1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __casin = casin 32 33 34 /* 35 * dcomplex casin(dcomplex z); 36 * 37 * Alogrithm 38 * (based on T.E.Hull, Thomas F. Fairgrieve and Ping Tak Peter Tang's 39 * paper "Implementing the Complex Arcsine and Arccosine Functins Using 40 * Exception Handling", ACM TOMS, Vol 23, pp 299-335) 41 * 42 * The principal value of complex inverse sine function casin(z), 43 * where z = x+iy, can be defined by 44 * 45 * casin(z) = asin(B) + i sign(y) log (A + sqrt(A*A-1)), 46 * 47 * where the log function is the natural log, and 48 * ____________ ____________ 49 * 1 / 2 2 1 / 2 2 50 * A = --- / (x+1) + y + --- / (x-1) + y 51 * 2 \/ 2 \/ 52 * ____________ ____________ 53 * 1 / 2 2 1 / 2 2 54 * B = --- / (x+1) + y - --- / (x-1) + y . 55 * 2 \/ 2 \/ 56 * 57 * The Branch cuts are on the real line from -inf to -1 and from 1 to inf. 58 * The real and imaginary parts are based on Abramowitz and Stegun 59 * [Handbook of Mathematic Functions, 1972]. The sign of the imaginary 60 * part is chosen to be the generally considered the principal value of 61 * this function. 62 * 63 * Notes:1. A is the average of the distances from z to the points (1,0) 64 * and (-1,0) in the complex z-plane, and in particular A>=1. 65 * 2. B is in [-1,1], and A*B = x. 66 * 67 * Special notes: if casin( x, y) = ( u, v), then 68 * casin(-x, y) = (-u, v), 69 * casin( x,-y) = ( u,-v), 70 * in general, we have casin(conj(z)) = conj(casin(z)) 71 * casin(-z) = -casin(z) 72 * casin(z) = pi/2 - cacos(z) 73 * 74 * EXCEPTION CASES (conform to ISO/IEC 9899:1999(E)): 75 * casin( 0 + i 0 ) = 0 + i 0 76 * casin( 0 + i NaN ) = 0 + i NaN 77 * casin( x + i inf ) = 0 + i inf for finite x 78 * casin( x + i NaN ) = NaN + i NaN with invalid for finite x != 0 79 * casin(inf + iy ) = pi/2 + i inf finite y 80 * casin(inf + i inf) = pi/4 + i inf 81 * casin(inf + i NaN) = NaN + i inf 82 * casin(NaN + i y ) = NaN + i NaN for finite y 83 * casin(NaN + i inf) = NaN + i inf 84 * casin(NaN + i NaN) = NaN + i NaN 85 * 86 * Special Regions (better formula for accuracy and for avoiding spurious 87 * overflow or underflow) (all x and y are assumed nonnegative): 88 * case 1: y = 0 89 * case 2: tiny y relative to x-1: y <= ulp(0.5)*|x-1| 90 * case 3: tiny y: y < 4 sqrt(u), where u = minimum normal number 91 * case 4: huge y relative to x+1: y >= (1+x)/ulp(0.5) 92 * case 5: huge x and y: x and y >= sqrt(M)/8, where M = maximum normal number 93 * case 6: tiny x: x < 4 sqrt(u) 94 * -------- 95 * case 1 & 2. y=0 or y/|x-1| is tiny. We have 96 * ____________ _____________ 97 * / 2 2 / y 2 98 * / (x+-1) + y = |x+-1| / 1 + (------) 99 * \/ \/ |x+-1| 100 * 101 * 1 y 2 102 * ~ |x+-1| ( 1 + --- (------) ) 103 * 2 |x+-1| 104 * 105 * 2 106 * y 107 * = |x+-1| + --------. 108 * 2|x+-1| 109 * 110 * Consequently, it is not difficult to see that 111 * 2 112 * y 113 * [ 1 + ------------ , if x < 1, 114 * [ 2(1+x)(1-x) 115 * [ 116 * [ 117 * [ x, if x = 1 (y = 0), 118 * [ 119 * A ~= [ 2 120 * [ x * y 121 * [ x + ------------ , if x > 1 122 * [ 2(1+x)(x-1) 123 * 124 * and hence 125 * ______ 2 126 * / 2 y y 127 * A + \/ A - 1 ~ 1 + ---------------- + -----------, if x < 1, 128 * sqrt((x+1)(1-x)) 2(x+1)(1-x) 129 * 130 * 131 * ~ x + sqrt((x-1)*(x+1)), if x >= 1. 132 * 133 * 2 134 * y 135 * [ x(1 - ------------), if x < 1, 136 * [ 2(1+x)(1-x) 137 * B = x/A ~ [ 138 * [ 1, if x = 1, 139 * [ 140 * [ 2 141 * [ y 142 * [ 1 - ------------ , if x > 1, 143 * [ 2(1+x)(1-x) 144 * Thus 145 * [ asin(x) + i y/sqrt((x-1)*(x+1)), if x < 1 146 * casin(x+i*y)=[ 147 * [ pi/2 + i log(x+sqrt(x*x-1)), if x >= 1 148 * 149 * case 3. y < 4 sqrt(u), where u = minimum normal x. 150 * After case 1 and 2, this will only occurs when x=1. When x=1, we have 151 * A = (sqrt(4+y*y)+y)/2 ~ 1 + y/2 + y^2/8 + ... 152 * and 153 * B = 1/A = 1 - y/2 + y^2/8 + ... 154 * Since 155 * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) 156 * asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... 157 * we have, for the real part asin(B), 158 * asin(1-y/2) ~ pi/2 - 2 asin(sqrt(y/4)) 159 * ~ pi/2 - sqrt(y) 160 * For the imaginary part, 161 * log(A+sqrt(A*A-1)) ~ log(1+y/2+sqrt(2*y/2)) 162 * = log(1+y/2+sqrt(y)) 163 * = (y/2+sqrt(y)) - (y/2+sqrt(y))^2/2 + ... 164 * ~ sqrt(y) - y*(sqrt(y)+y/2)/2 165 * ~ sqrt(y) 166 * 167 * case 4. y >= (x+1)ulp(0.5). In this case, A ~ y and B ~ x/y. Thus 168 * real part = asin(B) ~ x/y (be careful, x/y may underflow) 169 * and 170 * imag part = log(y+sqrt(y*y-one)) 171 * 172 * 173 * case 5. Both x and y are large: x and y > sqrt(M)/8, where M = maximum x 174 * In this case, 175 * A ~ sqrt(x*x+y*y) 176 * B ~ x/sqrt(x*x+y*y). 177 * Thus 178 * real part = asin(B) = atan(x/y), 179 * imag part = log(A+sqrt(A*A-1)) ~ log(2A) 180 * = log(2) + 0.5*log(x*x+y*y) 181 * = log(2) + log(y) + 0.5*log(1+(x/y)^2) 182 * 183 * case 6. x < 4 sqrt(u). In this case, we have 184 * A ~ sqrt(1+y*y), B = x/sqrt(1+y*y). 185 * Since B is tiny, we have 186 * real part = asin(B) ~ B = x/sqrt(1+y*y) 187 * imag part = log(A+sqrt(A*A-1)) = log (A+sqrt(y*y)) 188 * = log(y+sqrt(1+y*y)) 189 * = 0.5*log(y^2+2ysqrt(1+y^2)+1+y^2) 190 * = 0.5*log(1+2y(y+sqrt(1+y^2))); 191 * = 0.5*log1p(2y(y+A)); 192 * 193 * casin(z) = asin(B) + i sign(y) log (A + sqrt(A*A-1)), 194 */ 195 196 #include "libm.h" /* asin/atan/fabs/log/log1p/sqrt */ 197 #include "complex_wrapper.h" 198 199 static const double zero = 0.0, 200 one = 1.0, 201 E = 1.11022302462515654042e-16, /* 2**-53 */ 202 ln2 = 6.93147180559945286227e-01, 203 pi_2 = 1.570796326794896558e+00, 204 pi_2_l = 6.123233995736765886e-17, 205 pi_4 = 7.85398163397448278999e-01, 206 Foursqrtu = 5.96667258496016539463e-154, /* 2**(-509) */ 207 Acrossover = 1.5, 208 Bcrossover = 0.6417, 209 half = 0.5; 210 211 212 dcomplex 213 casin(dcomplex z) 214 { 215 double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx; 216 int ix, iy, hx, hy; 217 unsigned lx, ly; 218 dcomplex ans; 219 220 x = D_RE(z); 221 y = D_IM(z); 222 hx = HI_WORD(x); 223 lx = LO_WORD(x); 224 hy = HI_WORD(y); 225 ly = LO_WORD(y); 226 ix = hx & 0x7fffffff; 227 iy = hy & 0x7fffffff; 228 x = fabs(x); 229 y = fabs(y); 230 231 /* special cases */ 232 233 /* x is inf or NaN */ 234 if (ix >= 0x7ff00000) { /* x is inf or NaN */ 235 if (ISINF(ix, lx)) { /* x is INF */ 236 D_IM(ans) = x; 237 238 if (iy >= 0x7ff00000) { 239 if (ISINF(iy, ly)) 240 /* casin(inf + i inf) = pi/4 + i inf */ 241 D_RE(ans) = pi_4; 242 else /* casin(inf + i NaN) = NaN + i inf */ 243 D_RE(ans) = y + y; 244 } else { /* casin(inf + iy) = pi/2 + i inf */ 245 D_RE(ans) = pi_2; 246 } 247 } else { /* x is NaN */ 248 if (iy >= 0x7ff00000) { 249 250 /* 251 * casin(NaN + i inf) = NaN + i inf 252 * casin(NaN + i NaN) = NaN + i NaN 253 */ 254 D_IM(ans) = y + y; 255 D_RE(ans) = x + x; 256 } else { 257 /* casin(NaN + i y ) = NaN + i NaN */ 258 D_IM(ans) = D_RE(ans) = x + y; 259 } 260 } 261 262 if (hx < 0) 263 D_RE(ans) = -D_RE(ans); 264 265 if (hy < 0) 266 D_IM(ans) = -D_IM(ans); 267 268 return (ans); 269 } 270 271 /* casin(+0 + i 0 ) = 0 + i 0. */ 272 if ((ix | lx | iy | ly) == 0) 273 return (z); 274 275 if (iy >= 0x7ff00000) { /* y is inf or NaN */ 276 if (ISINF(iy, ly)) { /* casin(x + i inf) = 0 + i inf */ 277 D_IM(ans) = y; 278 D_RE(ans) = zero; 279 } else { /* casin(x + i NaN) = NaN + i NaN */ 280 D_IM(ans) = x + y; 281 282 if ((ix | lx) == 0) 283 D_RE(ans) = x; 284 else 285 D_RE(ans) = y; 286 } 287 288 if (hx < 0) 289 D_RE(ans) = -D_RE(ans); 290 291 if (hy < 0) 292 D_IM(ans) = -D_IM(ans); 293 294 return (ans); 295 } 296 297 if ((iy | ly) == 0) { /* region 1: y=0 */ 298 if (ix < 0x3ff00000) { /* |x| < 1 */ 299 D_RE(ans) = asin(x); 300 D_IM(ans) = zero; 301 } else { 302 D_RE(ans) = pi_2; 303 304 if (ix >= 0x43500000) { /* |x| >= 2**54 */ 305 D_IM(ans) = ln2 + log(x); 306 } else if (ix >= 0x3ff80000) { /* x > Acrossover */ 307 D_IM(ans) = log(x + sqrt((x - one) * (x + 308 one))); 309 } else { 310 xm1 = x - one; 311 D_IM(ans) = log1p(xm1 + sqrt(xm1 * (x + one))); 312 } 313 } 314 } else if (y <= E * fabs(x - one)) { /* region 2: y < tiny*|x-1| */ 315 if (ix < 0x3ff00000) { /* x < 1 */ 316 D_RE(ans) = asin(x); 317 D_IM(ans) = y / sqrt((one + x) * (one - x)); 318 } else { 319 D_RE(ans) = pi_2; 320 321 if (ix >= 0x43500000) /* |x| >= 2**54 */ 322 D_IM(ans) = ln2 + log(x); 323 else if (ix >= 0x3ff80000) /* x > Acrossover */ 324 D_IM(ans) = log(x + sqrt((x - one) * (x + 325 one))); 326 else 327 D_IM(ans) = log1p((x - one) + sqrt((x - one) * 328 (x + one))); 329 } 330 } else if (y < Foursqrtu) { /* region 3 */ 331 t = sqrt(y); 332 D_RE(ans) = pi_2 - (t - pi_2_l); 333 D_IM(ans) = t; 334 } else if (E * y - one >= x) { /* region 4 */ 335 D_RE(ans) = x / y; /* need to fix underflow cases */ 336 D_IM(ans) = ln2 + log(y); 337 } else if (ix >= 0x5fc00000 || iy >= 0x5fc00000) { /* x,y>2**509 */ 338 /* region 5: x+1 or y is very large (>= sqrt(max)/8) */ 339 t = x / y; 340 D_RE(ans) = atan(t); 341 D_IM(ans) = ln2 + log(y) + half * log1p(t * t); 342 } else if (x < Foursqrtu) { 343 /* region 6: x is very small, < 4sqrt(min) */ 344 A = sqrt(one + y * y); 345 D_RE(ans) = x / A; /* may underflow */ 346 347 if (iy >= 0x3ff80000) /* if y > Acrossover */ 348 D_IM(ans) = log(y + A); 349 else 350 D_IM(ans) = half * log1p((y + y) * (y + A)); 351 } else { /* safe region */ 352 y2 = y * y; 353 xp1 = x + one; 354 xm1 = x - one; 355 R = sqrt(xp1 * xp1 + y2); 356 S = sqrt(xm1 * xm1 + y2); 357 A = half * (R + S); 358 B = x / A; 359 360 if (B <= Bcrossover) { 361 D_RE(ans) = asin(B); 362 } else { /* use atan and an accurate approx to a-x */ 363 Apx = A + x; 364 365 if (x <= one) 366 D_RE(ans) = atan(x / sqrt(half * Apx * (y2 / 367 (R + xp1) + (S - xm1)))); 368 else 369 D_RE(ans) = atan(x / (y * sqrt(half * (Apx / 370 (R + xp1) + Apx / (S + xm1))))); 371 } 372 373 if (A <= Acrossover) { 374 /* use log1p and an accurate approx to A-1 */ 375 if (x < one) 376 Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1)); 377 else 378 Am1 = half * (y2 / (R + xp1) + (S + xm1)); 379 380 D_IM(ans) = log1p(Am1 + sqrt(Am1 * (A + one))); 381 } else { 382 D_IM(ans) = log(A + sqrt(A * A - one)); 383 } 384 } 385 386 if (hx < 0) 387 D_RE(ans) = -D_RE(ans); 388 389 if (hy < 0) 390 D_IM(ans) = -D_IM(ans); 391 392 return (ans); 393 }