Print this page
11210 libm should be cstyle(1ONBLD) clean
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/lib/libm/common/complex/cabs.c
+++ new/usr/src/lib/libm/common/complex/cabs.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
↓ open down ↓ |
10 lines elided |
↑ open up ↑ |
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 +
21 22 /*
22 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
23 24 */
25 +
24 26 /*
25 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
26 28 * Use is subject to license terms.
27 29 */
28 30
29 31 #pragma weak __cabs = cabs
30 32
31 33 #include <math.h>
32 34 #include "complex_wrapper.h"
33 35
34 36 /*
35 37 * If C were the only standard we cared about, cabs could just call
36 38 * hypot. Unfortunately, various other standards say that hypot must
37 39 * call matherr and/or set errno to ERANGE when the result overflows.
38 40 * Since cabs should do neither of these things, we have to either
39 41 * make hypot a wrapper on another internal function or duplicate
40 42 * the hypot implementation here. I've chosen to do the latter.
41 43 */
42 44
43 -static const double
44 - zero = 0.0,
45 +static const double zero = 0.0,
45 46 onep1u = 1.00000000000000022204e+00, /* 0x3ff00000 1 = 1+2**-52 */
46 47 twom53 = 1.11022302462515654042e-16, /* 0x3ca00000 0 = 2**-53 */
47 48 twom768 = 6.441148769597133308e-232, /* 2^-768 */
48 - two768 = 1.552518092300708935e+231; /* 2^768 */
49 + two768 = 1.552518092300708935e+231; /* 2^768 */
49 50
50 51 double
51 52 cabs(dcomplex z)
52 53 {
53 - double x, y, xh, yh, w, ax, ay;
54 - int i, j, nx, ny, ix, iy, iscale = 0;
55 - unsigned lx, ly;
54 + double x, y, xh, yh, w, ax, ay;
55 + int i, j, nx, ny, ix, iy, iscale = 0;
56 + unsigned lx, ly;
56 57
57 58 x = D_RE(z);
58 59 y = D_IM(z);
59 60
60 61 ix = ((int *)&x)[HIWORD] & ~0x80000000;
61 62 lx = ((int *)&x)[LOWORD];
62 63 iy = ((int *)&y)[HIWORD] & ~0x80000000;
63 64 ly = ((int *)&y)[LOWORD];
64 65
65 66 /* force ax = |x| ~>~ ay = |y| */
66 67 if (iy > ix) {
67 68 ax = fabs(y);
68 69 ay = fabs(x);
↓ open down ↓ |
3 lines elided |
↑ open up ↑ |
69 70 i = ix;
70 71 ix = iy;
71 72 iy = i;
72 73 i = lx;
73 74 lx = ly;
74 75 ly = i;
75 76 } else {
76 77 ax = fabs(x);
77 78 ay = fabs(y);
78 79 }
80 +
79 81 nx = ix >> 20;
80 82 ny = iy >> 20;
81 - j = nx - ny;
83 + j = nx - ny;
82 84
83 85 if (nx >= 0x5f3) {
84 86 /* x >= 2^500 (x*x or y*y may overflow) */
85 87 if (nx == 0x7ff) {
86 88 /* inf or NaN, signal of sNaN */
87 89 if (((ix - 0x7ff00000) | lx) == 0)
88 - return ((ax == ay)? ay : ax);
90 + return ((ax == ay) ? ay : ax);
89 91 else if (((iy - 0x7ff00000) | ly) == 0)
90 - return ((ay == ax)? ax : ay);
92 + return ((ay == ax) ? ax : ay);
91 93 else
92 94 return (ax * ay);
93 95 } else if (j > 32) {
94 96 /* x >> y */
95 97 if (j <= 53)
96 98 ay *= twom53;
99 +
97 100 ax += ay;
98 101 return (ax);
99 102 }
103 +
100 104 ax *= twom768;
101 105 ay *= twom768;
102 106 iscale = 2;
103 107 ix -= 768 << 20;
104 108 iy -= 768 << 20;
105 109 } else if (ny < 0x23d) {
106 110 /* y < 2^-450 (x*x or y*y may underflow) */
107 111 if ((ix | lx) == 0)
108 112 return (ay);
113 +
109 114 if ((iy | ly) == 0)
110 115 return (ax);
111 - if (j > 53) /* x >> y */
116 +
117 + if (j > 53) /* x >> y */
112 118 return (ax + ay);
119 +
113 120 iscale = 1;
114 121 ax *= two768;
115 122 ay *= two768;
123 +
116 124 if (nx == 0) {
117 125 if (ax == zero) /* guard subnormal flush to zero */
118 126 return (ax);
127 +
119 128 ix = ((int *)&ax)[HIWORD];
120 129 } else {
121 130 ix += 768 << 20;
122 131 }
132 +
123 133 if (ny == 0) {
124 134 if (ay == zero) /* guard subnormal flush to zero */
125 135 return (ax * twom768);
136 +
126 137 iy = ((int *)&ay)[HIWORD];
127 138 } else {
128 139 iy += 768 << 20;
129 140 }
141 +
130 142 j = (ix >> 20) - (iy >> 20);
143 +
131 144 if (j > 32) {
132 145 /* x >> y */
133 146 if (j <= 53)
134 147 ay *= twom53;
148 +
135 149 return ((ax + ay) * twom768);
136 150 }
137 151 } else if (j > 32) {
138 152 /* x >> y */
139 153 if (j <= 53)
140 154 ay *= twom53;
155 +
141 156 return (ax + ay);
142 157 }
143 158
144 159 /*
145 160 * Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32.
146 161 * First check rounding mode by comparing onep1u*onep1u with onep1u
147 162 * + twom53. Make sure the computation is done at run-time.
148 163 */
149 164 if (((lx | ly) << 5) == 0) {
150 165 ay = ay * ay;
151 166 ax += ay / (ax + sqrt(ax * ax + ay));
152 167 } else if (onep1u * onep1u != onep1u + twom53) {
153 - /* round-to-zero, positive, negative mode */
154 - /* magic formula with less than an ulp error */
168 + /*
169 + * round-to-zero, positive, negative mode
170 + * magic formula with less than an ulp error
171 + */
155 172 w = sqrt(ax * ax + ay * ay);
156 173 ax += ay / ((ax + w) / ay);
157 174 } else {
158 175 /* round-to-nearest mode */
159 176 w = ax - ay;
177 +
160 178 if (w > ay) {
161 179 ((int *)&xh)[HIWORD] = ix;
162 180 ((int *)&xh)[LOWORD] = 0;
163 181 ay = ay * ay + (ax - xh) * (ax + xh);
164 182 ax = sqrt(xh * xh + ay);
165 183 } else {
166 184 ax = ax + ax;
167 185 ((int *)&xh)[HIWORD] = ix + 0x00100000;
168 186 ((int *)&xh)[LOWORD] = 0;
169 187 ((int *)&yh)[HIWORD] = iy;
170 188 ((int *)&yh)[LOWORD] = 0;
171 189 ay = w * w + ((ax - xh) * yh + (ay - yh) * ax);
172 190 ax = sqrt(xh * yh + ay);
173 191 }
174 192 }
193 +
175 194 if (iscale > 0) {
176 195 if (iscale == 1)
177 196 ax *= twom768;
178 197 else
179 198 ax *= two768; /* must generate side effect here */
180 199 }
200 +
181 201 return (ax);
182 202 }
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX