1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 */ 25 26 /* 27 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 28 * Use is subject to license terms. 29 */ 30 31 #pragma weak __cabs = cabs 32 33 #include <math.h> 34 #include "complex_wrapper.h" 35 36 /* 37 * If C were the only standard we cared about, cabs could just call 38 * hypot. Unfortunately, various other standards say that hypot must 39 * call matherr and/or set errno to ERANGE when the result overflows. 40 * Since cabs should do neither of these things, we have to either 41 * make hypot a wrapper on another internal function or duplicate 42 * the hypot implementation here. I've chosen to do the latter. 43 */ 44 45 static const double zero = 0.0, 46 onep1u = 1.00000000000000022204e+00, /* 0x3ff00000 1 = 1+2**-52 */ 47 twom53 = 1.11022302462515654042e-16, /* 0x3ca00000 0 = 2**-53 */ 48 twom768 = 6.441148769597133308e-232, /* 2^-768 */ 49 two768 = 1.552518092300708935e+231; /* 2^768 */ 50 51 double 52 cabs(dcomplex z) 53 { 54 double x, y, xh, yh, w, ax, ay; 55 int i, j, nx, ny, ix, iy, iscale = 0; 56 unsigned lx, ly; 57 58 x = D_RE(z); 59 y = D_IM(z); 60 61 ix = ((int *)&x)[HIWORD] & ~0x80000000; 62 lx = ((int *)&x)[LOWORD]; 63 iy = ((int *)&y)[HIWORD] & ~0x80000000; 64 ly = ((int *)&y)[LOWORD]; 65 66 /* force ax = |x| ~>~ ay = |y| */ 67 if (iy > ix) { 68 ax = fabs(y); 69 ay = fabs(x); 70 i = ix; 71 ix = iy; 72 iy = i; 73 i = lx; 74 lx = ly; 75 ly = i; 76 } else { 77 ax = fabs(x); 78 ay = fabs(y); 79 } 80 81 nx = ix >> 20; 82 ny = iy >> 20; 83 j = nx - ny; 84 85 if (nx >= 0x5f3) { 86 /* x >= 2^500 (x*x or y*y may overflow) */ 87 if (nx == 0x7ff) { 88 /* inf or NaN, signal of sNaN */ 89 if (((ix - 0x7ff00000) | lx) == 0) 90 return ((ax == ay) ? ay : ax); 91 else if (((iy - 0x7ff00000) | ly) == 0) 92 return ((ay == ax) ? ax : ay); 93 else 94 return (ax * ay); 95 } else if (j > 32) { 96 /* x >> y */ 97 if (j <= 53) 98 ay *= twom53; 99 100 ax += ay; 101 return (ax); 102 } 103 104 ax *= twom768; 105 ay *= twom768; 106 iscale = 2; 107 ix -= 768 << 20; 108 iy -= 768 << 20; 109 } else if (ny < 0x23d) { 110 /* y < 2^-450 (x*x or y*y may underflow) */ 111 if ((ix | lx) == 0) 112 return (ay); 113 114 if ((iy | ly) == 0) 115 return (ax); 116 117 if (j > 53) /* x >> y */ 118 return (ax + ay); 119 120 iscale = 1; 121 ax *= two768; 122 ay *= two768; 123 124 if (nx == 0) { 125 if (ax == zero) /* guard subnormal flush to zero */ 126 return (ax); 127 128 ix = ((int *)&ax)[HIWORD]; 129 } else { 130 ix += 768 << 20; 131 } 132 133 if (ny == 0) { 134 if (ay == zero) /* guard subnormal flush to zero */ 135 return (ax * twom768); 136 137 iy = ((int *)&ay)[HIWORD]; 138 } else { 139 iy += 768 << 20; 140 } 141 142 j = (ix >> 20) - (iy >> 20); 143 144 if (j > 32) { 145 /* x >> y */ 146 if (j <= 53) 147 ay *= twom53; 148 149 return ((ax + ay) * twom768); 150 } 151 } else if (j > 32) { 152 /* x >> y */ 153 if (j <= 53) 154 ay *= twom53; 155 156 return (ax + ay); 157 } 158 159 /* 160 * Medium range ax and ay with max{|ax/ay|,|ay/ax|} bounded by 2^32. 161 * First check rounding mode by comparing onep1u*onep1u with onep1u 162 * + twom53. Make sure the computation is done at run-time. 163 */ 164 if (((lx | ly) << 5) == 0) { 165 ay = ay * ay; 166 ax += ay / (ax + sqrt(ax * ax + ay)); 167 } else if (onep1u * onep1u != onep1u + twom53) { 168 /* 169 * round-to-zero, positive, negative mode 170 * magic formula with less than an ulp error 171 */ 172 w = sqrt(ax * ax + ay * ay); 173 ax += ay / ((ax + w) / ay); 174 } else { 175 /* round-to-nearest mode */ 176 w = ax - ay; 177 178 if (w > ay) { 179 ((int *)&xh)[HIWORD] = ix; 180 ((int *)&xh)[LOWORD] = 0; 181 ay = ay * ay + (ax - xh) * (ax + xh); 182 ax = sqrt(xh * xh + ay); 183 } else { 184 ax = ax + ax; 185 ((int *)&xh)[HIWORD] = ix + 0x00100000; 186 ((int *)&xh)[LOWORD] = 0; 187 ((int *)&yh)[HIWORD] = iy; 188 ((int *)&yh)[LOWORD] = 0; 189 ay = w * w + ((ax - xh) * yh + (ay - yh) * ax); 190 ax = sqrt(xh * yh + ay); 191 } 192 } 193 194 if (iscale > 0) { 195 if (iscale == 1) 196 ax *= twom768; 197 else 198 ax *= two768; /* must generate side effect here */ 199 } 200 201 return (ax); 202 }