Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/cacosl.c
+++ new/usr/src/lib/libm/common/complex/cacosl.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 24 */
25 +
25 26 /*
26 27 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
27 28 * Use is subject to license terms.
28 29 */
29 30
30 31 #pragma weak __cacosl = cacosl
31 32
32 -#include "libm.h" /* acosl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 +#include "libm.h" /* acosl/atanl/fabsl/isinfl/log1pl/logl/sqrtl */
33 34 #include "complex_wrapper.h"
34 35 #include "longdouble.h"
35 36
36 -/* INDENT OFF */
37 -static const long double
38 -zero = 0.0L,
39 -one = 1.0L,
40 -Acrossover = 1.5L,
41 -Bcrossover = 0.6417L,
42 -half = 0.5L,
43 -ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 -Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */
37 +/* BEGIN CSTYLED */
38 +static const long double zero = 0.0L,
39 + one = 1.0L,
40 + Acrossover = 1.5L,
41 + Bcrossover = 0.6417L,
42 + half = 0.5L,
43 + ln2 = 6.931471805599453094172321214581765680755e-0001L,
44 + Foursqrtu = 7.3344154702193886624856495681939326638255e-2466L, /* 2**-8189 */
45 45 #if defined(__x86)
46 -E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */
47 -pi = 3.141592653589793238295968524909085317631252110004425048828125L,
48 -pi_l = 1.666748583704175665659172893706807721468195923078e-19L,
49 -pi_2 = 1.5707963267948966191479842624545426588156260L,
50 -pi_2_l = 8.3337429185208783282958644685340386073409796e-20L,
51 -pi_4 = 0.78539816339744830957399213122727132940781302750110626220703125L,
52 -pi_4_l = 4.166871459260439164147932234267019303670489807695410e-20L,
53 -pi3_4 = 2.35619449019234492872197639368181398822343908250331878662109375L,
54 -pi3_4_l = 1.250061437778131749244379670280105791101146942308e-19L;
46 + E = 5.4210108624275221700372640043497085571289e-20L, /* 2**-64 */
47 + pi = 3.141592653589793238295968524909085317631252110004425048828125L,
48 + pi_l = 1.666748583704175665659172893706807721468195923078e-19L,
49 + pi_2 = 1.5707963267948966191479842624545426588156260L,
50 + pi_2_l = 8.3337429185208783282958644685340386073409796e-20L,
51 + pi_4 = 0.78539816339744830957399213122727132940781302750110626220703125L,
52 + pi_4_l = 4.166871459260439164147932234267019303670489807695410e-20L,
53 + pi3_4 = 2.35619449019234492872197639368181398822343908250331878662109375L,
54 + pi3_4_l = 1.250061437778131749244379670280105791101146942308e-19L;
55 55 #else
56 -E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */
57 -pi = 3.1415926535897932384626433832795027974790680981372955730045043318L,
58 -pi_l = 8.6718101301237810247970440260433519687623233462565303417759356862e-35L,
59 -pi_2 = 1.5707963267948966192313216916397513987395340L,
60 -pi_2_l = 4.3359050650618905123985220130216759843811616e-35L,
61 -pi_4 = 0.785398163397448309615660845819875699369767024534323893251126L,
62 -pi_4_l = 2.167952532530945256199261006510837992190580836564132585443e-35L,
63 -pi3_4 = 2.35619449019234492884698253745962709810930107360297167975337824L,
64 -pi3_4_l = 6.503857597592835768597783019532513976571742509692397756331e-35L;
56 + E = 9.6296497219361792652798897129246365926905e-35L, /* 2**-113 */
57 + pi = 3.1415926535897932384626433832795027974790680981372955730045043318L,
58 + pi_l = 8.6718101301237810247970440260433519687623233462565303417759356862e-35L,
59 + pi_2 = 1.5707963267948966192313216916397513987395340L,
60 + pi_2_l = 4.3359050650618905123985220130216759843811616e-35L,
61 + pi_4 = 0.785398163397448309615660845819875699369767024534323893251126L,
62 + pi_4_l = 2.167952532530945256199261006510837992190580836564132585443e-35L,
63 + pi3_4 = 2.35619449019234492884698253745962709810930107360297167975337824L,
64 + pi3_4_l = 6.503857597592835768597783019532513976571742509692397756331e-35L;
65 65 #endif
66 -/* INDENT ON */
66 +/* END CSTYLED */
67 67
68 68 #if defined(__x86)
69 69 static const int ip1 = 0x40400000; /* 2**65 */
70 70 #else
71 71 static const int ip1 = 0x40710000; /* 2**114 */
72 72 #endif
73 73
74 74 ldcomplex
75 -cacosl(ldcomplex z) {
75 +cacosl(ldcomplex z)
76 +{
76 77 long double x, y, t, R, S, A, Am1, B, y2, xm1, xp1, Apx;
77 78 int ix, iy, hx, hy;
78 79 ldcomplex ans;
79 80
80 81 x = LD_RE(z);
81 82 y = LD_IM(z);
82 83 hx = HI_XWORD(x);
83 84 hy = HI_XWORD(y);
84 85 ix = hx & 0x7fffffff;
85 86 iy = hy & 0x7fffffff;
86 87
87 88 /* x is 0 */
88 89 if (x == zero) {
89 90 if (y == zero || (iy >= 0x7fff0000)) {
↓ open down ↓ |
4 lines elided |
↑ open up ↑ |
90 91 LD_RE(ans) = pi_2 + pi_2_l;
91 92 LD_IM(ans) = -y;
92 93 return (ans);
93 94 }
94 95 }
95 96
96 97 /* |y| is inf or NaN */
97 98 if (iy >= 0x7fff0000) {
98 99 if (isinfl(y)) { /* cacos(x + i inf) = pi/2 - i inf */
99 100 LD_IM(ans) = -y;
101 +
100 102 if (ix < 0x7fff0000) {
101 103 LD_RE(ans) = pi_2 + pi_2_l;
102 104 } else if (isinfl(x)) {
103 105 if (hx >= 0)
104 106 LD_RE(ans) = pi_4 + pi_4_l;
105 107 else
106 108 LD_RE(ans) = pi3_4 + pi3_4_l;
107 109 } else {
108 110 LD_RE(ans) = x;
109 111 }
110 112 } else { /* cacos(x + i NaN) = NaN + i NaN */
111 113 LD_RE(ans) = y + x;
114 +
112 115 if (isinfl(x))
113 116 LD_IM(ans) = -fabsl(x);
114 117 else
115 118 LD_IM(ans) = y;
116 119 }
120 +
117 121 return (ans);
118 122 }
119 123
120 124 y = fabsl(y);
121 125
122 - if (ix >= 0x7fff0000) { /* x is inf or NaN */
126 + if (ix >= 0x7fff0000) { /* x is inf or NaN */
123 127 if (isinfl(x)) { /* x is INF */
124 128 LD_IM(ans) = -fabsl(x);
129 +
125 130 if (iy >= 0x7fff0000) {
126 131 if (isinfl(y)) {
127 - /* INDENT OFF */
128 - /* cacos(inf + i inf) = pi/4 - i inf */
129 - /* cacos(-inf+ i inf) =3pi/4 - i inf */
130 - /* INDENT ON */
132 + /*
133 + * cacos(inf + i inf) = pi/4 - i inf
134 + * cacos(-inf+ i inf) =3pi/4 - i inf
135 + */
131 136 if (hx >= 0)
132 137 LD_RE(ans) = pi_4 + pi_4_l;
133 138 else
134 139 LD_RE(ans) = pi3_4 + pi3_4_l;
135 - } else
136 - /* INDENT OFF */
137 - /* cacos(inf + i NaN) = NaN - i inf */
138 - /* INDENT ON */
140 + } else {
141 + /*
142 + * cacos(inf + i NaN) = NaN - i inf
143 + */
139 144 LD_RE(ans) = y + y;
145 + }
140 146 } else {
141 - /* INDENT OFF */
142 - /* cacos(inf + iy ) = 0 - i inf */
143 - /* cacos(-inf+ iy ) = pi - i inf */
144 - /* INDENT ON */
147 + /*
148 + * cacos(inf + iy ) = 0 - i inf
149 + * cacos(-inf+ iy ) = pi - i inf
150 + */
145 151 if (hx >= 0)
146 152 LD_RE(ans) = zero;
147 153 else
148 154 LD_RE(ans) = pi + pi_l;
149 155 }
150 156 } else { /* x is NaN */
151 - /* INDENT OFF */
157 +
152 158 /*
153 159 * cacos(NaN + i inf) = NaN - i inf
154 160 * cacos(NaN + i y ) = NaN + i NaN
155 161 * cacos(NaN + i NaN) = NaN + i NaN
156 162 */
157 - /* INDENT ON */
158 163 LD_RE(ans) = x + y;
159 - if (iy >= 0x7fff0000) {
164 +
165 + if (iy >= 0x7fff0000)
160 166 LD_IM(ans) = -y;
161 - } else {
167 + else
162 168 LD_IM(ans) = x;
163 - }
164 169 }
170 +
165 171 if (hy < 0)
166 172 LD_IM(ans) = -LD_IM(ans);
173 +
167 174 return (ans);
168 175 }
169 176
170 - if (y == zero) { /* region 1: y=0 */
177 + if (y == zero) { /* region 1: y=0 */
171 178 if (ix < 0x3fff0000) { /* |x| < 1 */
172 179 LD_RE(ans) = acosl(x);
173 180 LD_IM(ans) = zero;
174 181 } else {
175 182 LD_RE(ans) = zero;
176 183 x = fabsl(x);
177 - if (ix >= ip1) /* i386 ? 2**65 : 2**114 */
184 +
185 + if (ix >= ip1) { /* i386 ? 2**65 : 2**114 */
178 186 LD_IM(ans) = ln2 + logl(x);
179 - else if (ix >= 0x3fff8000) /* x > Acrossover */
187 + } else if (ix >= 0x3fff8000) { /* x > Acrossover */
180 188 LD_IM(ans) = logl(x + sqrtl((x - one) * (x +
181 - one)));
182 - else {
189 + one)));
190 + } else {
183 191 xm1 = x - one;
184 192 LD_IM(ans) = log1pl(xm1 + sqrtl(xm1 * (x +
185 - one)));
193 + one)));
186 194 }
187 195 }
188 196 } else if (y <= E * fabsl(fabsl(x) - one)) {
189 197 /* region 2: y < tiny*||x|-1| */
190 198 if (ix < 0x3fff0000) { /* x < 1 */
191 199 LD_RE(ans) = acosl(x);
192 200 x = fabsl(x);
193 201 LD_IM(ans) = y / sqrtl((one + x) * (one - x));
194 202 } else if (ix >= ip1) { /* i386 ? 2**65 : 2**114 */
195 - if (hx >= 0)
203 + if (hx >= 0) {
196 204 LD_RE(ans) = y / x;
197 - else {
198 - if (ix >= ip1 + 0x00040000)
205 + } else {
206 + if (ix >= ip1 + 0x00040000) {
199 207 LD_RE(ans) = pi + pi_l;
200 - else {
208 + } else {
201 209 t = pi_l + y / x;
202 210 LD_RE(ans) = pi + t;
203 211 }
204 212 }
213 +
205 214 LD_IM(ans) = ln2 + logl(fabsl(x));
206 215 } else {
207 216 x = fabsl(x);
208 217 t = sqrtl((x - one) * (x + one));
209 - LD_RE(ans) = (hx >= 0)? y / t : pi - (y / t - pi_l);
218 + LD_RE(ans) = (hx >= 0) ? y / t : pi - (y / t - pi_l);
219 +
210 220 if (ix >= 0x3fff8000) /* x > Acrossover */
211 221 LD_IM(ans) = logl(x + t);
212 222 else
213 223 LD_IM(ans) = log1pl(t - (one - x));
214 224 }
215 225 } else if (y < Foursqrtu) { /* region 3 */
216 226 t = sqrtl(y);
217 - LD_RE(ans) = (hx >= 0)? t : pi + pi_l;
227 + LD_RE(ans) = (hx >= 0) ? t : pi + pi_l;
218 228 LD_IM(ans) = t;
219 229 } else if (E * y - one >= fabsl(x)) { /* region 4 */
220 230 LD_RE(ans) = pi_2 + pi_2_l;
221 231 LD_IM(ans) = ln2 + logl(y);
222 232 } else if (ix >= 0x5ffb0000 || iy >= 0x5ffb0000) {
223 233 /* region 5: x+1 and y are both (>= sqrt(max)/8) i.e. 2**8188 */
224 234 t = x / y;
225 235 LD_RE(ans) = atan2l(y, x);
226 236 LD_IM(ans) = ln2 + logl(y) + half * log1pl(t * t);
227 237 } else if (fabsl(x) < Foursqrtu) {
228 238 /* region 6: x is very small, < 4sqrt(min) */
229 239 LD_RE(ans) = pi_2 + pi_2_l;
230 240 A = sqrtl(one + y * y);
241 +
231 242 if (iy >= 0x3fff8000) /* if y > Acrossover */
232 243 LD_IM(ans) = logl(y + A);
233 244 else
234 245 LD_IM(ans) = half * log1pl((y + y) * (y + A));
235 - } else { /* safe region */
246 + } else { /* safe region */
236 247 t = fabsl(x);
237 248 y2 = y * y;
238 249 xp1 = t + one;
239 250 xm1 = t - one;
240 251 R = sqrtl(xp1 * xp1 + y2);
241 252 S = sqrtl(xm1 * xm1 + y2);
242 253 A = half * (R + S);
243 254 B = t / A;
244 255
245 - if (B <= Bcrossover)
246 - LD_RE(ans) = (hx >= 0)? acosl(B) : acosl(-B);
247 - else { /* use atan and an accurate approx to a-x */
256 + if (B <= Bcrossover) {
257 + LD_RE(ans) = (hx >= 0) ? acosl(B) : acosl(-B);
258 + } else { /* use atan and an accurate approx to a-x */
248 259 Apx = A + t;
260 +
249 261 if (t <= one)
250 262 LD_RE(ans) = atan2l(sqrtl(half * Apx * (y2 /
251 - (R + xp1) + (S - xm1))), x);
263 + (R + xp1) + (S - xm1))), x);
252 264 else
253 265 LD_RE(ans) = atan2l((y * sqrtl(half * (Apx /
254 - (R + xp1) + Apx / (S + xm1)))), x);
266 + (R + xp1) + Apx / (S + xm1)))), x);
255 267 }
268 +
256 269 if (A <= Acrossover) {
257 270 /* use log1p and an accurate approx to A-1 */
258 271 if (ix < 0x3fff0000)
259 272 Am1 = half * (y2 / (R + xp1) + y2 / (S - xm1));
260 273 else
261 274 Am1 = half * (y2 / (R + xp1) + (S + xm1));
275 +
262 276 LD_IM(ans) = log1pl(Am1 + sqrtl(Am1 * (A + one)));
263 277 } else {
264 278 LD_IM(ans) = logl(A + sqrtl(A * A - one));
265 279 }
266 280 }
267 281
268 282 if (hy >= 0)
269 283 LD_IM(ans) = -LD_IM(ans);
270 284
271 285 return (ans);
272 286 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX