /* region 6: x is very small, < 4sqrt(min) */ 198 A = sqrtl(one + y * y); 199 LD_RE(ans) = x / A; /* may underflow */ 200 201 if (iy >= 0x3fff8000) /* if y > Acrossover */ 202 LD_IM(ans) = logl(y + A); 203 else 204 LD_IM(ans) = half * log1pl((y + y) * (y + A)); 205 } else { /* safe region */ 206 y2 = y * y; 207 xp1 = x + one; 208 xm1 = x - one; 209 R = sqrtl(xp1 * xp1 + y2); 210 S = sqrtl(xm1 * xm1 + y2); 211 A = half * (R + S); 212 B = x / A; 213 214 if (B <= Bcrossover) { 215 LD_RE(ans) = asinl(B); 216 } else { /* use atan and an accurate approx to a-x */ 217 Apx = A + x; 218 219 if (x <= one) 220 LD_RE(ans) = atanl(x / sqrtl(half * Apx * (y2 / 221 (R + xp1) + (S - xm1)))); 222 else 223 LD_RE(ans) = atanl(x / (y * sqrtl(half * (Apx / 224 (R + xp1) + Apx / (S + xm1))))); 225 } 226 227 if (A <= Acrossover) { 228 /* use log1p and an accurate approx to A-1 */ 229 if (x < one) 230 Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1)); 231 else 232 Am1 = half * (y2 / (R + xp1) + (S + xm1)); 233 234 LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one))); 235 } else { 236 LD_IM(ans) = logl(A + sqrtl(A * A - one)); 237 } 238 } 239 240 if (hx < 0) 241 LD_RE(ans) = -LD_RE(ans); 242 243 if (hy < 0) 244 LD_IM(ans) = -LD_IM(ans); 245 246 return (ans); 247 }